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ABSTRACT

PURPOSE Allogeneic hematopoietic cell transplantation (HCT) in patients with myelo-
dysplastic syndrome (MDS) improves overall survival (OS). We evaluated the
impact of MDS genetics on the benefit of HCT in a biological assignment (donor
v no donor) study.

METHODS We performed targeted sequencing in 309 patients age 50-75 years with In-
ternational Prognostic Scoring System (IPSS) intermediate-2 or high-riskMDS,
enrolled in the Blood andMarrow Transplant Clinical Trials Network 1102 study
and assessed the association of gene mutations with OS. Patients with TP53
mutations were classified as TP53multihit if two alleles were altered (via point
mutation, deletion, or copy-neutral loss of heterozygosity).

RESULTS The distribution of genemutations was similar in the donor and no donor arms,
with TP53 (28% v 29%; P 5 .89), ASXL1 (23% v 29%; P 5 .37), and SRSF2 (16% v
16%; P 5 .99) being most common. OS in patients with a TP53 mutation was
worse compared with patients without TP53 mutation (21% 6 5% [SE] v
52% 6 4% at 3 years; P < .001). Among those with a TP53 mutation, OS was
similar between TP53single versus TP53multihit (22% 6 8% v 20% 6 6% at 3 years;
P 5 .31). Considering HCT as a time-dependent covariate, patients with a TP53
mutation who underwent HCT had improved OS compared with non-HCT
treatment (OS at 3 years: 23% 6 7% v 11% 6 7%; P 5 .04), associated with a
hazard ratio of 3.89; 95% CI, 1.87 to 8.12; P < .001 after adjustment for cova-
riates. OS among patientswithmolecular IPSS (IPSS-M) very high riskwithout a
TP53 mutation was significantly improved if they had a donor (68% 6 10% v
0% 6 12% at 3 years; P 5 .001).

CONCLUSION HCT improved OS compared with non-HCT treatment in patients with TP53
mutations irrespective ofTP53 allelic status. Patientswith IPSS-Mvery high risk
without a TP53 mutation had favorable outcomes when a donor was available.

INTRODUCTION

Allogeneic hematopoietic cell transplantation (HCT) is the
only curative treatment for patients with myelodysplastic
syndrome (MDS). Two biological assignment studies
demonstrated improved overall survival (OS) for older
patients with high-risk MDS and an available donor
compared with those without a donor.1,2 Although the
survival benefit of HCT was observed across different
clinical parameters, these studies did not assess somatic or

germline gene mutations, which have been shown to
predict outcomes after allogeneic HCT in retrospective
cohorts.3-7

Mutations in TP53 are unequivocally associated with dismal
outcomes after HCT because of high rates of disease relapse
or progression to AML.3-5 Consequently, the role of HCT for
patients with TP53-mutated MDS or AML is debated.8 Ret-
rospective analyses have evaluated the potential impact
of disease-, patient-, and transplant-related variables, but

ACCOMPANYING CONTENT

Data Supplement

Protocol

Accepted June 30, 2023

Published August 22, 2023

J Clin Oncol 41:4497-4510

© 2023 by American Society of

Clinical Oncology

View Online
Article

Creative Commons Attribution
Non-Commercial No Derivatives
4.0 License

ascopubs.org/journal/jco | Volume 41, Issue 28 | 4497

https://orcid.org/0000-0003-2372-1663
https://orcid.org/0000-0002-6544-5815
https://orcid.org/0000-0002-3700-5310
https://orcid.org/0000-0002-4877-9354
https://orcid.org/0000-0003-3065-4294
https://orcid.org/0000-0002-0539-4796
https://orcid.org/0000-0002-8184-7099
https://orcid.org/0000-0002-4996-5247
https://orcid.org/0000-0003-3799-681X
https://orcid.org/0000-0002-4473-4044
https://orcid.org/0000-0002-9502-785X
https://orcid.org/0000-0002-6189-8067
https://orcid.org/0000-0002-9082-0680
https://orcid.org/0000-0001-8728-4314
https://orcid.org/0000-0001-9822-806X
https://doi.org/10.1200/JCO.23.00866
https://ascopubs.org/doi/suppl/10.1200/JCO.23.00866
https://ascopubs.org/doi/suppl/10.1200/JCO.23.00866
http://ascopubs.org/journal/jco


results are conflicting, and conclusions are fundamentally
limited by the lack of a comparative non-HCT group.3,7,9,10

We performed a genetic analysis of the Blood and Marrow
Transplant Clinical Trials Network (BMT CTN) 1102 study of
older patients with advanced MDS to identify whether the
survival benefit observed in patients biologically assigned to
HCT compared with non-HCT approaches was independent
of gene mutations. We specifically focused on mutations
associated with outcome in this high-risk MDS cohort,
including TP53.

METHODS

Clinical Cohort

Samples were obtained from the BMT CTN 1102 study (Clin-
icalTrials.gov identifier: NCT02016781), a multicenter trial
comparing reduced intensity conditioning (RIC) HCT with
hypomethylating therapy or best supportive care in patients
age 50-75 years with International Prognostic Scoring System
(IPSS) intermediate-2 or high-risk de novo MDS.1 Frozen
whole blood collected at the time of enrollment was available
from 309 of 384 enrolled patients in the Center for Interna-
tional Blood and Marrow Transplant Research (CIBMTR) Re-
search Sample Repository or the NMDP Repository (Fig 1).
Sample availabilitywashigher in patients assigned to the donor
armcomparedwith thenodonor arm(n 5 229, 88.1% vn 5 80,
64.5%; P < .001). Patient characteristics and clinical outcomes
were aligned with those previously reported for this trial.
Baseline characteristics were not significantly different be-
tween patients with an available sample compared with those
without (Data Supplement [Table S1], online only) and, among
patients with samples, were similar in the donor and no donor
group. The median follow-up in survivors was 32 months
(range, 6-38). All patients provided written informed consent
to participate in both the BMT CTN 1102 trial and the CIBMTR

research database. This study was approved by the BMT CTN
and CIBMTR and conducted with approval of the Dana-Farber
Cancer Institute institutional review board.

Genetic Analysis

Targeted DNA sequencing on samples at the time of enroll-
ment was performed on 113 genes known to be recurrently
mutated inmyeloidmalignancies or associated with germline
predisposition to develop myeloid malignancies (Data Sup-
plement [Table S2]), using a variant allele fraction (VAF)
cutoff of 0.02 (Custom SureSelect, Agilent Technologies,
Santa Clara, CA). TP53 mutation allele abundance was quan-
tified just before transplantation in DNA extracted from
preconditioning blood samples using a custom targeted
error-corrected DNA sequencing panel covering the entire
coding sequence of the TP53 gene (VariantPlex, ArcherDx,
Boulder, CO).11 Detailed sequencing information is provided in
the Data Supplement (Appendix). MDS with TP53 mutations
was further categorized on the basis of the number of TP53
mutations (single-nucleotide variants or small indels) and the
presence of TP53 deletion or copy-neutral loss of heterozy-
gosity (CN-LOH). Those with ≥2 TP53 mutations or ≥1 point
mutation in combination with TP53 CN-LOH, TP53 deletion,
or chromosome 17/17p deletion by karyotype were classified
asTP53multihit, whereas thosewith a singleTP53pointmutation
without LOH were classified as TP53single.12,13 FLT3 internal
tandem duplications and KMT2A partial tandem duplications
were identified as described.14,15 The genetic analysis was
locked before merging with clinical data.

Statistical Analysis

To identify mutations associated with OS in the whole study
cohort, we evaluated 17 genes that were mutated in ≥10
patients in the study cohort (Data Supplement [Fig S1 and
Table S3]). Genes that were mutated less frequently were

CONTEXT
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To determine whether the improved survival of allogeneic hematopoietic cell transplantation (HCT) in a high-risk mye-
lodysplastic syndrome (MDS) biological assignment trial of HCT was independent of gene mutations.

Knowledge Generated
Overall survival was significantly improved by HCT in high-risk genetic subgroups including TP53-mutated MDS and In-
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clinical or genetic characteristics including TP53 mutational clearance.
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subject to descriptive analysis. OSwas considered as the time
from consent until death fromany cause or until censoring at
the date of last contact being alive. OS curves were estimated
using the Kaplan-Meier method, and cumulative incidences
of relapse or progression to leukemia were estimated with the
Aalen-Johansen method, with death without relapse or dis-
ease progression being treated as competing events. Out-
comes were compared in univariate analysis of survival and
competing risks using log-rank and Gray’s test, respectively.
Comparisons between the two groups were performed using
the Mann-Whitney U test for continuous variables, whereas
the Fisher’s exact test was used for categorical variables.

The impact of allogeneic HCT was assessed using two
methods: (1) a time-dependent analysis allowing the HCT
covariate to change at the time of HCT, where OS curves were
shown using Simon-Makuch plots16 and (2) a dynamic
landmarking analysis at 3, 6, and 9 months from consent by
treatment arm in which patients were assigned to no HCT
group if they were not transplanted at the landmark time.17,18

Multivariable analysis was performed using a Cox propor-
tional hazards model with adjustment for prespecified
variables, which included age at enrollment (older than 65 v
65 years and younger), performance status (Karnofsky <90 v
90-100 or Eastern Cooperative Oncology Group 1 v 0), IPSS
risk status (high v intermediate-2), and MDS disease du-
ration (≥3 v <3 months). Stepwise selection of variables with
an univariate of P < .2 for OS was used to generate a mul-
tivariable model integrating the remaining clinical and ge-
netic features, with P < .1 as the threshold for variable
inclusion in the model.

RESULTS

Genetic Characteristics

We identified ≥1 mutation in 272 of 309 (88%) patients. The
overall distribution of somatic genemutations was similar in

the donor and no donor arms, with TP53 (28% v 29%;
P 5 .89), ASXL1 (23% v 29%; P 5 .37), SRSF2 (16% v 16%;
P 5 .99), and DNMT3A (17% v 10%; P 5 .20) being the most
common (Fig 2). Inferred germline mutations in DDX41were
found in 7% (n 5 23) of patients, and rare variants affecting
core telomerase components TERT (n 5 9) or TERC (n 5 1)
were observed in 3% of patients, consistent with a recent
report.6 The frequency and distribution of gene mutations in
the BMT CTN 1102 cohort were similar to those from a
retrospective registry-level MDS transplant cohort (n5 227)
matched for age, IPSS risk group, and primary versus
therapy-related MDS status (Fig 2).3

Clinical and Genetic Characteristics of TP53 Mutations

Among 87 patients with a TP53 mutation, 48 (55%) were
classified as TP53multihit, including 27 with ≥2 TP53mutations,
15 with one TP53 mutation and TP53 LOH identified by NGS,
and six with one TP53 mutation and deletion of chromosome
17/17p by karyotype (Data Supplement [Fig S2]). The presence
of a TP53 mutation, but not TP53 allelic state, was signifi-
cantly associated with clinical and molecular characteris-
tics, including a higher frequency of complex karyotype
(TP53multihit 5 67% and TP53single 5 62% v TP53WT 5 10%;
P < .001 and P < .001, respectively) and lower platelet count at
enrollment (TP53multihit5 423 109/L andTP53single5 623 109/L
v TP53WT 5 90 3 109/L; P 5 .002 and P 5 .032, respectively;
Data Supplement [Table S4]). Consistent with these differ-
ences, patients with a TP53 mutation were significantly more
likely tohave IPSShigh-riskdisease than thosewithout aTP53
mutation (52% v 26%; P < .001). Other clinical and transplant
characteristics were not different between patients with and
without a TP53 mutation (Data Supplement [Table S4]).

Genetic Determinants of Outcomes

In univariate analysis, the presences of a TP53 mutation and
KMT2APTD were significantly associated with shorter OS
compared with patients without those mutations (TP53:

Enrolled in the BMT CTN 1102 trial
(N = 384)

Samples available for genetic analysis
(n = 309)

Assigned to the donor arm
(n = 229)

Assigned to the no donor arm
(n = 80)
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FIG 1. Patients included in this study. BMT CTN, Blood and Marrow Transplant Clinical Trials Network.
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21% 6 5% [SE] v 52% 6 4% at 3 years; hazard ratio [HR],
2.55; 95% CI, 1.86 to 3.50; P < .001; KMT2APTD: 8% 6 7% v
45%6 3%at 3 years; HR, 2.21; 95%CI, 1.22 to 3.99; P 5 .009),
whereas the presence of a germline DDX41 mutation (74% 6

9% v 41% 6 3% at 3 years; HR, 0.39; 95% CI, 0.17 to 0.87;
P 5 .022) and somatic mutations in STAG2 (HR, 0.57; 95% CI,
0.34 to 0.96; P5 .034) was associated with favorable OS (Data
Supplement [Table S3]). OS at 3 years was similar in patients
withTP53single andTP53multihit allelic states (22%6 8% v 20%6

6%; HR, 1.29; 95% CI, 0.79 to 2.11; P 5 .31; Fig 3A). The

cumulative incidence of MDS relapse or progression to AML
was significantly higher in patients with a TP53 mutation
compared with those without a TP53 mutation (68% 6 5% v
42% 6 4% at 3 years; P < .001), and among patients with a
TP53mutation, the incidencewas significantly higher in those
with TP53multihit compared with TP53single (74%6 6% v 62%6

8% at 3 years; P 5 .03; Fig 3B). Similarly, OS and cumulative
incidence of MDS relapse or progression to AML were not
different comparing TP53with or without complex karyotype
or deletion 17/17p (Data Supplement [Fig S3]).

Gene CIBMTRb
(n = 227), %

DDX41 7.0 8.8 3.1
TP53 27.9 28.8 29.1

PPM1D 2.6 0.0 4.0
SRSF2 15.7 16.3 6.6
U2AF1 11.4 16.3 15.9
SF3B1 3.1 11.3 a 9.3
ZRSR2 1.3 3.8 4.0
STAG2 14.0 13.8 7.5
ASXL1 23.1 28.8 22.9
BCOR 4.8 6.3 6.6
EZH2 3.5 2.5 7.0
TET2 15.3 13.8 11.9

DNMT3A 16.6 10.0 16.7
RUNX1 14.8 15.0 14.5

IDH2 5.2 3.8 2.2
IDH1 1.7 2.5 4.8

SETBP1 2.2 8.8 a 6.6
NRAS 1.7 7.5 a 4.4
KRAS 1.3 1.3 2.6

NF1 1.3 3.8 3.5
PTPN11 3.1 1.3 4.4

CBL 1.3 0.0 2.2
FLT3 0.9 0.0 0.4

MLL-PTD 3.5 6.3
Other 24.5 30.0

Donor arm (n = 229) No donor arm (n = 80) Donor, 
%

No donor, 
%

FIG 2. Spectrum of myeloid driver mutations in the BMT CTN 1102 study. A comutation plot shows mutations in individual genes per study
arm as labeled on the top. Mutations are depicted by colored bars and each column represents one of the 309 patients. aSignificant with P < .05
(Fisher’s exact test). bSelection of patients with de novo MDS with IPSS intermediate-2 or high risk age 50-75 years from a matched ret-
rospective cohort.3 BMT CTN, Blood and Marrow Transplant Clinical Trials Network; IPSS, International Prognostic Scoring System; MDS,
myelodysplastic syndrome.
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Outcome Analysis Adjusted for Clinical and
Genetic Variables

To identify the impact of (1) donor availability and (2) the
actual application of HCT in this high-risk MDS cohort, we
constructed two multivariable models adjusted for pre-
specified clinical variables including age at enrollment,

performance status, IPSS risk status, MDS disease dura-
tion, and clinical and genetic variables identified with
stepwise selection. The first model is based on the random
assignment on the basis of donor availability, whereas the
second model addresses the HCT versus no HCT compar-
ison, where HCT was treated as a time-dependent
covariate.

Variable HR 95% CI

Treatment arm No donor v donor 1.60 1.10 to 2.32

TP53 mutation Single v absent 1.22 0.71 to 2.12

Multi v absent 2.22 1.35 to 3.65

DDX41 mutation Present v absent 0.44 0.18 to 1.10

KMT2A-PTD Present v absent 2.37 1.24 to 4.55

Karyotype Complex v noncomplex 1.61 1.04 to 2.49

MDS duration �3 v <3 months 1.42 1.00 to 2.01

MDS IPSS High v intermediate-2 1.65 1.16 to 2.33

Age >65 v �65 years 1.03 0.73 to 1.44

ECOG 1 v 0 1.56 0.74 to 3.29

Karnofsky <90 v 90-100 1.32 0.88 to 2.00

HR for Death

0 1 10

Multivariable Analysis—OS (donor v no donor)A

Variable HR 95% CI

HCT No v yes 2.31 1.53 to 3.49

TP53 mutation Single v absent 1.43 0.80 to 2.55

Multi v absent 2.47 1.45 to 4.20

DDX41 mutation Present v absent 0.36 0.13 to 1.00

KMT2A-PTD Present v absent 2.14 1.05 to 4.34

Karyotype Complex v noncomplex 1.53 0.97 to 2.42

Sex Male v female 1.57 1.07 to 2.31

MDS duration �3 v <3 months 1.45 1.01 to 2.09

MDS IPSS High v intermediate-2 1.50 1.04 to 2.17

Age >65 v �65 years 1.00 0.69 to 1.44

ECOG 1 v 0 1.22 0.56 to 2.68

Karnofsky <90 v 90-100 1.34 0.88 to 2.03

HR for Death

0 1 10

Multivariable Analysis—OS (HCT as time-dependent covariate)B

FIG 4. Forest plots of the multivariable analysis. Forest plot of subgroup analyses showing the HR for death and 95% CI in (A) the
multivariable analysis of the donor versus no donor comparison and (B) the multivariable time-dependent analysis where HCT was
considered as a time-dependent variable. Multivariable Cox regression analysis was used, with adjustment for treatment arm (A) or HCT
(B), TP53 allelic state, DDX41 mutation, KMT2APTD, complex karyotype, duration of disease, IPSS score, sex, age, and performance score.
ECOG, Eastern Cooperative Oncology Group; HCT, hematopoietic cell transplantation; HR, hazard ratio; IPSS, International Prognostic
Scoring System; MDS, myelodysplastic syndrome; OS, overall survival.
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Variable HR 95% CI

HCT (as-treated) No v yes 3.89 1.87 to 8.12

TP53 mutation Multi v single 2.14 1.08 to 4.24

DDX41 mutation Present v absent 0.55 0.07 to 4.35

KMT2A-PTD Present v absent 3.17 0.58 to 17.44

Karyotype Complex v non-complex 1.48 0.78 to 2.79

Sex Male v female 3.28 1.54 to 6.96

MDS duration �3 v <3 months 2.16 1.18 to 3.96

MDS IPSS High v intermediate-2 1.37 0.77 to 2.44

Age >65 v �65 years 0.92 0.50 to 1.68

ECOG 1 v 0 0.67 0.18 to 2.51

Karnofsky <90 v 90-100 1.75 0.79 to 3.89

Time (months)

0 1 10 100

A

B OS in Patients WithTP53 mutations With HCT
as Time-Dependent Covariate

HR, 1.76; 95% CI, 1.02 to 3.06

Mantel-Byar P = .04
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FIG 5. Forest plot of the multivariable analysis in patients with mutated TP53. (A) Forest plot of subgroup analyses in patients with
mutated TP53 showing the HR for death and 95% CI in the multivariable time-dependent analysis where HCT was considered as a time-
dependent variable. Multivariable Cox regression analysis was used, with adjustment for HCT, TP53 allelic state, DDX41 mutation,
KMT2APTD, complex karyotype, duration of disease, IPSS score, sex, age, and performance score. (B) OS in patients with TP53mutations
in which HCT is considered as a time-dependent covariate according to a Simon-Makuch plot. Time is measured from consent and
patients switch from the no HCT to the HCT at the time of HCT if they received HCT. (C) Serial analysis of enrollment and pre-HCT TP53
samples (n5 35). Patients with pre-HCT TP53 VAF ≥5% (left) and pre-HCT TP53 VAF <5% (right) are shown. (D) OS in patients with TP53
mutations by pre-HCT TP53 VAF cutoff of 5%. Time ismeasured from transplantation. ECOG, Eastern Cooperative Oncology Group; HCT,
hematopoietic cell transplantation; HR, hazard ratio; IPSS, International Prognostic Scoring System; MDS, myelodysplastic syndrome;
OS, overall survival; VAF, variant allele fraction. (continued on following page)
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In the donor versus no donor analysis, TP53, KMT2APTD, and
DDX41 mutations were associated with OS after adjustment
for covariates (Fig 4A). Patients who were assigned to the
donor arm had improved OS compared with patients in the
no donor arm (HR, 1.60; 95% CI, 1.10 to 2.32; P 5 .013;
Fig 4A). TP53 allelic state was associated with worse out-
come, particularly patients with TP53multihit compared with
thosewithout TP53mutations (HR, 2.22; 95%CI, 1.35 to 3.65;
P 5 .002; Fig 4A). Applying that multivariable model to
patients with a TP53 mutation, we found that patients in the
donor arm had a nonsignificant improved OS compared
with those in the no donor arm (HR, 1.76; 95% CI, 0.95 to
3.26; P 5 .073; Data Supplement [Fig S4]). No interactions

were found between treatment arms and mutations in both
multivariable models.

In the time-dependent analysis of HCT, we included 197
patients who actually received HCT after RIC and 78 patients
who did not receive HCT (Data Supplement [Fig S5]). Using a
multivariable model in which HCT was considered as time-
dependent covariate, adjusted for age, sex, performance
status, IPSS, MDS duration, and complex karyotype, TP53
and KMT2APTD were associated with differential survival
(Fig 4B). HCT was associated with a 2-fold lower instan-
taneous risk of death compared with patients not receiving
HCT after adjustment for covariates (HR, 2.31; 95%CI, 1.53 to
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FIG 5. (Continued).
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Variable HR 95% CI

Treatment arm No donor v donor 1.70 1.20 to 2.41

IPSS-M Low v very low 1.10 0.49 to 2.46

Moderate low v very low 1.17 0.52 to 2.65

Moderate high v very low 1.88 0.91 to 3.89

High v very low 1.85 0.85 to 4.04

Very high v very low 2.43 1.17 to 5.07

MDS duration �3 v <3 months 1.33 0.96 to 1.85

Age >65 v �65 years 1.04 0.75 to 1.43

ECOG 1 v 0 1.69 0.86 to 3.33

Karnofsky <90 v 90-100 1.22 0.83 to 1.79

HR for Death
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3.49; P < .001). To assess the impact of HCT in the subset of
patients with the highest risk of death, we specifically ap-
plied this multivariable time-dependent model to patients
with a TP53mutation (Fig 5A). We found that patients with a
TP53 mutation who were not transplanted had reduced OS
compared with patients who received HCT (HR, 3.89; 95%
CI, 1.87 to 8.12; P < .001; Fig 5A), indicating that HCT might
improve long-term survival in patients with mutated TP53,
independent of other risk factors. No interactionswere found
between HCT and mutations in both multivariable models.
OS in patients with TP53mutationswho actually received RIC
HCT estimated 23% 6 7% at 3 years which was significantly

improved compared with no HCT in a time-dependent
survival analysis (Fig 5B). These observations were
also consistently found at multiple landmark time points,
although only significant at the 9-month landmark
(Data Supplement [Fig S6]).

Molecular Clearance of TP53 Mutation Before HCT Does
Not Predict Long-Term Survival

It has been proposed that long-term survival after HCT of
patients with TP53-mutated MDS is limited to those whose
mutation burden can be reduced below a VAF of 5%.19
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Therefore, we obtained samples from all patients who re-
ceived HCT and had an available sample in the CIBMTR
Research Sample Repository (n 5 35 of n 5 55 total) and
then performed targeted, error-corrected sequencing of
the TP53 coding sequence. We determined whether TP53
variants present at the time of enrollment were persistent in
the preconditioning blood sample, quantified the allele
abundance, and analyzed the association between quanti-
tative molecular responses and clinical outcome. Using a
high-sensitivity analysis, we found that 33 of 35 patients
(94%) had persistent TP53 mutations (median VAF, 0.045;
range, 0.0049-0.489; Fig 5C). Using a 5% VAF cutoff per
previous published analyses, 17 of 35 (48.6%) had persistent
mutations. To test the hypothesis that pre-HCT molecular
clearance explained the observed long-term survival among
patients with TP53-mutated MDS, we analyzed the associ-
ation between pre-HCTmolecular positivity (at either 2% or
5% VAF cutoffs) with OS after transplantation. OS at 3 years
was similar for patients with a pre-HCT TP53 VAF cutoff
of ≥5% versus <5% (22% 6 12% v 18% 6 10%; P 5 .95;
Fig 5D) and also not different for a cutoff of ≥2% versus <2%
(24%6 9% v 11%6 11%; P5 .26; Data Supplement [Fig S7]).

Outcome on the Basis of Molecular IPSS
Risk Classification

The molecular IPSS (IPSS-M) is a six-tiered MDS risk
classification that was developed by combining hematologic
parameters, cytogenetic risk, and somatic mutations in 31
genes.13 Since the relative weights of selected variables in the
IPSS-M were determined in an unselected cohort that
spanned IPSS low- and high-risk disease and in which <10%
received allogeneic transplantation, we sought to determine
whether IPSS-M risk model was predictive of transplanta-
tion outcomes. In the donor versus no donor analysis, only
the IPSS-M very high-risk subgroup was associated with
inferior survival compared with very low-risk patients after
adjustment for clinical- and transplant-related covariates
(HR, 2.43; 95% CI, 1.17 to 5.07; P 5 .018; Fig 6A). Patients in
the IPSS-M very high-risk subgroup had a heterogeneous
molecular profile, with 57% having a TP53 mutation (of
which 79% were TP53multihit), and the remaining 43% with
TP53 wild-type disease most commonly had ASXL1, RUNX1,
and SRSF2 mutations (Fig 6B). Although patients with IPSS-
M very high risk with a TP53 mutation had poor outcome
irrespective of donor availability (26% 6 8% v 14% 6 13% at
3 years; P 5 .28; Fig 6C), IPSS-M very high risk without a
TP53 mutation had significantly improved survival in those
with a donor compared with those in the no donor arm
(68% 6 10% v 0% 6 12% at 3 years; P 5 .001; Fig 6D). No
interactions were found between treatment arms and IPSS-
M risk groups.

Outcomes in Patients With Germline DDX41 Mutations

Inferred germline DDX41 mutations were present in 7%
(n 5 23) of patients with MDS in this study. Patients with
mutated DDX41 had higher hemoglobin levels at

enrollment (11.6 v 9.1 g/dL; P < .001) and higher bone
marrow blast count (12% v 8%; P 5 .040) compared with
patients without DDX41 mutations (Data Supplement
[Table S5]). Other clinical and transplantation charac-
teristics were not significantly different among patients
with a germline DDX41 mutation versus those without.

The presence of a germline DDX41 mutation was associated
with favorable outcomes, consistentwith previous studies.13,20

Twenty of 23 patients proceeded to HCT (Table 1). Only one
patient, who also had somatic biallelic TP53 mutations, ex-
perienced MDS relapse after HCT. Non-relapse mortality
(NRM) was observed in five patients, including one patient
who received myeloablative conditioning, three of seven who
receivedmelphalan, andonepatientwho receivedfludarabine,
cycloposphamide, and total body irradiation who had HCT-CI
score ≥3. There was no NRM among DDX41 patients receiving
fludarabine with 2 days of busulfan or fludarabine and total
body irradiation.

DISCUSSION

Allogeneic HCT confers superior survival in transplant eli-
gible patients with high-risk MDS and an available donor.1,2,21

Analyses of retrospective, registry-level transplant cohorts
have suggested that the benefit of transplantation may not
extend across MDS molecular subtypes,3-5,13,22 but these
studies all lacked direct comparisonwith non-HCT treatment.
Todetermine directlywhether HCT improvesMDS outcomes
independent of gene mutations, we performed genetic
analysis of the prospective BMT CTN 1102 biologic as-
signment trial. Even after adjustment for genetic variables,
survival after allogeneic HCT remained superior compared
with non-HCT treatment with no interaction between
genetic subtype and treatment effect.

Previous retrospective studies have found that the pres-
ence of a TP53 mutation is the most powerful predictor of
poor survival of patients with MDS after transplantation,
with long-term survival varying from 0% to 25% across
studies.3-5,7,23 The absence of a non-HCT control group in
such retrospective analyses has thus called into question
whether the long-term survival observed in these studies
was reasonably attributable to the transplantation interven-
tion. In this study, we directly addressed this question and
now conclude definitively that reduced intensity transplan-
tation mediates long-term survival for patients with TP53-
mutated MDS compared with non-HCT treatment. Moreover,
we show that the benefit of HCT over non-HCT treatmentwas
independent of TP53 allelic state and not restricted to specific
subgroups of TP53 mutated MDS, including VAF, complex
karyotype, or mutation clearance after pre-HCT hypo-
methylating agent treatment.

Together, these data indicate that no patient with
TP53-mutated MDS should be excluded from consideration
for HCT a priori on the basis of TP53 status alone. Despite the
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TABLE 1. Characteristics of Patients With DDX41 Mutations

Age (years)
TP53

Mutation Type HCT Conditioning Donor HCT-CI OS From Enrollment (months) Survival Status Cause of Death

72 Multi Yes RIC: Flu 1 Mel Unrelated 1 5.2 Death NRM: organ failure

69 Yes RIC: Flu 1 Mel Unrelated 1 7.7 Death NRM: infection

56 Yes MAC: Flu 1 Bu Missing Missing 8.1 Death NRM: organ failure

69 Yes RIC: Flu 1 Cy 1 TBI Missing Missing 10.3 Death Relapse

68 Yes RIC: Flu 1 Cy 1 TBI Unrelated ≥3 13.8 Death NRM: ARDS

71 Yes RIC: Flu 1 Mel Unrelated ≥3 15.0 Death NRM: pneumonia

64 Yes RIC: Flu 1 Mel Related 2 17.1 Alive

65 Yes RIC: Flu 1 Bu Unrelated ≥3 17.8 Alive

66 Yes RIC: Flu 1 Mel Related ≥3 24.2 Alive

64 Yes RIC: Flu 1 Bu Missing Missing 26.4 Alive

66 Yes RIC: Flu 1 Cy 1 TBI Missing Missing 29.7 Alive

67 Yes RIC: Flu 1 Bu Unrelated ≥3 34.3 Alive

68 Yes RIC: Flu 1 Mel Unrelated ≥3 34.8 Alive

67 Yes MAC: Flu 1 Bu Unrelated ≥3 35.2 Alive

69 Yes RIC: Flu 1 Bu Unrelated 0 35.6 Alive

69 Yes RIC: Flu 1 Mel Unrelated ≥3 35.7 Alive

73 Yes RIC: Flu 1 Bu Unrelated 2 37.9 Alive

69 Yes RIC: Flu 1 Mel Related 0 38.0 Alive

62 Yes RIC: Flu 1 TBI Unrelated 2 38.0 Alive

73 Yes RIC: Flu 1 TBI Unrelated ≥3 38.1 Alive

68 No 17.9 Alive

67 Single No 22.5 Alive

67 No 24.2 Alive

Abbreviations: ARDS, acute respiratory distress syndrome; Bu, busulfan; Cy, cyclophosphamide; HCT, hematopoietic cell transplantation; HCT-CI, hematopoietic cell transplantation comorbidity
index; MAC, myeloablative conditioning; Mel, melphalan; NRM, nonrelapse mortality; OS, overall survival; RIC, reduced intensity conditioning; TBI, total body irradiation.
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relative benefit of HCT over non-HCT treatment, however,
the absolute survival benefit remains modest, meriting
value-based discussions between physicians and patients on
the appropriateness of transplantation. Recent data have
indicated thatTP53-mutated disease consists of an immune-
privileged, evasive phenotype in the bone marrow micro-
environment, which might result in reduced sensitivity to
alloreactive T cells.24 Strategies to exploit alloreactivity and
restore the microenvironment might improve outcomes
after HCT. Several other approaches could be considered to
improve long-term outcomes, including early allogeneic
HCT in patients with TP53-mutated MDS25 or pre-, peri-,
and post-HCT interventions aimed at mitigating the risk of
relapse. Pretransplant treatment with hypomethylating
agents has been associated with clinical responses in pa-
tients with mutated TP53, which has also been shown fea-
sible to bridge time to HCT during a donor search
period.19,26,27 Combination of hypomethylating treatment
with novel agents, for example eprenetapopt ormagrolimab,
yielded promising results with high rates of complete re-
mission, mutational clearance, and prolonged survival in
patients with TP53-mutated myeloid disease.28-31 Data on
efficacy and especially tolerability of these combinations for
disease reduction before HCT are needed.

With the development of the IPSS-M, prognostic modeling
in MDS now integrates clinical variables, cytogenetic risk,
and molecular genetic profile to define six risk categories
based on leukemia-free survival and OS outcomes.13 How-
ever, in the IPSS-M cohort, fewer than 10% of patients
received allogeneic HCT, raising the possibility that the
relative weights of selected variables could differ in the
context of transplantation. In the BMT CTN 1102 cohort, half
of patients fell within the IPSS-M high-risk and very high-
risk groups (28%and 22%, respectively), consistent with the
clinical practice to prioritize higher-risk patients for
transplantation. Although we found that patients in the
IPSS-M very high-risk group had inferior transplant out-
comes, we noted that this group was heterogeneous,

including patients with biallelic TP53mutations and patients
without TP53 mutations who had a rather different clinical
and genetic profile, including ASXL1, RUNX1, and splicing
factor mutations in the context of relatively high blast
counts. In the relatively small subgroup of IPSS-M very
high-risk patients without TP53 mutations who had no
available donor, we observed poor outcomes, consistentwith
the non-HCT IPSS-M model. However, when a donor was
available, outcomes of these IPSS-M very high-risk patients
were favorable. These findings indicate that IPSS-M very
high riskMDSwithout a TP53mutationmay be very sensitive
to allogeneic HCT and could be ideal candidates for early
transplantation as a path to long-term survival.32

We found germline DDX41 mutations in 7% of patients, and
these were associated with favorable outcomes with a low
risk of relapse, consistent with previous reports.33,34 The
only patient with germline DDX41 mutation who experi-
enced disease relapse had somatic biallelic TP53 alterations.
These data indicate that MDS with a DDX41 mutation is
highly curable with RIC-HCT, and treatment strategies
should focus on minimizing toxicity to reduce the risk
of NRM.

In conclusion, our data indicate that the benefit of HCT
in patients with IPSS intermediate-2 and high-risk
MDS extends to high-risk genetic subgroups. Moreover,
patients with TP53-mutated MDS, irrespective of additional
clinical or genetic variables, including allelic state, VAF, and
pre-HCT mutation clearance, have superior survival with
RIC allogeneic HCT compared with non-HCT treatment
approaches, indicating that these patients should not be
excluded for HCT on the basis of genetic findings alone,
further reinforcing the conclusion that such patients should
be offered transplantationwhen a donor is available. Patients
with IPSS-M very high-risk MDS without a TP53 mutation
had favorable outcomes when a donor was available, sug-
gesting that such patients see particular benefit from early
transplantation.
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20. Sébert M, Passet M, Raimbault A, et al: Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood 134:1441-1444, 2019
21. Robin M, Porcher R, Adès L, et al: HLA-matched allogeneic stem cell transplantation improves outcome of higher risk myelodysplastic syndrome A prospective study on behalf of SFGM-TC and

GFM. Leukemia 29:1496-1501, 2015
22. Bejar R, Stevenson K, Abdel-Wahab O, et al: Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364:2496-2506, 2011
23. Grob T, Al Hinai ASA, Sanders MA, et al: Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 139:2347-2354, 2022
24. Sallman DA, McLemore AF, Aldrich AL, et al: TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. Blood 136:2812-2823, 2020
25. Koreth J, Pidala J, Perez WS, et al: Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: An

international collaborative decision analysis. J Clin Oncol 31:2662-2670, 2013
26. Voso MT, Leone G, Piciocchi A, et al: Feasibility of allogeneic stem-cell transplantation after azacitidine bridge in higher-risk myelodysplastic syndromes and low blast count acute myeloid

leukemia: Results of the BMT-AZA prospective study. Ann Oncol 28:1547-1553, 2017
27. Welch JS, Petti AA, Miller CA, et al: TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med 375:2023-2036, 2016
28. Hunter AM, Sallman DA: Targeting TP53 mutations in myelodysplastic syndromes. Hematol Oncol Clin North Am 34:421-440, 2020
29. Sallman DA, DeZern AE, Garcia-Manero G, et al: Eprenetapopt (APR-246) and azacitidine in -mutant myelodysplastic syndromes. J Clin Oncol 39:1584-1594, 2021

Journal of Clinical Oncology ascopubs.org/journal/jco | Volume 41, Issue 28 | 4509

HCT Improves Outcome in High-Risk MDS Genetic Subgroups

https://www.clinicaltrials.gov/ct2/show/NCT02016781
https://ascopubs.org/doi/full/10.1200/jco.23.00866
http://ascopubs.org/journal/jco
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