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Abstract

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases. However, the 

AD mechanism has not yet been fully elucidated to date, hindering the development of effective 

therapies. In our work, we perform a brain imaging genomics study to link genetics, single-cell 

gene expression data, tissue-specific gene expression data, brain imaging-derived volumetric 

endophenotypes, and disease diagnosis to discover potential underlying neurobiological pathways 

for AD. To do so, we perform brain-wide genome-wide colocalization analyses to integrate 

multidimensional imaging genomic biobank data. Specifically, we use (1) the individual-level 

imputed genotyping data and magnetic resonance imaging (MRI) data from the UK Biobank, (2) 

the summary statistics of the genome-wide association study (GWAS) from multiple European 

ancestry cohorts, and (3) the tissue-specific cis-expression quantitative trait loci (cis-eQTL) 

summary statistics from the GTEx project. We apply a Bayes factor colocalization framework 

and mediation analysis to these multi-modal imaging genomic data. As a result, we derive 
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the brain regional level GWAS summary statistics for 145 brain regions with 482,831 single 

nucleotide polymorphisms (SNPs) followed by posthoc functional annotations. Our analysis 

yields the discovery of a potential AD causal pathway from a systems biology perspective: the 

SNP chr10:124165615:G>A (rs6585827) mutation upregulates the expression of BTBD16 gene 

in oligodendrocytes, a specialized glial cells, in the brain cortex, leading to a reduced risk of 

volumetric loss in the entorhinal cortex, resulting in the protective effect on AD. We substantiate 

our findings with multiple evidence from existing imaging, genetic and genomic studies in 

AD literature. Our study connects genetics, molecular and cellular signatures, regional brain 

morphologic endophenotypes, and AD diagnosis, providing new insights into the mechanistic 

understanding of the disease. Our findings can provide valuable guidance for subsequent 

therapeutic target identification and drug discovery in AD.
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1. Introduction

Alzheimer’s disease (AD) is a common neurodegenerative disorder (Scandurra et al., 2019) 

that plagues 29 million people worldwide (Vos et al., 2016); the number of cases is expected 

to increase to 152 million by 2050 (Christina 2018). However, the mechanism of AD is not 

yet fully uncovered, hindering the development of effective therapies. Recent advances in 

brain imaging genomics have provided unprecedented opportunities to fully tape the disease 

pathogenesis of AD.

Understanding the genetic architecture of AD is critical because genetics is, in nature, close 

to the underlying etiology of AD. Previous twin studies estimated 58%–79% heritability 

for AD (Gatz et al., 2006) and identified several protective/risk genetic loci. For example, 

a recent large-scale genome-wide association study (GWAS) on an AD case-control design 

identified 75 risk loci (Bellenguez et al., 2022). Until 2022, the NHGRI-EBI GWAS Catalog 

documented 1741 associations from over 135 studies (Buniello et al., 2019). These large-

scale GWAS analyses can guide future therapeutic target identification, drug discoveries, 

and personalized medicine.

Brain volumetric endophenotypes or quantitative traits (QTs), extracted from magnetic 

resonance imaging (MRI), have been used for decades to capture in vivo imaging 

biomarkers of AD (Jack Jr et al. 2011; McKhann et al., 2011; Albert et al., 2011). For 

example, brain atrophy has been robustly shown in the hippocampus and medial temporal 

regions in AD patients (Baron et al., 2001; Busatto et al., 2003; Hampel et al., 2008). 

Brain volumetric variations are heritable, with more than 80% of estimated heritability from 

twin studies (Kremen et al., 2010; Blokland et al., 2012; Den Braber et al. 2013; Eyler 

et al., 2014; Jansen et al., 2015; Wen et al., 2016). The regional-level volumetric QTs are 

shown to have a high degree of genetic correlation with AD (Zhao et al., 2019). In addition, 

recent studies showed strong and robust associations between brain volumetric QTs and 

genetic determinants [e.g., single nucleotide polymorphisms (SNP)]. In 2018, the first large-
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scale region-based whole brain imaging-genetics GWAS study identified 148 genome-wide 

significant associations (Elliott et al., 2018). Later, larger-scale GWAS analyses on brain 

regions of interest (ROIs) identified 365 variants significantly associated with 101 brain 

volumetric QTs (Zhao et al., 2019), and 109 genome loci significantly associated with 

specific tracts of white matter (Zhao et al., 2021). Recently, patterns of structural covariance 

in brain morphology were discovered to be significantly associated with 915 genomic 

loci, which correlates with the reelin signaling, apoptosis, neurogenesis, and appendage 

development pathways (Wen et al., 2022).

An open question in AD GWAS is that association does not imply causation. This 

gap has hindered the identification of causal genes for the development of gene-guided 

therapies. Recent GWAS improved the biological interpretation of association findings 

by cis-expression quantitative traits loci (cis-eQTL) colocalizations. This enables the 

identification of potential causal variants for GWAS and cis-eQTL signals in a given genome 

region (Hormozdiari et al., 2016). Colocalization has been widely used, and many studies 

have confirmed its effectiveness. For example, Kunkle et al. found evidence of a shared 

causal variant affecting gene expression and AD risk in 66 genes over 20 loci (Kunkle et 

al., 2019); Bellenguez et al. found that the TMEM106B and GRN signals in frontotemporal 

lobar degeneration with TAR DNA-binding protein inclusions shared causal variants with 

AD-related dementias (Bellenguez et al., 2022).

The success of colocalization advances molecular and pathological insights into AD. 

However, it is underexplored in brain imaging genomics studies. The full landscape of AD 

causal pathways, from underlying genetic variants to gene expression, brain morphological 

changes, and finally, the clinical manifestation of AD, has not been comprehensively 

established. To bridge this gap, we hypothesize that genetic variants caused the tissue-

specific differential gene expression, led to volumetric brain changes, and resulted in the 

manifestation of AD. Herein, we perform a comprehensive brain imaging genomics study 

through analyzing large-scale brain MRI and genetic data using brain-wide genome-wide 

colocalization and mediation analyses to test this hypothesis and establish a novel AD 

putative causal pathway.

2. Materials and methods

Our brain-wide genome-wide colocalization framework integrates the analyses of 

multidimensional biobank data including genetics, tissue-specific gene expression data, 

brain imaging-derived volumetric endophenotypes, and AD diagnosis (Fig. 1). It provides 

an efficient and explainable bioinformatics strategy to discover potential underlying 

neurobiological pathways for AD. In this framework, we first performed a brain-wide 

genome-wide imaging genomics association study (Fig. 1 Block 4) using UKBB MRI data 

(Fig. 1 Block 2) and imputed genotyping data (Fig. 1 Block 3). After that, we conducted 

a colocalization analysis to integrate summary statistics from our imaging genomics study 

with the existing AD GWAS summary statistics (Bellenguez et al., 2022) (Fig. 1 Block 1) to 

identify SNPs associated with both imaging QTs (iQTs) and AD diagnosis (Fig. 1 Block 5). 

For each identified (SNP, iQT, diagnosis) triplet, we further performed mediation analyses to 

discover significant mediation relationships from SNP to iQT to diagnosis (Fig. 1 Block 6). 
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For each significant SNP→iQT→diagnosis mediation relationship, we performed another 

colocalization analysis using the GWAS summary data for the GTEx v7 tissue-specific gene 

expression QTs (eQTs) (Fig. 1 Block 7) to identify SNPs related to both tissue-specific 

gene expression QT (eQT) and imaging-based brain volumetric QT (iQT) (Fig. 1 Block 

8). Integrating all the above findings, we discovered a putative AD pathway from genetics 

(SNP) to tissue-specific gene eQT, to imaging-based brain volumetric iQTs, and to AD 

diagnosis. Finally, we performed tissue-specific and cell-type-specific differential expression 

analyses using brain samples to characterize our imaging genomic findings (Fig. 1 Block 9 

and Block 10).

2.1. AD case-control GWAS summary statistics

Our brain-wide genome-wide colocalization study investigates the GWAS summary 

statistics derived from multiple European ancestry cohorts including EADB, GR@ACE, 

EADI, GERAD/PERADES, DemGene, Bonn, the Rotterdam study, the CCHS study, NxC, 

and the UKBB (Bellenguez et al., 2022) and the individual-level data from the UK biobank 

(Miller et al., 2016). We downloaded summary statistics from Bellenguez et al. (Bellenguez 

et al., 2022) via NHGRI-EBI GWAS Catalog (Buniello et al., 2019) under accession No. 

GCST90027158 (Fig. 1 Block 1). The study included 487,511 European ancestry samples 

with 39,106 clinically diagnosed cases, 46,828 proxy cases, and 401,577 healthy controls 

(CN). In total, 21,101,114 SNP-AD associations were performed, where 5637 associations 

reached the genome-wide significance threshold of 5e-8. To match the genome builder 

between the downloaded AD GWAS summary statistics and our brain volumetric imaging 

QTs (detailed below), we converted the genome builder from GRCh38 to GRCh37 using 

ANNOVAR (Wang et al., 2010). We excluded all ambiguous mapping SNPs. This preserved 

21,057,932 SNPs with 5625 genome-wide significant SNP-AD associations.

2.2. UKBB imaging genomics data preprocessing

The UKBB dataset recruits 500,000 UK adults sampled via population-based registries 

(http://www.ukbiobank.ac.uk). The UK Biobank received ethical approval from the National 

Research Ethics Service Committee North West–Haydock (reference 11/NW/0382). All 

participants provided informed consent and were aged from approximately 40 to 69 

years of age at the time of enrollment (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). 

Participants were recruited from the United Kingdom, and initial enrollment was carried 

out from 2006 to 2010. Participants provided socio-demographic, cognitive, and medical 

data via questionnaires and physical assessments. Starting in 2014, a subset of the 

original sample underwent brain MRI (UK Biobank Brain Imaging Documentation, http://

www.ukbiobank.ac.uk). The MRI data used in the current study were acquired between 

2014 and 2019. To sum up, the image protocols of T1-weighted MRI are as follows: a 

3T Siemens Skyra machine (MPRAGE) was used; image resolution: 1 × 1 × 1 mm and 

time to echo (TE): 2000 ms (Alfaro-Almagro et al., 2018). More details can be found at 

http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.

We created an imaging-genetics cohort from UKBB by preserving all subjects with both 

T1-weighted MRI data and imputed genotyping data. The UKBB imaging-genetics cohort 

includes 38,195 subjects with 9788 AD-by-proxy cases and 28,407 controls. AD-by-proxy 
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is defined based on the presence of self-reported parental AD diagnosis and is widely used 

when the direct diagnosis of AD is not feasible (Marioni et al., 2018). The validity of 

the use of AD-by-proxy in AD research is supported by a few prior studies. For example, 

Marioni et al. (2018) found that the genetic correlation between maternal and paternal AD 

was not significantly different from unity, and both traits had a high genetic correlation 

with the case-control summary output from the International Genomics of Alzheimer’s 

Project (IGAP) study. This suggests that the self-reported measure of parental AD is 

an accurate proxy for clinical diagnosis, validating the use of AD-by-proxy (Marioni et 

al., 2018). Moreover, Jansen et al. conducted a large genome-wide association study of 

clinically diagnosed AD and AD-by-proxy and identified 29 risk loci (Jansen et al., 2019). 

Furthermore, a separate study conducted a comprehensive transcriptome-wide association 

study (TWAS) using meta-analysis results of both clinical AD and AD-by-proxy GWAS, 

yielding largely consistent associations that further supported the use of AD-by-proxy in AD 

research (Sun et al., 2021).

T1-weighted MRIs were downloaded from the UK biobank (UKBB) study (Fig. 1 Block 2) 

(Miller et al., 2016). Raw 3D T1-weighted MRI scans were first quality checked (QCed) for 

motion, image artifacts, or restricted field-of-view. Another QC was performed as follows: 

First, the images were examined by manually evaluating for pipeline failures (e.g., poor 

brain extraction, tissue segmentation, and registration errors). Furthermore, a second-step 

automated procedure automatically flagged images based on outlying values of quantified 

metrics (i.e., ROI values), and those flagged images were re-evaluated.

The quality-controlled MRI scans were first corrected for magnetic field intensity 

inhomogeneity (Tustison et al., 2010). Voxel-wise regional volumetric maps (RAVENS) for 

each tissue volume (Davatzikos et al., 2001) were generated by spatially aligning the skull-

stripped images to a template residing in the MNI space (Ou et al., 2011). A multi-atlas 

parcellation method (MUSE) (Doshi et al., 2016) was then used to extract 145 regions of 

interest (ROI) from gray matter and white matter tissue maps (Supplementary eTable 1).

Raw genetic data (Version 3) were downloaded from the UKBB website (https://

www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data) on July 2021. The 

imputation was performed by the original UKBB genetics study (Bycroft et al., 2018). We 

first conducted an initial QC according to the UKBB QC protocol (UKBB Resource 1955 

and UKBB Category 100313). Then, we removed subjects with Kinship smaller than or 

equal to the second degree. Next, we filtered out the 1) multiallelic variants, 2) variants with 

missing call rates greater than 0.03, 3) variants with minor allele frequencies smaller than 

0.01, and 4) variants with Hardy-Weinberg equilibrium exact test p-value below the 1e-10 

threshold. Next, we filtered out the subjects 1) with missing call rate exceeding 0.03, 2) 

with heterozygosity rate outside 5 standard deviations of the population heterozygosity rate. 

Finally, we matched the QCed imputed genotyping cohort with the QCed imaging cohort. 

All the QC steps were completed using the PLINKv1.91 (Chang et al., 2015), PLINKv2.02 

(Chang et al., 2015), and R. Our QCed UKBB imputed genetic data set consisted of 482,831 

1 https://www.cog-genomics.org/plink/ 
2 https://www.cog-genomics.org/plink/2.0/ 
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SNPs and 38,195 subjects (Fig. 1 Block 3), which was used later in our GWAS and 

colocalization analysis. We further derived the first 50 genetic principal components (PCs) 

using the FlashPCA.3

2.3. GWAS of brain imaging quantitative traits

We performed GWAS on volumetric imaging QTs of 145 MUSE ROIs using the 

preprocessed genotyping data (Fig. 1 Block 4). Specifically, we fit a linear regression 

model for each ROI-SNP pair by treating imaging volumetric QT as a dependent variable 

and common-variant autosomal individual SNP as an independent variable. Our model 

was adjusted for age, sex, and the first 10 principal components (PCs). The genome-wide 

significant threshold was set as 5e-8. All GWAS analyses were performed using PLINK v1.9 

(Chang et al., 2015). For each ROI volumetric imaging QT, we performed the post-GWAS 

analysis using FUMA4 (Watanabe et al., 2017; Watanabe et al., 2019). FUMA is a web-

based platform using information from multiple biological resources to facilitate functional 

annotation of GWAS results. We adopted the FUMA analysis protocol from our previous 

publication Wen et al. (Wen et al., 2022). FUMA constructed linkage disequilibrium (LD) 

blocks by tagging all variants with minor allele frequency greater than or equal to 0.0005 

and with at least one of the independent significant variants. Of note, the LD blocks are 

constructed from the 1000 Genomes as reference panels, which may not be overlapped 

with the variants in the current study. Finally, FUMA merges the LD blocks of independent 

significant variants into a single genomic locus if they are within 250 kilobases from the 

closest boundary variants of LD blocks. We used the default parameters settings on FUMA 

online platform for the other unmentioned parameters. The independent significant SNPs are 

determined inside the borders of genomic loci defined using LD r2 < 0.6, and the leading 

SNPs are further clumped from the independent SNPs with the borders of genomic loci 

defined using LD r2 < 0.1.

2.4. Brain-wide genome-wide colocalization analysis

Genetic colocalization is a method investigating if two potentially related phenotypic traits 

share the common genetic causal variants in a given genome region. Intuitively, given a 

genome region, two traits are assumed to follow one of the five following hypotheses 

(Giambartolomei et al., 2014):

• H0: Neither of the traits is significantly associated with any of the SNPs in the 

given genome region.

• H1: Only trait 1 has a significant genetic association in the given genome region.

• H2: Only trait 2 has a significant genetic association in the given genome region.

• H3: Both traits have genetic associations in the given genome region, but with 

different causal variants.

• H4: Both traits have genetic associations in the given genome region, and they 

share a single causal variant.

3 https://github.com/gabraham/flashpca 
4 https://fuma.ctglab.nl/ 
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Giambartolomei et al. proposed a Bayesian approach to estimate the posterior probability 

for each of the hypotheses (Giambartolomei et al., 2014). They assumed that two traits 

were measured in two distinct datasets using unrelated individuals where samples were 

drawn from the same ethnic group. Given a region of interest (ROI) in the genome, GWAS 

summary statistics were obtained by treating each trait as a dependent variable and each 

SNP as an independent variable. They defined “configuration” for each trait by one binary 

vector of (0, 1) values of length n, where n is the number of shared variants in the 

given genome region of interest by both traits. The value of 1 denotes the corresponding 

SNP is causally associated with the trait whereas 0 denotes it is not. To calculate the 

posterior probability, intuitively, they group the configurations into five sets S0, S1, S2, S3, S4

representing the assignments of all SNPs in the genome region of interest to the functional 

role of the five hypothesis H0, H1, H2, H3, H4. Then, the posterior probabilities can be 

calculated by

Pr Hℎ ∣ D ∝
S ∈ Sℎ

Pr D ∣ S Pr S

where Pr S  is the prior probability of configuration; Pr D ∣ S  is the probability of the 

observed data D given a configuration S; ℎ = 1, 2, 3, 4 . They calculated the posterior 

probabilities by Approximate Bayes Factor (Wakefield 2009) with appropriate priors 

(Wallace 2020). In our analyses, we performed the sensitivity check for each high posterior 

probability H4 signal and preserved those robust signals. All colocalization analyses, 

sensitivity checks, and the calculation of the posterior probability of the causal SNP in 

the given LD block are performed via the “coloc” R package.5

In our study, we performed brain-wide genome-wide colocalization analyses on 145 MUSE 

ROIs and AD/CN diagnoses using the GWAS summary statistics (Fig. 1 Block 5). We first 

merged SNPs shared by brain imaging QTs GWAS (482,831 SNPs) and AD/CN GWAS 

summary statistics (21,101,114 SNPs) (Bellenguez et al., 2022). This resulted in 476,286 

SNPs for the colocalization analysis. Assuming that, at most, one shared causal SNP in the 

given genome region of interest, we calculated the posterior probabilities for five different 

hypotheses adapted from the previous paragraph:

• H0: Neither the AD diagnosis nor brain ROI is significantly associated with any 

SNPs in the given genome region.

• H1: Only AD diagnosis has a significant genetic association in the given genome 

region.

• H2: Only brain ROI has a significant genetic association in the given genome 

region.

• H3: Both AD diagnosis and brain ROI have genetic associations in the given 

genome region but with different causal variants.

5https://github.com/chr1swallace/coloc; https://chr1swallace.github.io/coloc/
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• H4: Both AD diagnosis and brain ROI have genetic associations in the given 

genome region, and they share a single putative causal variant.

We applied the approximately independent linkage disequilibrium (LD) blocks derived from 

European populations6 (Berisa and Pickrell 2016). In their paper, they heuristically chose 

LD block segment boundaries given a mean segment size of 10,000 SNPs. They denoted n
to be number of genetic variants on a chromosome and they applied the following steps for 

segmentation:

1. Estimate the covariance matrix C ∈ ℝn × n using shrinkage estimator from Wen 

and Stephens (Wen and Stephens 2010);

2. Convert the covariance matrix C into a squared Pearson product moment 

correlation coefficient matrix C;

3. Convert the correlation coefficient matrix P  to a vector V = vk ∈ ℝ2n − 1 using

vk =
ei, j, if 1 ≤ i, j ≤ n

0, otℎerwise
,

where k = 1, 2, …, 2n − 1; P = ei, j ;

4. Apply low-pass filters and local search to adjust the segment boundaries. 

(Detailed description can be found in Wen and Stephens (Wen and Stephens 

2010).)

As a result of the above LD blocks, we partitioned the genome (476,286 SNPs common 

SNPs) into 1703 LD blocks. The distribution of the number of SNPs within LD blocks is 

presented in Supplementary eFigure 1. We performed the colocalization analyses on 145 

MUSE ROIs and AD diagnosis on each LD block (Fig. 1 Block 5). Triplets (LD vs. ROI 

vs. AD diagnosis) with posterior probability for H4 ≥ 0.8 were identified. To ensure robust 

colocalization results, we then performed the sensitivity check for the prioritized triplets. A 

sensitivity analysis is a post-hoc approach used to identify the range of prior probabilities 

that still support a given conclusion. This analysis involves adjusting the prior probability 

values and assessing their impact on the posterior probabilities for hypotheses H0 - H4. In 

our study, we varied the prior probability from 10−8 to10−4. If all different prior probabilities 

resulted in a posterior probability of “H4>0.8”, we concluded that the targeted signals had 

successfully passed the sensitivity check.

2.5. Mediation analysis

From the previous section, we calculated the posterior probability for each SNP within the 

LD being causal in the prioritized triplets. The SNP with the highest posterior probability 

was considered a potential causal SNP candidate for the corresponding LD in prioritized 

triplets. In the present section, we applied the mediation analysis7 (Baron and Kenny 1986; 

Tingley et al., 2014) to the prioritized potential causal SNP candidate of the corresponding 

6 https://bitbucket.org/nygcresearch/ldetect/src/master/ 
7 https://cran.r-project.org/package=mediation 
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triplets to distinguish the pleiotropy and causality (Fig. 1 Block 6). Specifically, after 

getting the posterior probability for potential causal SNP candidate for each (LD, ROI, 

diagnosis) triplet, we excluded all the triplets with posterior probability for potential causal 

SNP candidate < 0.8. We then applied the mediation analysis (Baron and Kenny 1986) on 

prioritized triplets using the UKBB imaging-genetics cohort. We treated the AD-by-proxy 

as the dependent variable Y , the additive recoded imputed genotyping data as independent 

variables X , and prioritized MUSE ROI brain volumetric imaging QTs as mediators Me . 

In the first step, we regress the Y  on X using logistic regression to confirm that X is a 

significant predictor of Y . In the second step, we regress the Me on X to confirm that X
is a significant predictor of Me. In the third step, we regress the Y  on both X and Me
to confirm that X affects Y  through the mediation of Me. The mediation analyses in this 

study are performed using the R package “mediation”8 (Tingley et al., 2014). We prioritized 

the triplets where the SNP mutations significantly affect the AD diagnosis indirectly by 

affecting the regional brain volumes.

2.6. Colocalization on mediation analysis prioritized SNP-ROI pairs

We further investigated potential molecular causal pathways for those SNPs influencing AD 

by affecting the regional level brain volumes (Fig. 1 Block 7, Block 8). We downloaded 

the Genotype-Tissue Expression (GTEx) project (Lonsdale et al., 2013) cis-eQTL data for 

all SNP-gene pairs of the brain tissues for the mediation analysis prioritized ROIs. In our 

analysis, all the mediation analyses prioritized brain ROIs were found to be located in brain 

cortex tissue; hence, we only focus on the brain cortex-specific cis-eQTL analysis. In GTEx 

cis-eQTL v7 analysis, 205 samples from healthy donors are included in their study with 64 

females and 141 males. A detailed description of the project, tissue collection, and data can 

be found online https://www.gtexportal.org/home/.

In the GTEx cis-eQTL v7 brain cortex specific SNP-gene associations, there are in total 

172,489,882 SNP-gene associations where 23,959 unique genes and 10,227,789 unique 

variants are included. Among all SNP-gene associations, 210,939 associations reach the 

genome-wide significant threshold 5e-8. For each triplet prioritized by our mediation 

analysis, we first selected all the genes associated with the potential causal SNP and then 

extracted all SNP-gene associations. We performed the colocalization analyses for each gene 

and each ROI (left or right entorhinal cortex separately) on their shared SNPs. We prioritized 

the gene-ROI pairs with H4 posterior probability > 0.5 and extracted the SNP with the 

highest posterior probability to be causal, given that H4 is true.

2.7. Tissue-specific differential expression analysis and single-cell-specific differential 
expression analysis

To characterize our imaging genomic findings, we queried the tissue-specific differential 

gene expression analysis and single-cell-specific differential expression analysis using the 

human protein atlas9 (Uhlén et al., 2015; Sjöstedt et al., 2020; Karlsson et al., al.) where 

they aim to map the human proteins in cells, tissues, and organs via the integration of 

8 https://cran.r-project.org/package=mediation 
9 https://www.proteinatlas.org/ 
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various omics technologies (https://www.proteinatlas.org/) (Uhlén et al., 2015; Sjöstedt et 

al., 2020; Karlsson et al., al.). In our analysis, we focused on the results specific to brain 

samples and utilized their tissue-based RNA expression mapping function and single-cell-

based RNA expression mapping function. (Fig. 1 Block 9, Block 10).

3. Results

3.1. Human brain volumetric changes are polygenic

Our GWAS identified 6376 genome-wide significant associations (p-value < 5e–8) with 

2824 independent significant SNPs (LD r2 < 0.6) and 1824 leading SNPs (LD r2 < 0.1) 

(Fig. 2). The cerebellum regions were the most polygenic, with the highest independent 

significant SNP and leading SNP counts. Compared to other autosomal chromosomes, 

chromosome 12 had the largest number of lead SNP associations weighted by chromosome 

length. The SNP-level and gene-level Manhattan plots and QQ plots summarized by FUMA 

are displayed in Supplementary eFigure 2, 3, 4, and 5. All SNP-QT associations are 

provided in Supplementary eTable 2.

3.2. LD-block-wised colocalization identifies 161 statistical causal LD for ROI-diagnosis 
pairs

The LD-block-wised colocalization produced 246,790 colocalized (LD, ROI, diagnosis) 

triplets. A posterior probability for each triplet indicated that the imaging QT and AD 

diagnosis shared a single putative causal SNP within the given LD genome region 

(Supplementary eTables 3 and 4) (Fig. 3). For each QT, we presented the posterior 

probabilities for LD blocks with the top 1% highest posterior probability for H4 

(Supplementary eFigure 6). Among the 246,790 colocalized triplets, 397 had the highest 

posterior probability for H4 (Table 1). From the 397 triplets, we further prioritized 205 

triplets with posterior probability for H4 > 0.8. Finally, we performed the sensitivity check 

for the prioritized 205 colocalization triplets, 161 of which passed the sensitivity check 

(Supplementary eTable 5, eFigure 7).

3.3. SNP chr10:124165615:G>A influences AD by affecting the volumetric changes of the 
entorhinal cortex

Among the 161 triplets from the colocalization analyses, we further prioritized 27 triplets 

with a probability for the top causal SNP > 0.8, given that H4 was true. We performed 

the mediation analyses on prioritized triplets using individual-level UKBB AD-by-proxy 

and the imputed genotyping data. As a result, we found two triplets where the SNPs 

significantly affected AD outcomes indirectly mediated by imaging volumetric QTs (Table 

2). Specifically, we found that chr10:124165615: G>A influences AD by affecting the 

volume of the entorhinal cortex in both the left and right hemispheres (in the brain cortex 

tissue).

3.4. SNP chr10:124165615:G>A affects the volumetric changes of the entorhinal cortex 
through the up-regulation of the BTBD16 gene

In GTEx v7 cis-eQTL analysis, 19 unique genes were associated with SNP 

chr10:124165615:G>A in the brain cortex. Our ROI-cis-eQTL colocalization analysis 
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identified two triplets with posterior probability for H4 > 0.5: (LD1087, BTBD16, right 

entorhinal area) triplet and (LD1087, BTBD16, left entorhinal area) triplet (Table 3). 

Surprisingly, given H4 is true, the SNP with the highest probability to be causal is 

chr10:124165615:G>A, which aligns with our findings from colocalization and mediation 

analyses on imaging volumetric QTs and AD.

3.5. Differential expression of the BTBD16 gene locates oligodendrocytes cell type in the 
brain cortex

The tissue-specific differential gene expression annotation to BTBD16 highlighted the 

cerebral cortex with 2.3 normalized protein-coding transcripts per million (nTPM)10 (Fig. 

4). The single-cell-specific differential gene expression annotation on the brain highlighted 

oligodendrocytes cell type with normalized RNA expression with 10.9 nTPM11 (Fig. 5), 

approximately 10 folds larger than the other cell types.

4. Discussion

In the current study, we conceptualized a putative AD causal pathway: the SNP 

chr10:124165615:G>A (rs6585827) allele upregulates the expression of the BTBD16 gene 

in oligodendrocytes, delays brain atrophy in the entorhinal cortex, and finally results in a 

protective effect of the manifestation of clinical AD (Fig. 6).

From the genomics perspective, SNP chr10:124165615:G>A was reported to have a 

significant association with age-related macular degeneration (AMD) (Woo et al., 2016; 

Anderson et al., 2010), where the amyloid β Aβ) is found to be existing in both the AD brain 

and AMD drusen, and they might share a common pathogenic mechanism (Ohno-Matsui 

2011). A case-control study also inferred a cause-effect relation linking both diseases (Roca-

Santiago et al., 2006). Kaarniranta et al. also reported the retina and brain tissue to share 

a similar organelle and signaling association in cellular aging processes (Kaarniranta et al., 

2011).

From the molecular signature perspective, several findings in prior studies at the gene level 

support our AD pathway discovery. The BTBD16 gene is a protein-coding gene that encodes 

a protein with a BTB/POZ domain. Several studies indicated a strong association between 

BTBD16 and AD-related disorders. Grupe et al. found a functionally significant association 

between BTBD16 and late-onset AD (Grupe et al., 2006). Multiple association signals have 

been found between BTBD16 and AMD (Naj et al., 2013). Moreover, BTBD16 is also 

significantly associated with bipolar disorder (Smith et al., 2009), which is clinically and 

epidemiologically related to AD (Drange et al., 2019; Nunes et al., 2007; Diniz et al., 2017). 

A longitudinal study also showed that abnormalities of amyloid during an acute bipolar 

disease episode have a similar pattern as cerebrospinal fluid Aβ42 in AD patients (Knorr 

et al., 2022). From the genomics point of view, evidence also showed that AD and bipolar 

disorder might have overlap generic origin (Drange et al., 2019).

10 https://www.proteinatlas.org/ENSG00000138152-BTBD16/tissue 
11 https://www.proteinatlas.org/ENSG00000138152-BTBD16/single+cell+type/brain 
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From the cell-type perspective, an oligodendrocyte is a specialized glial cell in the central 

nervous system (Gordon and Woodruff 2017). The oligodendrocytes in AD pathology 

are vulnerable and can induce myelin breakdown. Losing the myelin sheath may initiate 

AD before the appearance of amyloid and tau pathology (Gordon and Woodruff 2017; 

Cai and Xiao 2016). The formation of oligodendrocytes in the adult brain is associated 

with glial-restricted progenitor cells (Menn et al., 2006). The mouse models showed that 

the disruption of glial-restricted progenitor cells is an early pathological sign in AD and 

potentially accounts for accelerated myelin loss and cognitive decline (Vanzulli et al., 2020).

From the brain tissue and neuroimaging perspective, rat models suggested that the entorhinal 

cortex regions function as a widespread network hub for memory, navigation, and time 

(Tsao et al., 2018). These brain functions are tested in the clinical cognitive assessment, 

with results treated as direct evidence for AD diagnosis (Jack Jr et al. 2011; McKhann 

et al., 2011; Albert et al., 2011). The functional MRI study on humans and mice showed 

that the lateral entorhinal cortex dysfunction was affected in preclinical AD disease, where 

it spread to the parietal cortex and amyloid precursor protein expression potentiated tau 

toxicity in driving lateral entorhinal cortex dysfunction (Khan et al., 2014). More evidence 

directly associates AD with volumetric changes in the entorhinal cortex (López et al., 

2014). For example, atrophy in the hippocampal and entorhinal cortex is observed in mild 

cognitive impairment (MCI) patients progressing to AD (deToledo-Morrell et al., 2004; 

Devanand et al., 2007). An anatomical study even showed that the entorhinal cortex is 

more involved in AD progression than the parahippocampal cortex among progressive MCI 

patients (Devanand et al., 2007).

Our brain imaging genomics discovery integrates individual signals across various levels, 

including genetics, genomics, cellular omics, brain morphometry, and disease phenotype, 

into a holistic neurobiological pathway. While these individual findings could be studied 

separately in each component of the systems biology (genome mutations, molecular 

signatures, imaging biomarkers), the whole is greater than the sum of the parts, and thus it is 

more important to connect these “dots” together to form a unified and coherent framework. 

Given that AD is a highly complex pathological system involving various biological 

processes and interactions, the discovery of our brain-wide genome-wide colocalization 

analysis yields new insights into the mechanistic understanding of the disease, and provides 

valuable guidance for subsequent therapeutic target identification and drug discovery.

Besides our major pathway findings, our ROI-level GWAS results highlight the brain 

stem, cerebellum, and some sub-cortical regions such as the hippocampus and putamen. 

Chromosome 12 has the largest number of leading SNP associations after weighting by 

chromosome length among all SNP-ROI-volume associations, which matches the findings 

from Zhao et al. (Zhao et al., 2019).

There are some limitations in our work. For example, given many stringent thresholds used 

in our analysis and the limited sample size in GTEx tissue-specific cis-eQTL data, some 

potential causal signals might be missed in our analysis. In addition, although our potential 

AD causal pathway underwent rigorous statistical analyses, experimental validation is still 

required to conclude the causality.
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In summary, our brain-wide genome-wide colocalization study has identified a putative 

neurobiological pathway from genetics, molecular and cellular signatures, regional brain 

morphologic endophenotypes, to AD diagnosis. It yields new insights into the mechanistic 

understanding of AD, and provides valuable information for subsequent therapeutic target 

identification and drug discovery.
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Fig. 1. 
The brian-wide genome-wide colocalization framework. Block 1) AD GWAS summary 

statistics. Block 2) UKBB T1-weighted MRI preprocessing and RAVENS map generation 

using MUSE atlas (Materials and methods: UKBB imaging genomics data preprocessing). 

Block 3) UKBB imputed genotyping QC (Materials and methods: UKBB imaging genomics 

data preprocessing). Block 4) GWAS on 145 MUSE ROIs using imputed genotyping 

data (Materials and methods: GWAS of brain imaging quantitative traits). Block 5) 

LD-block-wised brain-volumetric-QTs-diagnosis colocalization analyses (Materials and 

methods: Brain-wide genome-wide colocalization analysis). Block 6) Mediation analyses 

on prioritized SNP-ROI pairs (Materials and methods: Mediation analysis). Block 7) GTEx 

v7 tissue-specific cis-eQTL analysis (Materials and methods: Colocalization on mediation 

analysis prioritized SNP-ROI pairs). Block 8) Colocalization analysis on prioritized 

ROIs and cis-eQTL on potential causal SNPs (Materials and methods: Colocalization 

on mediation analysis prioritized SNP-ROI pairs). Block 9) Tissue-specific differential 

expression analysis (Materials and methods: Tissue-specific differential expression analysis 

and single-cell-specific differential expression analysis). Block 10) Single-cell-specific 
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differential expression analysis (Materials and methods: Tissue-specific differential 

expression analysis and single-cell-specific differential expression analysis). Abbreviations: 

AD: Alzheimer’s disease; GWAS: genome-wide association study; GRCh37: Genome 

Reference Consortium Human Build 37; UKBB: UK biobank; MRI: magnetic resonance 

imaging; RAVENS: voxel-wise regional volumetric maps; MUSE: multi-atlas region 

segmentation; ROI: region of interest; QC: quality control; QT: quantitative trait; SNV: 

single nucleotide variation; MAF: minor allele frequency; MCR: missing call rate; HWE: 

Hardy-Weinberg equilibrium; HR: heterozygosity rate; LD: linkage disequilibrium; SNP: 

single nucleotide polymorphism; cis-eQTL: cis-expression-quantitative-trait-loci; GTEx: 

Genotype-Tissue Expression project.
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Fig. 2. 
Genome-wide association study (GWAS) between brain volumes and single nucleotide 

polymorphisms (SNPs). Human brain volumes are highly polygenic, in particular, the 

cerebellum and brain stem. The circular plot shows the number of independent significant 

SNPs (the inner circle) and leading SNP counts (the outer circle) (Supplementary eMethod 

4), respectively. The statistical brain maps present the number of lead SNPs per anatomical 

region (e.g., frontal cortex) and the entire brain (i.e., the central figure). Refer to 

Supplementary eTable 1 for details. WM: white matter; GM: gray matter.
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Fig. 3. 
LD-block-wised colocalization analysis on AD/CN and brain volumetric quantitative traits 

(QTs). We performed colocalization analyses for the 145 brain volumetric QTs (i.e., MUSE 

ROIs) and AD/CN on the 476,286 SNPs. We prioritized 205 colocalization triplets (i.e., SNP 

vs. ROI vs. AD/CN) with posterior probability for H4 > 0.8. We then prioritized 161 triplets 

that passed the sensitivity check. We plotted the top colocalization signals for visualization 

with sensitivity check posterior probability > 0.99. The colored arrow represents each 
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colocalization triplet (AD/CN is not shown). Refer to Supplementary eTable 1 for details. 

CN: healthy control.
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Fig. 4. 
Tissue-specific differential expression of the BTBD16 gene in different brain tissues/regions. 

Among different brain tissues and regions, the cerebral cortex showed the highest brain 

RNA expression quantified by normalized protein-coding transcripts per million (nTPM). 

Data were downloaded from the human protein atlas (Uhlén et al., 2015; Sjöstedt et al., 

2020; Karlsson et al., al.). The expression level is quantified by nTPM.
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Fig. 5. 
Cell-specific differential expression of BTBD16 in brain organ. The single-cell differential 

expression of BTBD16 highlights the oligodendrocytes cell type with normalized RNA 

expression with 10.9 normalized protein-coding transcripts per million (nTPM), which is 

more than 10 folds higher than the other cell types. The single-cell differential expression 

profile of BTBD16 supports our findings in the statistical causal pathway. That is, the SNP 

rs6585827 variant upregulates the expression of the BTBD16 gene in oligodendrocytes, 

specialized glial cells, in the brain cortex, and affects the diagnosis of AD/CN by affecting 

the regional brain volumetric variations. Data were downloaded from the human protein 

atlas (Uhlén et al., 2015; Sjöstedt et al., 2020; Karlsson et al., al.). The expression level is 

quantified by nTPM.
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Fig. 6. 
A putative AD causal pathway from genetics to the entorhinal cortex.121 Our study 

discovers a putative AD causal pathway: the SNP chr10:124165615:G>A (rs6585827) allele 

upregulates the expression of the BTBD16 gene in oligodendrocytes, leads to larger brain 

volumes of the entorhinal cortex, and exerts a protective effect against AD. Our evidence is 

summarized below: 1.SNP rs6585827 is associated with age-related macular degeneration 

(AMD), where the amyloid β Aβ) exists in both the AD brain and AMD drusen; they may 

share a common pathogenic mechanism. 2.The BTBD16 gene is a protein-coding gene that 

encodes a protein with a BTB/POZ domain associated with AD-related disorders. 3.The 

oligodendrocyte is a specialized glial cell in the central nervous system that can induce 

myelin breakdown. The loss of the myelin sheath may initiate AD before the appearance 

12The oligodendrocyte cell plot is created by BioRender.com.
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of amyloid and tau pathology. 4.The entorhinal cortex regions function as a widespread 

network hub for memory, navigation, and time suggested by rat experiments. These brain 

functions are tested in the clinical cognitive assessment and serve as direct evidence for AD 

diagnosis.
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Table 1

Number of LD-ROI pairs with the highest posterior probability for H0-H4.

Hypothesis H0 H1 H2 H3 H4

Number of pairs 235,486 7482 3181 244 397
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