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Purpose of review

Imaging techniques such as MRI, ultrasound and PET/computed tomography (CT) have roles in the
detection, diagnosis and management of myositis or idiopathic inflammatory myopathy (IIM). Imaging
research has also provided valuable knowledge in the understanding of the pathology of IIM. This review
explores the latest advancements of these imaging modalities in IIM.

Recent findings

Recent advancements in imaging of IIM have seen a shift away from manual and qualitative analysis of the
images. Quantitative MRI provides more objective, and potentially more sensitive characterization of fat
infiltration and inflammation in muscles. In addition to B-mode ultrasound changes, shearwave
elastography offers a new dimension to investigating IIM. PET/CT has the added advantage of including
IIM-associated findings such as malignancies.

Summary

It is evident that MRI, ultrasound and PET/CT have important roles in myositis. Continued technological
advancement and a quest for more sophisticated applications help drive innovation; this has especially
been so of machine learning/deep learning using artificial intelligence and the developing promise of
texture analysis.
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INTRODUCTION

Myositis, or idiopathic inflammatory myopathy
(IIM), is a heterogenous group of diseases, which
involves inflammation of skeletal muscles; these
include dermatomyositis, polymyositis and inclu-
sion body myositis (IBM). Basing a diagnosis on
clinical history, physical examination and blood
tests alone can be insufficient, and therefore other
information is often required. Muscle biopsy is inva-
sive and may miss sites of abnormalities. Electro-
myography (EMG) can be uncomfortable, and the
findings may be nonspecific. Imaging techniques
therefore offer an alternative means of evaluating
muscles, thereby potentially avoiding some of these
adverse effects.

In recent years, there has been an increased
interest in muscle imaging, driven by a need for
early diagnosis and treatment in order to avoid
disabling and life-threatening sequelae and the
development of new therapeutics. This review
explores the latest advances in imaging including
quantitative MRI techniques, ultrasonography and
PET/computed tomography (PET/CT), which are the
three most commonly used imaging tools in the
diagnosis and management of IIM.
uthor(s). Published by Wolters Kluwe
IMAGING IN MYOSITIS

MRI

MRI is traditionally considered the reference radiolog-
ical modality for IIM. However, it is limited by its cost,
long imaging times and relative lack of availability.

The MRI protocol for IIM typically includes
T1 and T2-weighted spin-echo images to visualise
fatty replacement, oedema and inflammatory
changes, respectively [1]. There are a range of
semi-quantitative systems for scoring muscle
r Health, Inc. www.co-rheumatology.com
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KEY POINTS

� Recent advancement in imaging in myositis has shifted
away from manual and qualitative measurements
towards automated, quantitative measurements.

� Quantitative MRI has provided more objective
measurements for fat infiltration, volume and
inflammation (T2) in muscles.

� There is a need for a more focussed attention in
making sense of ultrasonography use in myositis, to
expand on the observation that increased echogenicity
is seen in IIM.

� PET/CT has the added advantage of being able to
detect myositis-associated malignancies.

� Artificial intelligence and machine/deep learning in
myositis imaging shows early promise for more
efficient performance.

Myositis and myopathies
atrophy, fatty replacement and muscle oedema
from MRI, but there is no standardized, validated
scoring system for IIM [2]. Existing scoring systems
have shown good reproducibility in practice [2];
however, they are subjective, require a skilled
observer and depend on the relative differences
between healthy and diseased muscles within the
same image [3

&

,4]. In comparison, a wide range of
quantitative measurements are sensitive to muscle
changes in IIM [3

&

,5,6] and can detect changes that
visual observers miss in isolated studies [3

&

,4].

Muscle volume

MRI is the gold-standard technique for measuring
muscle volume [7]. Muscle volume is related to
muscle function [8,9] and joint torque [10]. Changes
in muscle volume can be due to normal physiolog-
ical causes, for example hypertrophy after training
or atrophy due to ageing [11,12] or disease [13,14].
Muscle volume is a difficult measurement to stand-
ardize, because so many factors affect it, including
exercise, age, sex, height and many more [15]. How-
ever, muscle volume has been able to detect differ-
ences between IIM and healthy controls [3

&

], as well
as changes due to treatment [16].

Historically, due to the long analysis times, cross-
sectional area measurement of muscle on a single
slice are often used instead of a 3D muscle volume.
This compromise introduces the further potential
confounding factor of slice position error. However,
a range of automated solutions to the problem of
segmenting muscle from MRI have been reported
[17–19]. These algorithms significantly reduce the
analysis time and are likely tomakemuscle volume a
more readily available tool in the future.
396 www.co-rheumatology.com
Fat fraction

MRI measurements of intramuscular fat fraction are
often used as biomarkers of disease progression and
are commonly used as outcome measures in clinical
studies [20]. Fat fraction measurements are made
using the Dixon techniques, which exploit the fact
that fat and water precess at different frequencies in
a magnetic field. They use images acquired at care-
fully chosen echo times, to separate the signals of fat
and water so that the fat fraction can be measured.
They have been successfully used to quantify fatty
infiltration in myositis and to distinguish different
levels of fat between muscle groups in individuals
[3

&

,6] (Fig. 1). However, IIM is a heterogeneous
disease and some patients do not exhibit fatty infil-
tration. Therefore, although fat fraction is a mean-
ingful tool in the understanding of the disease, it is
not specific enough to be used as a stand-alone
diagnostic tool.

T2 measurements

T2, or transverse relaxation time, is the time con-
stant that determines the rate of transverse signal
decay in MRI. An increased T2 can be interpreted as
increased fluid content due to oedema or inflam-
mation. T2 values have been shown to be higher in
IIM than in healthy muscles [3

&

,21,22] (Fig. 1). As a
result, T2 measurements show potential as a diag-
nostic tool for IIM [4,23,24], with some evidence
that they can detect abnormalities that semi-quan-
titative assessments miss [3

&

] (Table 1).
However, T2 measurements are also subject to a

range of potential errors that have been addressed
with different acquisitions and analysis strategies.
Arguably, themost importantof these is the influence
of fat on T2 measurements, which can give the
impression of heightened water T2 [25]. Fat suppres-
sion techniques such as SPAIR supress the fat signal
but do not remove it entirely. A number of methods
have been proposed to address the issue, but there is
no standard solution to the problem [5,26–28].
Therefore, comparisons between T2 measurements
made with different imaging systems, sequences or
analysismethods shouldbeundertakenwithcaution.

In summary, although visual assessment of MRI
in IIM remains the imaging of choice in clinical
practice, quantitative measurements show promise
in the potential role in facilitating earlier diagnosis
and better capability in monitoring disease progres-
sion in IIM, but there is scope for further fine-tuning
of the methodologies.
Ultrasonography

It is only relatively recently that ultrasonography
has begun to be considered as a viable tool for
Volume 35 � Number 6 � November 2023



FIGURE 1. Example of MRI fat fraction (a and b) and T2 maps (c and d) of the thigh muscles in a myositis patient (b and d)
as compared to those in a healthy volunteer of similar age and the same sex (a and c). Raised fat content and increased T2 in
the quadriceps are indicative of myositis in the patient images.
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investigating patients with IIM, with most previous
attention centred around muscle injuries often in
the context of sports medicine [29] and neuromus-
cular disorders [30].

Ultrasonography has a number of advantages
when compared to CT and MRI, such as wider
availability, the avoidance of radiation (vs. CT)
and strong electromagnetic forces (vs. MRI), greater
patient acceptability and the allowance of a
dynamic assessment. It is, however, not without
its own limitations such as restrictions of access to
the ultrasonography beam for deeper muscles, and
lack of standardization of ultrasonography muscle
assessment.

Ultrasound appearance of normal muscle

Muscle is evaluated using both gray scale (B mode)
and Doppler modalities [31]. Supplementary tech-
niques such as elastography have also recently
1040-8711 Copyright © 2023 The Author(s). Published by Wolters Kluwe
begun to be explored. Broadly, gray scale provides
a measure of tissue structure, whilst Doppler eval-
uates vascularity within it. In contrast, elastography
measures the stiffness of tissue (Fig. 2).

Using gray scale, normal muscle appears gener-
ally hypoechoic or anechoic relative to surrounding
subcutaneous tissue. In longitudinal plane, hyper-
echoic bands can be seen within the muscle repre-
senting the perimysiumor aponeurosis. In transverse
plane, these bands may give a more ‘dotted’ appear-
ance of the muscle (‘starry night’ appearance). Ultra-
sonography muscle appearances may differ with
respect to the depth of themuscle and type ofmuscle
relating to differences in fibre orientation and size
of fibre [32].

The presence of Doppler highlights the position
and magnitude of flow within the vessels. It is
normal to find blood flow inmuscle and fascia using
standard ultrasonography equipment.
r Health, Inc. www.co-rheumatology.com 397



Table 1. Recommendations for the different imaging modality in the management of myositis

Diagnosis Monitoring Intervention Other

MRI Ability to identify active muscle
inflammation.

There is some evidence that
quantitative MRI tools may be
able to detect disease that
radiologists miss.

Useful in monitoring disease
both visually and in terms of
muscle volume, fat fraction
and T2, in distinguishing
active muscle inflammation,
from mild, low and no
inflammation.

Most common imaging modality
for identification and selection
of regions for muscle biopsy.

The objectivity of
quantitative MRI makes
it useful for research,
with the potential to
detect subtle
differences in muscle.

Ultrasound Ability to detect abnormal
muscles likely due to IIM, but
role is currently unclear.

Changes in muscle
echogenicity, intra-muscular
power Doppler and muscle
stiffness might be useful to
assess treatment response
(under investigations).

To guide a biopsy needle into
muscle often previously
highlighted as abnormal by
other imaging techniques such
as MRI.

Most repeatable imaging
tool due to relatively
low costs and absence
of radiations.

PET-CT Ability to identify ‘active’ muscle
inflammation and, therefore,
to distinguish patients with IIM
from controls.

Sensitivity and specificity values
are based on the SUV cut-offs
used in the different studies.

Potential ability to distinguish
very ‘active’ muscle
inflammation, from mild, low
and no inflammation, with
implications on disease
monitoring including
response to treatment.

Whole body technique which
help identify most ‘active’
regions for muscle biopsy.

Potential ability to screen
for cancers, which are
relatively common in
this population.

Good accuracy in the
detection of interstitial
lung disease.

FIGURE 2. ‘Multimodal’ assessment of quadriceps muscle mass (a), muscle quality (b, muscle echogenicity assessment using
ImageJ analysis) and muscle stiffness (c, point shear wave elastography) in two healthy individuals. In figure a, the typical
‘starry night’ appearance of a normal muscle (28--year-old man) can be observed. A transverse approach is preferred for the
measurement of muscle thickening (red dashed lines) of the rectus femoris (rf) and vastus intermedius (vi) muscles. Figure b
shows a moderate increase in muscle echogenicity in a 55-year-old woman. Muscle echogenicity can be measured using a
dedicated image analysis program, which measures the gray scale intensity in a region of interest (ROI) utilizing histogram
function (i.e. ImageJ). In the same person, muscle stiffness of the rectus femoris is measured using point shear wave
elastography (longitudinal approach) and it is expressed by m/s.

Myositis and myopathies
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Describing and quantifying muscle disease

Anumber of authors have reported increasedmuscle
echogenicity inmyositis [33] (Fig. 3); however, there
are caveats; for example, in the acute phase, oedema
as stated previously may serve to decrease muscle
echogenicity to either abnormally hypoechoic or
normal levels. This oedema may also be associated
with blurring of themuscle architecture and increas-
ing muscle thickness [34]. Reassuringly, although
not specifically aimed at myositis, a large multi-
centre study on patients with different rheumatic
diseases demonstrated excellent intra-rater and
good inter-rater reliability of scoring echogenicity
of muscle based on the reading of on-line images
and clips [35]. In a follow up study of seven children
over 2 years reported that after the administration of
prednisolone, the echogenicity of the muscle
increased, presumed due to the loss of oedema [34].

Several attempts have been made to quantify
muscle using ultrasonography. This has been on
the basis of muscle thickness, cross-sectional area
or its qualitative appearance. Heckmatt et al. [36],
for example, developed a qualitative 4-point scale
(1–4) based on increased degrees of muscle echoge-
nicity. Theauthorsnoted that changes inmusclemay
be focal or diffuse. Quantitative ‘computer assisted’
gray scalemeasurementsmay bemadewith software,
which evaluates the total hue within a region of
interest (ROI). Recently, di Matteo et al. [37

&

] devel-
oped amodified version of theHeckmatt scale,meas-
uring grades of echointensity abnormalities based
on theextent ofmuscle involved.However, relatively
increased connective tissue due to muscle atrophy
can appear to increase the echointensity, so this
modified scale will need to be further validated.

An important early study investigating the role
of ultrasonography in myositis evaluated a range of
biopsy-proven myositis cases as well as a large
FIGURE 3. Gray scale longitudinal image through the calf sh
muscles. (b) Abnormally hyperechoic gastrocnemius muscle of a 5
Paramalingam.

1040-8711 Copyright © 2023 The Author(s). Published by Wolters Kluwe
normal control group [38]. In the patients, ROI
and visual measurements and biopsy result corre-
lated in 58 out of 70 (83%) patients. Interestingly,
this study suggested a correlation between fatty
infiltration and increased echogenicity rather than
muscle fibrosis per se. However, it also concluded
that the more chronic the myositis, the more echo-
genic the muscle, and that conversely those with
more oedematous muscle had a slightly less echo-
genic appearance. It should be remembered that
when this study was undertaken, technology and
muscle treatments were less advanced, with steroids
being the main treatment.

Muscle thickness appears to increase in acute
myositis and diminish over time [39] using a num-
ber of different measurement techniques. Some
authors have considered fascial thickness [40] and
perimyseal septal counts [41] as items to evaluate,
but the data are small and definitions uncertain. A
few studies have evaluated vascularity of muscle
with only one using a clear scoring system. In this
study of 37 IIM patients, Doppler appeared to be
increased in early cases and then decreased over
time, in contrast to the gray scale echogenicity,
which increased over time [42].

Little data are available for the longitudinal
assessment of disease activity: One study in 11
patients with IIM demonstrated changes in echoge-
nicity measures over a 6-month period [43]. Two
reported studies in paediatric patients have high-
lighted changes in muscle echogenicity, which
appear to normalize with treatment, although this
may take 6–12months [34,44]. More recently, Wal-
ter et al. [45

&&

] demonstrated that ultrasonography
was able to detect changes in as little as 9weeks.

New tools hold some promise for improving
muscle assessment; however, there remains limited
data. Elastography, for example, has demonstrated a
owing. (a) Normal lateral gastrocnemius muscle and soleus
1-year-old woman with IBM. Images Courtesy of Dr Shereen
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reduction in muscle stiffness in some studies
[46,47

&&

], whilst others have shown a greater stiff-
ness [48]. This may reflect the different methods of
measurement, the small numbers of patients being
evaluated or a relationship with different treat-
ments. Contrast-enhanced ultrasound has been
shown to correlate with MRI oedema in patients
with histological defined myositis [49]. However,
this will be limited by feasibility in practice.

In summary, although the use of ultrasonogra-
phy for muscle is longstanding, there remain little
data on IIM. To some extent, research has been
hampered by the rarity of the diseases. Perhaps
because of this, there has been a lack of standardiza-
tion and a previous lack of therapeutic options.
As a result, recent attention from groups such as
OMERACT have begun to systematically study the
technique, and through standardization, multi-
centre studies may offer the better prospect of an
improved understanding.
PET/computed tomography

PET combined with CT, ‘hybrid PET/CT’ has a prom-
ising role in the diagnosis and management of IIM
patients. In IIM patients, PET/CT scan offers the
possibility to assess muscle structural changes and
inflammatory activity simultaneously, usually using
F-18 fluorodeoxyglucose (FDG) as a tracer.

A very recent systematic literature review has
described the studies exploring the clinical useful-
ness of PET/CT in IIM patients [50]. We will focus on
the value of PET/CT in the diagnosis and assessment
of disease activity.

The first study evaluating PET (without CT) in
IIM patients was carried out by Owada et al. [51]. In
this study, an increased FDG muscle uptake was
found in eight out of 24 (33%) patients with ‘active’
myositis (11polymyositis and 13 dermatomyositis)
and two out of 69 (3%) controls. Therefore,
although the specificity of PET was very high,
sensitivity was low and significantly lower than
electromyography, MRI and muscle biopsy.

Subsequently, Pipitone et al. [52] found a higher
FDG muscle intake in IIM patients than in disease
controls (median 0.58 vs. 0.30, P<0.001) in another
small cohort. Using a muscle/liver standardized
uptake values (SUV) ratio of 0.45, the sensitivity/
specificity of PET/CT was 75 and 100%, respectively.
In this study, no significant correlation between
the PET/CT and creatine kinase (CK) levels, muscle
strength and MRI was found.

Tanaka et al. [53] also showed a higher FDG
muscle uptake in IIM patients than in controls
(median 1.05 vs. 0.69, P<0.001). When using a
SUV cut-off of 0.83, the sensitivity and specificity
400 www.co-rheumatology.com
of PET/CT for IIM were 90 and 100%, respectively.
Interestingly, SUV valuesmore than 0.83 were found
in three out of eight IIM patients with a normal MRI
scan, thus suggestingahigher sensitivityofPET/CTin
at least some patients. Unlike the study by Pipitone
et al. [52], a significant association between PET/CT
and reduced patients’ muscle strength and serum
CK/aldolase levels was reported. In addition, higher
SUV values in proximal muscles correlated with
inflammation on histology, thus highlighting the
value of PET/CT as a guide for the selection of the
regions for muscle biopsy in IIM patients.

Similar positive results were obtained in two
retrospective studies, in which PET/CT was able
to discriminate between IIM patients and controls
[54,55].

Recently, Matuszak et al. [56] proposed PET-CT
as an instrument that could be used for monitoring
disease activity in IIM patients. Using the Myositis
Intention to Treat Activity Index (which scores
‘disease activity’ from active to inactive in a muscle
domain), the authors identified a SUV threshold of
0.66, which was able to differentiate high muscle
disease activity from low or no muscle with a high
sensitivity and specificity.

The main application for PET/CT in clinical
practice is to investigate the presence of a malig-
nancy. The strong association between IIM and
cancers is well known [57]. Given the increased
cancers rate in IIM patients, early screening and
surveillance for malignancy is recommended in
IIM patients.

International guidelines on cancer screening in
patients with IIM are lacking [58]. Furthermore,
whether PET/CT offers any additional value com-
pared with a routine battery of screening tests for
neoplasm in IIM patients remains undefined. The
studies that have explored this aspect showed a
sensitivity and specificity of PET/CT of 66.7–94
and 80–97.8%, respectively [59–62].

In addition, PET-CT has been shown to be accu-
rate for the assessment of interstitial lung disease
(a common manifestation in patients with IIM),
with a comparable sensitivity (93–100%) to high-
resolution CT, which is regarded as the gold stand-
ard for the assessment of this condition [63–65].

In summary, PET/CT showed a very high spe-
cificity and good sensitivity for the diagnosis
and assessment of disease activity in IIM patients.
PET/CT can detect cancer (which is relatively com-
mon in this population) and is able to assess ‘extra-
muscular’ targets of IIM, such as the lung. PET/CT
is a whole-body technique, which could help guid-
ing the selection of the regions for muscle biopsy.

Main limitations are patients’ radiation
exposure, costs and availability. Further research
Volume 35 � Number 6 � November 2023
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comparing the accuracy of PET/CT, MRI and ultra-
sonography for the diagnosis and follow-up (i.e.
responsiveness to treatment) of IIM patients are
needed to understand the ‘true’ clinical usefulness
of PET/CT in the assessment of these patients [66

&

].
FUTURE DIRECTIONS

Although MRI remains the main imaging tool in
the clinical management of IIM, there is potential
for quantitative MRI to be a more sensitive and
accurate tool in detecting subtle myositic changes.
The use of imaging in disease management lends
itself well to being enhanced by artificial intelli-
gence (AI). AI offers the potential to make imaging
more streamlined and lean from the perspective of
productivity, time and resource, as well as being
more reliable in detecting abnormalities. Machine
learning has been shown to automate processes
such as measuring body composition, which
includes muscle and fat mass [67]. Deep learning
algorithms have been applied to muscle segmenta-
tion (to assess muscle volume and localize muscles
for quantitative analysis), and have been shown to
be more accurate than manual segmentation in
preparation for surgery [68]. More importantly,
deep learning can be trained to differentiate
between myopathies, and is thereby potentially
useful in the diagnosis of IIM [69

&

].
As we progress in our learning of the potential of

AI in enhancing the use of imaging in detecting
abnormalities, our research methods become more
sophisticated. For example, a fully automated deep
learning algorithm for diagnosing myositis using
ultrasonography has been shown to perform better
and more accurately than semi-automated machine
learning techniques that require manual delinea-
tion of muscle and fat boundaries [70,71].

As alluded to earlier, increased ultrasound echo-
genicity has been observed in muscles involved in
myositis. Texture analysis based on pixel-based
echogenicity of an ultrasound image is a technique
that attempts to differentiate the various myopa-
thies using mathematical analysis of muscular
microstructure not visible to the human eye. The
technique has been shown to be able to classify
different myopathies [72]. Unsurprisingly, other
imaging modalities have used the application of
texture analysis, such as MRI which has been used
to predict specific groups of IIM [73].

This could be an important direction on the
research agenda, because if this proves to be feasible,
reliable and repeatable, it may mean that patients
with IIM can avoid unnecessary and invasivemuscle
biopsies for diagnosis and management of their
conditions.
1040-8711 Copyright © 2023 The Author(s). Published by Wolters Kluwe
CONCLUSION

Muscle imaging in IIM has stretched the potential of
various imagingmodalities such asMRI, ultrasonog-
raphy and PET/CT in detecting and diagnosing
myositis, and has become an important part of
the management of IIM. Yet, the recent research
in this area suggests that there is still untapped
exploitation of the various imaging techniques,
coupled with AI, which could continue to revolu-
tionize the use of imaging in myositis.
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