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Abstract

We propose a two-step method for the analysis of copy number data. We first define the partitions 

of genome aberrations and conditional on the partitions we introduce a semiparametric Bayesian 

model for the analysis of multiple samples from patients with different subtypes of a disease. 

While the biological interest is to identify regions of differential copy numbers across disease 

subtypes, our model also includes sample-specific random effects that account for copy number 

alterations between different samples in the same disease subtype. We model the subtype and 

sample-specific effects using a random effects mixture model. The subtype’s main effects are 

characterized by a mixture distribution whose components are assigned Dirichlet process priors. 

The performance of the proposed model is examined using simulated data as well as a breast 

cancer genomic data set.
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1 Introduction

There has been increasing interest in constructing the genomic architecture of breast cancer 

based on alterations in the DNA copy number. The idea is to characterize different subtypes 

of breast cancer by examining the whole-genome copy number profiles. In this paper, we 

present a Bayesian semiparametric model to analyze DNA copy number data for multiple 

samples with multiple conditions, for example, disease subtypes.

An example of such data is a set of 122 breast cancer samples known to fall into three 

subtypes of breast cancer, namely estrogen receptor-positive (ER+), progesterone receptor-

positive (PR+) and triple negative (TN) breast cancer. These three subtypes potentially 

possess different copy number profiles in various regions of the genome. The scientific aims 
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are to assess: (1) the segmented regions of copy number alterations within each subtype 

across the genome, and (2) the regions of differential copy numbers between subtypes.

We propose a two-step method that defines the partitions of genome aberrations for each 

sample in the initial step, and a flexible semiparametric Bayesian framework for jointly 

modeling all samples known to belong to either of two disease subtypes as a second step. We 

report posterior inferences based on the proposed Bayesian models and make decisions by 

controlling the false discovery rate (FDR) (e.g., Newton et al., 2004). To start, we introduce 

the biological background and present a brief literature review.

1.1 DNA copy number and arrayCGH

The normal DNA of human beings has 23 pairs of chromosomes. One pair is the sex 

chromosomes and the other 22 pairs are autosomal chromosomes, or autosomes. The 

chromosomes in an autosomal pair are identical; hence, the copy number of DNA is two 

for each autosome.

Copy number alterations (CNAs) refer to the variations (from two) in the copy number of 

DNA, which are common in cancer and other genetic diseases. CNAs often result from 

abnormal genetic events, such as a series of mutations that cause discrete gains or losses 

in contiguous segments of DNA. To detect genome-wide CNAs, array-based hybridization 

technology, such as the array comparative genomic hybridization (arrayCGH), has been 

widely applied (Pinkel et al., 1998; Snijders et al., 2001; Pinkel and Albertson, 2005). In 

short, arrayCGH uses microarrays consisting of thousands or millions of genomic targets or 

“probes” that are spotted or printed on a glass surface. These probes usually span the whole 

genome with a resolution of the order of magnitude ranging from one probe per one million 

base pairs (1 MB) for a bacterial artificial chromosome, to one probe per 50–100 kilo base 

pairs (kb). A DNA test sample of interest is labeled with a dye (say, Cy3) and then mixed 

with a diploid reference sample that is labeled with a different dye (say, Cy5). The combined 

sample is then hybridized to the microarrays and the intensities of both colors are measured 

through an imaging process.

The quantity of interest is the log2 ratio of the two intensities for each probe. The collection 

of the intensity ratios then contains useful information about genome-wide changes in copy 

numbers. In the reference, the copy number of each DNA fragment is always two; thus, 

the intensity ratio is determined by the copy number of the DNA in the test sample. If 

that copy number is also two, the log2 intensity ratio equals zero, that is, no CNA. If there 

is a single copy loss in the test sample, the theoretical ratio is log2 1/2 = −1, assuming 

all the cells in the test sample lost one copy of the DNA fragment. Likewise, if there is 

a single copy gain, the theoretical ratio is log2 3/2 = 0.58. Multiple copy gains are called 

amplifications, and the corresponding theoretical intensity ratios are log2 4/2, log2 5/2, etc. 

When both copies are lost (called deletion), the theoretical ratio is −∞, and a large negative 

value is usually observed in experiments. Due to the fact that not all the cells in the test 

sample have the same copy number and there is a possibility of tumor heterogeneity and 

other genetic contamination such as cross-hybridization, the absolute values of the observed 

intensity ratios are often smaller than their theoretical values.
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1.2 Previous work on arrayCGH analysis

There have been a number of approaches proposed for analyzing arrayCGH data depending 

on the scientific question of interest. A common starting point of most investigations is in 

locating genomic regions that have abnormal copy numbers and determining the number of 

DNA copies in that region. In the frequentist domain, these include hidden Markov models 

(Fridlyand et al., 2004), finite mixture models (Hodgson et al., 2001) and change-point 

models (Olshen et al., 2004; Pollack et al., 2002) and penalization approaches such as least 

squares criterion (Huang et al., 2005), penalized quantile smoothing (Eilers and de Menezes, 

2005), and fused lasso penalty (Tibshirani and Wang, 2008). While these approaches (at 

times) enable fast fitting due to their model construction and provide point estimations, 

however, they do not explicitly provide quantification of uncertainties associated with the 

genomic copy number aberrations. To overcome these challenges, Bayesian probabilistic 

approaches have been proposed by Guha, Li and Neuberg (2008) who use a parametric 

hidden Markov model to assess copy number aberrations at the probe-level. In a Bayesian 

nonparametric setting, Yau et al. (2011) proposed a mixture model that combines a hidden 

Markov model for the locations (states), with a Dirichlet process prior for the scales. 

However, all the above approaches are only applicable for single sample analyses and do not 

provide a mechanism to borrow strength between samples to detect population level copy 

number changes.

Recently, several approaches have been developed to allow joint modeling of multiple 

arrayCGH samples. These include segmentation methods based on generalized fused lasso 

(Zhang, Lange and Sbatti, 2012) and correlated random-effect models of Teo et al. (2011). 

Bayesian methods for single samples analysis have been provided by Baladandayuthapani 

et al. (2010) who use a Bayesian segmentation model to detect shared aberrations between 

multiple samples, and Shah et al. (2007) who propose a class of novel hierarchical hidden 

Markov models for recurrent copy number aberrations. However, these class of methods 

suffer from two drawbacks. First, they rely on parametric models that do not allow more 

flexible structures to be determined from the data, and second, they do not explicitly test (or 

model) differential aberrations between multiple populations of samples—a gap in literature 

this work aims to fill.

In this paper, we generalize the previous methods in two key directions:

i. First, from a statistical modeling point of view, we propose a semiparametric 

Bayesian model for arrayCGH data, where we build hierarchical models with 

mixture specifications and Dirichlet process DP  priors (Ferguson, 1973) 

for the copy number states of specific genomic regions. The semiparametric 

formulation allows for a more flexible and adaptive data-driven mechanism for 

identification of copy number aberrations.

ii. More importantly, the proposed models account for variability in the samples, 

both within and between different conditions, such as cancer subtypes. This 

enables researchers to borrow strength across samples within the same condition, 

as well as to infer the identification of differential copy numbers between 

different conditions.
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Our approach allows for borrowing strength across repeated experiments and does not rely 

on specific parametric distributions. A nonparametric specification for the copy number 

states prevents us from considering a finite number of states (typically loss, neutral and 

gain) and allows us to cope with more states present in the data. Additionally, we compare 

different disease subtypes by considering a kind of bivariate spike and slap prior.

The paper is structured thusly: In Section 2, we present the semiparametric model and the 

corresponding posterior distributions required to make inference; in Section 3, we describe 

the analysis of simulated and real data; and in Section 4, we conclude with a discussion.

2 Semiparametric modeling

2.1 Notation

For ease of exposition, we illustrate our proposed model for one chromosome. The same 

model is used for other chromosomes in the analysis. Let n denote the number of probes 

printed on the microarray for the chromosome. Let A = t1, t2, …, tn  be the index of probes. 

These indexes are ordered based on the physical genomic locations of the probes on the 

chromosome. For example, probe t1 is located at the very beginning of the chromosome 

(e.g., at the p-arm) while probe tn is at the end (e.g., the q-arm). Typically, the number 

of probes is the same for all samples from the same platform. When different types of 

microarrays are used, we assume that A is a union of all the probes in the samples. For each 

sample j, we assume that there are nj probes, which are a subset of A.

To build the models, we require J + 1 different partitions of A. One partition for each sample 

j, Δlj l = 1
Lj , j = 1, …, J, plus a common partition Ωk k = 1

K  for all samples. For each sample j, 

the partition Δlj l = 1
Lj  is defined such that Δlj ∩ Δl′,j = ∅ and ∪l = 1

Lj Δlj = A. Each element Δlj 

contains a consecutive set of indexes in A. That is, denoting t1 = c1j < c2j⋯ < cLj + 1, j = tn  a 

subset of A, we define

Δlj = clj, cl + 1, j , l = 1, …, Lj

as a partition of A. Some probes, ti’s, may not be present in sample j, in which case we 

simply remove those probes ti’s and the partition remains unchanged. These partitions can 

be obtained, for example, by applying circular binary segmentation (CBS) (Olshen et al., 

2004) to each sample, j.

The common partition Ωk k = 1
K  of size K is defined as the union of all 

partition segments over j = 1, …, J. That is, Ωk = [ck, ck+1) with 

t1 = c1 < c2⋯ < cK + 1 = tn = ∪j t1 = c1j < c2j⋯ < cLj + 1, j = tn . Therefore, for a given probe ti, 

it must be in one and only one Ωk, for k =1, …, K. Note that this common partition is 

finer than each of the individual sample partitions. To better understand the relation between 

individual and common partition, we show in Figure 1 a toy example with two individual 

partitions and how they relate to form the common partition.
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Let gj ∈ {1, 2} indicate the disease subtype for sample j. In our motivating example, gj 

= 1 denotes the ER+ subtype and gj = 2 denotes the TN subtype of breast cancer. We 

also define some distribution notations: N(μ, σ2) denotes a normal distribution with mean 

μ and variance σ2; Np(μ, Σ) is a p-variate multivariate normal distribution with mean 

μ and variance–covariance matrix Σ; Ga(α, β) is a gamma distribution with mean α/β; 

IGa(α, β) represents an inverse gamma distribution with mean β/(α −1); and Ber(π) denotes 

a Bernoulli distribution with success parameter π. DP a, F  is a Dirichlet process with 

precision parameter a and centering measure F. We proceed with the introduction of a 

sampling model, followed by the priors.

2.2 Probability model

With the two aforementioned objectives in mind, we construct the following hierarchical 

models. Let Yij be the log2 ratio of probe ti at sample j. We assume that Yij arises from the 

sum of a population mean, a sample-specific mean, plus a measurement error. Specifically, 

let the population mean be μk, gj, if probe ti is in the population segment Ωk and sample j is 

from disease subtype gj; let mlj be a random effect specific to sample j, assuming that probe 

ti is in sample-specific segment Δlj; and denote the measurement error by εij. For simplicity, 

let us assume that ti = i. In summary, the model has a linear expression of the form

Y ij = ∑
k = 1

K
μk, gjI I ∈ Ωk + ∑

l = 1

Lj

mljI i ∈ Δlj + εij, (2.1)

for i = 1, …, nj and j = 1, …, J. We assume that the measurement errors εij are independent 

and identically distributed N(0, σε
2).

We set up the following prior distributions to fulfill our objectives. Denote by μk = (μk1, 

μk2) the vector of population copy number levels for subtypes 1 and 2, respectively, with 

distribution G. We construct G as a mixture of two distributions G0 and G1, which in turn are 

assigned nonparametric Dirichlet process priors. In notation, we have

μk Gind.G, for k = 1, …, K
G = 1 − π G0 + πG1

Gr ar
ind.DP ar, Fr , r = 0, 1,

where ar and Fr are the precision and centering measure parameters, respectively. Thus, the 

μk’s turn out to be partially exchangeable. For the centering measures of the nonparametric 

Dirichlet process priors, we take a degenerate bivariate normal on the identity line 

F0 μk = N(μk1 0, λ0
2)I(μk1 = μk2) and a proper bivariate normal F1(μk) = N2(μk | 0, Λ1), with 

λ0
2 as a nonnegative scalar and Λ1 a positive defined variance–covariance matrix, where we 

take the covariance to be zero, that is, Λ1 = diag(λ1
2, λ2

2), to ensure identification in the mixture. 

Note that these choices for the centering measures are equivalent to the well-known spike 

and slab priors (e.g., Mitchell and Beauchamp, 1988) but in two dimensions.
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The mixture construction G = (1 − π)G0 + πG1 and the centering measures for DP, 

F0 and F1, allow us to determine regions along the chromosome for which the two 

subgroups manifest different copy numbers. That is, with prior probability (1−π), the 

random distribution G comes from a DP with a degenerated centering measure F0, where 

μk1 = μk2 almost surely. With prior probability π, the random distribution G comes from a 

DP with a centering measure that obeys a bivariate normal law, for which μk1 ≠ μk2 almost 

surely (see the Appendix for a simple proof). Therefore, introducing a latent indicator zk = I 
(μk1 ≠ μk2) and assuming Pr(zk = 1) = π, we can rewrite the prior for μ as

μk zk, G0, G1
ind.Gzk, with zk

ind.Ber(π) and Gr
ind.DP ar, F r , (2.2)

for k = 1, …, K and r = 0, 1. Note that (2.1) and (2.2) define a Dirichlet process mixture 

model (e.g., MacEachern and Müller, 1998).

Due to the discrete nature of the DP prior, some of the μk’s will be identical. In summary, 

the mean copy numbers of segment k for the two disease subtypes, μk1’s and μk2, will be 

clustered in two ways: those segments with the same population copy number levels across 

the chromosome probes, and those segments with the same population copy number levels 

across the two disease subtypes.

The model specification is completed with the following prior constructions. For the random 

effects, mlj, in (2.1), which account for the heterogeneity in the segment means across 

samples, we assume that

mlj
ind.N(0, τj

2), withτj
2i . i . d .IGa ατ, βτ . (2.3)

The sample variance is also assigned a prior distribution of the form σε
2 IGa ασ, βσ . 

Finally, for the precision parameter of the Dirichlet processes in (2.2), we further assume 

ar
i . i . d .Ga aα, bα , for r = 0, 1.

2.3 Posterior computation

The likelihood function is the density of the joint distribution of Y = {Yij}, given by

f y μ, m = (2πσε
2) −1/2 ∑j = 1

J nj

× exp − 1
2σε

2 ∑
j = 1

J
∑

i = 1

nj
yij − ∑

k = 1

K
μkgjI i ∈ Ωk − ∑

l = 1

Lj
mljI i ∈ Δlj

2
.

We introduce some notation that will be useful in characterizing the posterior:
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skj = ∑
i = 1

nj

I i ∈ Ωk , slj = ∑
i = 1

nj

I i ∈ Δlj ,

sklj = ∑
i = 1

nj

I i ∈ Ωk I i ∈ Δlj ,

skj
y = ∑

i = 1

nj

yijI i ∈ Ωk , and slj
y = ∑

i = 1

nj

yijI i ∈ Δlj .

(2.4)

We now report the conditional posterior distributions needed to perform Markov chain 

Monte Carlo simulations.

1. Update (μk, zk)—We will jointly update μk and zk. Based on the Polya urn 

representation of the DP prior (see the Appendix), we can derive the prior conditional 

distribution for the pair (μk, zk), given all other pairs (μj, zj)’s for j ≠ k, as

μk, zk μ−k, z−k

πI zk = 1
a1 + K1

a1N2 μk 0, Λ1 + ∑
j ≠ k

K
δμj μk I zj = 1

+ 1 − π I zk = 0
a0 + K0

a0N μk1 0, λ0
2 I μk1 = μk2 + ∑

j ≠ k

K
δμj μk I zj = 0 ,

where Kr = ∑j ≠ k

K I zj = r , r = 0, 1 such that K0 + K1 = K − 1. Therefore, the posterior 

conditional for (μk, zk) is given by

f μk, zk y, rest = q00N μk1 B0, C0 I μk1 = μk2 I zk = 0

+ ∑
j ≠ k

K
q0jδμj μk I zj = 0 I zk = 0

+ q10N2 μk B1, C1 I zk = 1

+ ∑
j ≠ k

K
q1jδμj μk I zj = 1 I zk = 1 ,

(2.5)

where

q00 = a0 1 − π A0
a0 + K0 Q , q0j = 1 − π D0j

a0 + K0 Q ,

q10 = a1πA1
a1 + K1 Q , q1j = πD1j

a1 + K1 Q

with Q the normalizing constant such that q00 + q10 + ∑j ≠ k

K q0j + q1j = 1, and
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A0 = ϕ yk1
ψk11

+ yk2
ψk22

1
ψk11

+ 1
ψk22

−1
0, 1

ψk11
+ 1

ψk22

−1
+ λ0

2 ,

B0 = yk1
Ψk11

+ yk2
ψk22

C0,

C0 = 1
ψk11

+ 1
ψk22

+ 1
λ0

2

−1
,

D0j = ϕ μj1 yk1, ψk11 ϕ μj1 yk2, ψk22 , for j ≠ k,
A1 = ϕ2 yk 0, Ψk + Λ1 ,

B1 =

yk1
Ψk11

1
Ψk11

+ 1
λ1

2

−1

yk2
Ψk22

1
Ψk22

+ 1
λ2

2

−1 ,

C1 = diag 1
ψk11

+ 1
λ1

2

−1
, 1

ψk22
+ 1

λ2
2

−1
,

D1j = ϕ2 μj yk, Ψk , for j ≠ k,

where ϕ and ϕ2 are the univariate and bivariate normal density functions, respectively. 

Finally,

yk =

∑j = 1
J I(gj = 1)(skj

y − ∑l = 1

Lj mljsklj)

∑j = 1
J I(gj = 1)skj

∑j = 1
J I(gj = 2)(skj

y − ∑l = 1

Lj mljsklj)

∑j = 1
J I(gj = 2)skj

and

Ψk =

σε
2

∑j = 1
J I gj = 1 skj

0

0 σε
2

∑j = 1
J I gj = 2 skj

for k = 1, …, K, with skj and skj
y  as given in (2.4).

2. Update mlj—For the specific random effects mlj, the conditional posterior is given by

f(mlj y, rest) = N(mlj m∗, τ∗
2), (2.6)

where m∗ =
slj

y − ∑k μkgjsklj

σε
2(slj/σε

2 + 1/τj
2) and τ∗

2 = slj

σε
2 + 1

τj
2

−1
, for l = 1, …, Lj and j = 1, …, J, where slj, slj

y

and sklj are as given in (2.4).

3. Update σε
2
—For the measurement error variance σε

2, the conditional posterior is given by

f(σε
2 y, rest) = IGa(σε

2 ασ
∗, βσ

∗), (2.7)

where
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ασ
∗ = ασ + 1

2 ∑
j = 1

J
nj

and

βσ
∗ = βσ + 1

2 ∑
j = 1

J
∑

i = 1

nj
yij − ∑

k = 1

K
μkgjI(i ∈ Ωk) + ∑

l = 1

Lj
mljI(i ∈ Δlj)

2
.

4. Update τj
2
—For the variance of the specific random effects τj

2, the conditional posterior 

depends on only mlj
2  and is given by

f(τj
2 mkj) = IGa(τj

2 ατ
∗, βτ

∗), (2.8)

where

ατ
∗ = ατ + Lj

2 and βτ
∗ = βτ + 1

2 ∑
l = 1

Lj
mlj

2 .

5. Resampling μk—As is customary when dealing with almost surely discrete random 

measures, as in the case for the Dirichlet process, an acceleration step is required to 

resample the cluster locations (e.g., Bush and MacEachern, 1996). If we denote by μ1
∗, …, μH

∗

the distinct values of the μk’s, and by z1
∗, …, zH

∗  the corresponding latent indicators, then each 

μℎ
∗, conditional on the cluster configuration (c.c.), needs to be resampled from

f μℎ1
∗ y, c . c . , zℎ

∗ = 0, rest = N μℎ1
∗ B0

∗, C0
∗ , (2.9)

where

B0
∗ = ∑

k:μk = μℎ
∗

yk1
ψk11

+ yk2
ψk22

C0
∗

and

C0
∗ = ∑

k:μk = μℎ
∗

1
ψk11

+ 1
ψk22

+ 1
λ0

2

−1
,

if zℎ
∗ = 0 and setting μh2 = μh1; or from

f μℎ
∗ y, c . c . , zℎ

∗ = 1, rest = N2 μℎ
∗ B1

∗, C1
∗ , (2.10)

where
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B1
∗ =

C111
∗ ∑

k:μk = μℎ
∗

yk1
ψk11

C122
∗ ∑

k:μk = μℎ
∗

yk2
ψk22

and

C1
∗ = diag ∑

k:μk = μℎ
∗

1
ψk11

+ 1
λ1

2

−1
, ∑

k:μk = μℎ
∗

1
ψk22

+ 1
λ2

2

−1
,

if zℎ
∗ = 1.

6. Update ar—Finally, for the precision parameters ar, r = 0, 1 in the Dirichlet processes, 

we know from Antoniak (1974) that the conditional posterior distribution of ar depends on 

only the number of distinct μk’s and the sample size, that is,

f ar Hr, Kr ∝ Γ ar

Γ ar + Kr
ar

Hr + αa − 1e−βaar, (2.11)

where Kr = ∑k = 1

K I zk = r  and Hr is the number of distinct values μk’s such that zk = r, for r 

= 0, 1.

The precision parameter ar plays a very important role. It largely affects the number of 

clusters in the μk’s. A small value of ar implies fewer clusters, whereas a large value 

results in many clusters. Since for the arrayCGH data we anticipate having a relatively small 

number of segments per chromosome, we will consider relatively informative priors in such 

a way that they assign most of the mass to small values of ar.

Sampling from each of the previous conditional posterior distributions is straightforward, 

since almost all of them have a standard form. The exception is the updating step 6, for 

which we would require a Metropolis–Hastings step (Tierney, 1994). The main challenge 

lies in the speed of computation for large data sets, which we have. Programming language 

such as R will not scale. Instead, we used Fortran, a low-level but much faster language for 

coding. The computing speed is much improved.

2.4 Calling differential copy number alterations

There are several quantities of interest that we want to focus on in order to achieve 

our inferential objectives. We break down these quantities into two categories, those for 

population-level inference, and those for sample-specific inference. The key parameters of 

interest are μk = (μk1, μk2), zk, and mlj.

To obtain summaries at the population level, for each population segment k = 1, …, K, we 

compute marginal posterior probabilities for each disease subtype, say p1 = P(|μk1| ≥ d1 | 
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data) and p2 = P(|μk2 | ≥d2 | data), for given values of d1 and d2. Higher values of these 

probabilities will imply a marginal CNA for each subtype.

Moreover, to determine differential CNAs across disease subtypes, we compute the joint 

posterior probabilities,

pz = P μk1 ≥ d1 or μk2 ≥ d2 , zk = 1 data ,

for k = 1, …, K. Higher values of these probabilities indicate that segment k has CNAs in 

any of the disease subtypes and there are differential copy numbers across the two subtypes. 

The different combinations given in the previous description of the probability may also 

produce alternative inferences. The threshold to determine high probability values for p1, p2 

and pr is set according to a prespecified FDR.

For the sample-specific inference, for each sample j and segment l, the segment-specific 

mean copy number is (μk, gj + ml, j), in which the population segment k overlaps with the 

sample-specific segment. Note that there can be several population segments that are 

embedded in the same sample-specific segment. When this is the case, we simply report 

inference according to the segments defined by the population segments.

3 Data analysis

In this section, we consider two analyses, one with simulated data under different scenarios 

to test our model, and the other with real data obtained from a breast cancer study conducted 

at MD Anderson Cancer Center.

3.1 Simulated data

We implemented a simulation study in order to evaluate the operating characteristics of our 

approach. We simulated samples with n = 1000 probes, with ordered locations ranging from 

1 to n. For group g = 1, we considered four regions of shared aberrations around locations 

{200, 400, 600, 800}, alternating gain and loss. Group g = 2 contains only two regions of 

aberration at locations {600, 800} identified as a copy number gain and loss, respectively. 

We randomly generated aberration widths from a Ga(2.5, 0.05) distribution that has a mean 

of 50 and 99% interval (5, 168), which shows a large variability and accommodates both 

large and short segments. We took the level of the profiles for each probe to be zero for 

the neutral zones and to be a positive/negative random value Un(0.1, 0.25) for the gain/loss 

zones, respectively.

We then added white noise to these mean profiles. We generated random errors from 

N(0, σ2), with σ2 ∈ {0.1, 0.3} to show low and high levels of noise in the log2 

ratios. We generated 100 profiles, 50 from each group. To test our model under different 

conditions, only a percentage ω100% of the profiles presented the shared aberrations; 

the remainder (1−ω)100% were all neutral, showing only white noise around zero. We 

took three prevalence levels, ω ∈ {1, 0.6, 0.3}. Therefore, we have a total of 6 different 

scenarios. Scenarios 1 to 3 have low noise with 100%, 60% and 30% prevalence levels, 
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respectively, and scenarios 4 to 6 have high noise with 100%, 60% and 30% prevalence 

levels, respectively.

Figure 2 shows four profiles for the low (left column) and high (right column) noise levels. 

We can see that for the high noise profiles, it is very difficult to distinguish (visually) the 

aberration zones. In the same figure, we present group 1, with four aberration zones (top 

row) and group 2, with only two aberration zones (bottom row).

To obtain the sample-specific partitions {Δlj}, we ran the CBS algorithm with the default 

tuning parameter α = 0.01. We fitted our model with the following prior specifications: 

λ0
2 = λ1

2 = λ2
2 = 100 to induce flat centering measures, and (αa, βa) = (1, 1) as a relatively 

informative prior to induce a small ar, and thus a low number of point masses in the 

Dirichlet processes. For the inverse gamma prior on the sampling variance σε
2, we took 

(ασ, βσ) = (2, 1) to be a little informative. The crucial parameter in the model is the 

variance of the segment-specific random effects, τj
2. Large values of τj

2 would make the 

sample-specific effects capture most of the variability of the data, leaving little information 

for the population mean. On the other hand, if τj
2 is small, the variability of the data is shared 

between the population effects and the sample-specific effects. In fact, if we choose (ατ, 
βτ) = (2, 1), the logarithm of the pseudo marginal likelihood (LPML) statistic (Geisser and 

Eddy, 1979) for scenario 1 is 88, 686; whereas if (ατ, βτ) = (3, 0.01), the LPML is 80, 211. 

Although the fitting of the individual samples is better with the former choice, we prefer the 

latter because it produces better estimates for both the population and individual samples. 

In all cases, we ran the Gibbs sampler for 10,000 iterations with a burn-in of 1000, keeping 

every other draw after burn-in for computing the estimates. The Markov chain converged 

quickly and mixed well.

For calling differential CNAs, we took FDR = 5%, with thresholds d1 = d2 = d. Since we 

have different levels of prevalence of aberrations in the samples, in the different scenarios, it 

is more difficult to call a CNA. To be fair, we took d = 0.10, 0.05, 0.03 as threshold values 

for the 100%, 60% and 30% prevalence levels, respectively.

Figure 3 presents the CNA calls for the different scenarios. In each panel, we show three 

rectangles, with the x-axis indicating the probe location. The first two rectangles correspond 

to the marginal CNAs of groups 1 and 2 called from p1 and p2. The third rectangle 

indicates the regions along the chromosome where there are CNA differences across the 

two chromosomes, called from pz. As we can see from this figure, with a low level of noise 

in the data, our model is able to detect the regions of aberration in each group, as well as the 

regions of CNA differences across the two groups, for the three prevalence scenarios.

Now, looking at the right column in Figure 3, which corresponds to the scenario of a high 

noise level, our model is able to detect most marginal regions of aberrations for the cases 

with 100% and 60% prevalence; however, it is not able to detect any of the aberrations in the 

cases with low prevalence. This is reasonable because, given 30% aberration prevalence in 

the samples combined with a high noise level, the findings are essentially white noise. For 

the 100% aberration prevalence in the samples (top right panel in Figure 2), we notice that 

even though our model correctly detects the marginal regions of aberrations in each group, it 
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also detects a difference in the levels of the second region of amplifications, denoted with a 

blue/light grey segment aligned with the two green/medium grey segments in groups 1 and 

2. This false discovery is also due to the high level of noise present in the data.

To study the dependence of our model to the sample specific partitions {Δlj}, we repeated 

the analysis with other two values of the tuning parameter α in the CBS algorithm, say 0.001 

and 0.05. With a smaller value of α, CBS detects less changing points, whereas with a larger 

value, more changing points are detected. Results (not included here) showed that the impact 

of the partitions in the inference is almost null, perhaps it is preferred a partition with more 

segments (larger α in the CBS) than another with few segments, specially when the level of 

prevalence is low.

3.2 Breast cancer data

At the University of Texas MD Anderson Cancer Center, we conducted arrayCGH 

experiments using samples from 122 patients with breast cancer. For each sample, we used 

an Agilent HG 4×44K array with 42,416 unique probes. As a result, the raw data contained a 

matrix of 42,416 × 122 log2 ratios. The tumor samples we analyzed represented 60 patients 

with ER+ breast cancer, 11 patients with PR+ breast cancer, and 51 patients with TN breast 

cancer. Given the reduced number of patients with the subtype PR+, we concentrated on 

comparing the other two subtypes, ER+ and TN. It is common practice to analyze each 

chromosome separately since it is rare to see cross-chromosomal CNAs. Therefore, we split 

the data based on the chromosomes and analyzed each of them separately.

To prepare for Bayesian inference, we preprocessed the arrayCGH data, which included 

a global normalization process to center the sample mean for each of the 111 samples. 

Analogous to the simulated data, we obtained sample-specific partitions {Δlj} by running the 

CBS algorithm with a tuning parameter of α = 0.01. We used the same prior specifications 

that we used in the simulated data analysis. We ran the Gibbs samplers for 10,000 iterations, 

with a burn-in of 1000, keeping every other draw. Again, for calling a differential CNA, 

we took FDR = 5%, with thresholds d1= d2 = 0.2 for all chromosomes. We found CNA 

differences between the two cancer subtypes in 16 of the 23 chromosomes; predominantly in 

chromosomes 3–7, 9–12, 14–19 and 23.

In Figures 4 and 5, we present marginal CNAs for the two cancer subtypes (ER+ and TN) 

and copy number differences across the two subtypes.

Curtis et al. (2012) provided what is perhaps the most comprehensive report on genomic 

architecture for breast cancer, based on genomics findings from a study of 2000 breast 

tumors. We compared our statistical inference with the findings in that article, and report the 

results below.

An ER+ subgroup of breast cancer found in Curtis et al. (2012) is uniquely marked by 11q 

deletion. This subgroup of patients exhibited a steep mortality rate and elevated hazard ratios 

in the findings of Curtis et al. The top panel of our Figure 4 clearly shows the deletion 

to chromosome 11 in the second half, marked by the red bars. These deletions are not 

present in the TN subgroup, echoing the findings of Curtis et al. (2012). Furthermore, the 
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green/medium grey bars in the middle of chromosome 11 indicate copy number gains in 

this region, which was also reported by Curtis et al. However, these copy number gains are 

present in both the ER+ and TN groups, making them less interesting for distinguishing the 

two subgroups. The bottom panel of our Figure 4 shows a large chunk of copy number loss 

on chromosome 5, which is unique to the TN subgroup. This is one of the major findings 

of Curtis et al., as well. This is a region containing numerous important signaling molecules 

and transcription factors, the aberration of which not only affects the genes residing in the 

region, but those regulated by them. Therefore, this is marked as a trans-influenced region 

by Curtis et al. (2012).

The two plots in our Figure 5 show a classical 1q gain and 16q loss pattern that is shared by 

luminal A breast cancer, a subgroup of the ER+ subtype. The combination of copy number 

gain of 1q and loss of 16q is believed to be a centromere-close translocation (Russnes et 

al., 2010), which is mainly seen in the luminal A subgroup. In contrast, there is little copy 

number variation on 16q for the TN subgroup.

We identified several other new findings regarding the copy number variations between the 

ER+ and TN subgroups. For example, a large region of 15p loss (Figure 6) is identified in 

the TN subgroup, but not the ER+ subgroup. This has not been reported in the literature. 

However, in Figure 2 on page 12 in Curtis et al. (2012), a copy number loss at 15q is 

present. Figure 7 summarizes the differential CNA probabilities between groups for the 

whole genome. We believe that our findings confirm several major results reported in the 

literature, while also providing new hypotheses for future validations.

4 Discussion

Determining regions of shared CNAs in different samples is a challenging task and is 

of great importance for the advance of medical science. In this article, we addressed the 

problem of determining shared CNAs based on a two step model with the second step based 

on a semiparametric model. The model is equipped with the ability to identify differences 

along the genome where two disease subtypes show differential CNAs. This was achieved 

by considering a mixture distribution for the vector of the population levels, the elements of 

which were in turn assigned Dirichlet process priors.

Through simulation studies, we have shown that the proposed model adequately determines 

the shared aberration regions and detects the differences across the two subgroups. The 

model was tested under different levels of aberration prevalence and with different degrees 

of noise. In most of the scenarios we considered, our model worked well. The exception 

occurred in scenarios with a combination of high noise level and low aberration prevalence, 

which is an expected finding. We also found out that the sample specific partitions have 

almost no influence in the final inferences.

Future work includes the extension of our model to compare more than two groups, for 

which the number of possible combinations then increases dramatically. For example, in the 

case of three groups, we would have to consider a total of five cases: the three groups as 
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equal, any two as equal, and all as different. This will entail a nontrivial generalization of 

our mixture prior set-up, a task we will undertake in the future.
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Appendix

Stick breaking and Polya urn representation of a DP
In general, a Dirichlet process G, such that G DP a, F , is a random discrete measure with 

precision parameter a and centering measure F. According to Sethuraman (1994), G can be 

written as a stick breaking representation of the form

G ⋅ = ∑
ℎ = 1

∞
wℎδηℎ ⋅ ,

where δx(·) defines a point mass at x, ηℎ
i . i . d .F  and wh = vh∏j<h(1 − vj), with vℎ

i . i . d .Be 1, a . 

Additionally, if μ1, …, μK |Gi . i . d .G, then after integrating out the process G, Blackwell and 

MacQueen (1973) showed that the sequence of μk’s has a Polya urn representation of the 

form

μ1 F ;

μk |μ1, …, μk − 1
a

a + k − 1F + 1
a + k − 1 ∑

j = 1

k − 1
δμj,

for k = 2, …, K. Denoting by μ = (μ1, …, μK) and by μ−k = μ \ {μk}, it can be easily shown 

that

μk |μ−k
a

a + K − 1F + 1
a + K − 1 ∑

j = 1, j ≠ k

K
δμj,

a
a + K − 1F + 1

a + K − 1 ∑
j = 1

r
Kj

∗δμj∗,

where μj
∗’s are the distinct values of μk’s and Kj

∗’s are the numbers of repetitions. By the 

above construction, it is easy to show that when F = F0 = N(0, λ0
2)I(μk1 = μk2), almost surely 

μk1 = μk2. Alternatively, if F = F1 = N2(0, Λ1), almost surely μk1 ≠ μk2.
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Figure 1. 
Toy example with two individual partitions {Δ1} and {Δ2} and the common partition {Ω}.
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Figure 2. 
Simulated aCGH data. No copy number alterations (white dots), amplifications (green/

medium grey dots) and deletions (red/dark grey dots). Group 1 (top row) and group 2 

(bottom row). Low noise level (left column) and high noise level (right column).
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Figure 3. 
Simulated aCGH data. Calls of marginal CNAs and differences between the two groups (T1 

and T2). Copy number gain (green/medium grey), loss (red/dark grey) and differential CNAs 

across groups (blue/light grey). Low noise level (left column) and high noise level (right 

column). Prevalence levels: 100% (top row), 60% (middle row) and 30% (bottom row).
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Figure 4. 
Calls of marginal CNAs and differences between the two cancer subtypes. Copy number 

gain (green/medium grey), loss (red/dark grey) and differential CNAs across groups (blue/

light grey). Chromosomes 11 (top) and 5 (bottom).
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Figure 5. 
Calls of marginal CNAs and differences between the two cancer subtypes. Copy number 

gain (green/medium grey), loss (red/dark grey) and differential CNAs across groups (blue/

light grey). Chromosomes 1 (top) and 16 (bottom).
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Figure 6. 
Calls of marginal CNAs and differences between the two cancer subtypes in chromosome 

15. Copy number gain (green/medium grey), loss (red/dark grey) and differential CNAs 

across groups (blue/light grey).

Nieto-Barajas et al. Page 23

Braz J Probab Stat. Author manuscript; available in PMC 2023 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Differential CNA probabilities between groups for all chromosomes. Blue/grey lines 

represent significant probabilities controlled by a 5% FDR within each chromosome.
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