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Identification and verification of an exosome-
related gene risk model to predict prognosis and 
evaluate immune infiltration for colorectal cancer
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Abstract 
Colorectal cancer (CRC) is a common malignant tumor that severely endangers human health. Exosomes show great potential in 
tumor immunotherapy. Increasingly studies have shown that exosome-related genes are effective prognostic biomarkers. Clinical 
information and gene expression data of CRC patients were obtained from gene expression omnibus and the cancer genome 
atlas. The data were then classified into training and independent validation sets. In the training set, exosome-related genes with 
a prognostic value were selected by univariate Cox analysis, least absolute shrinkage and selection operator Cox regression 
model, and stepwise Cox regression analysis. Risk scores were calculated based on the selected genes to stratify patients. The 
selected exosome-related genes were applied to establish a risk model. Based on 11 exosome-related genes, a prognostic risk 
model, which could stratify the risk both in the training and validation sets, was established. According to the survival curves, 
the prognoses of the high- and low-risk groups were significantly different. The AUCs of the risk model for prognostic prediction 
were 0.735 and 0.784 in the training and validation sets, respectively. A nomogram was constructed to predict the survival of 
CRC patients. Single-sample gene set enrichment analysis and ESTIMATE algorithms revealed that the risk model was related to 
immune cell infiltration. The value of the risk model in predicting immunotherapeutic outcomes was also confirmed. An exosome-
related gene risk model was constructed to predict prognosis, evaluate microenvironment immune cell infiltration levels and bring 
a new perspective to CRC patient treatment.

Abbreviations: AJCC = American Joint Committee on Cancer, AUCs = area under the ROC curves, C-index = concordance 
index, CRC = colorectal cancer, IC50 = half maximal inhibitory concentration, K–M = Kaplan–Meier, OS = overall survival, ssGSEA 
= single-sample gene set enrichment analysis, TCGA = the cancer genome atlas.
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1. Introduction
Colorectal cancer (CRC) is one of the most common malignant 
tumors worldwide, which ranks third in terms of incidence and 
second in terms of mortality.[1] CRC is a heterogeneous disease 
associated with many genetic or somatic mutations. Diagnostic 
and prognostic markers are applied for the early detection and 
risk stratification of CRC, which might prolong overall survival 
(OS) in patients.[2]

At present, treatments used for CRC include surgery, radio-
therapy, chemotherapy, targeted therapy, and immunotherapy. 
Immunotherapy is the latest revolution in cancer therapy that con-
tinuously exhibits potential in treating various malignancy types. 
However, a great number of CRC patients are primary or have 

acquired resistance to immune checkpoint blockades.[3,4] Therefore, 
candidates who will benefit from immunotherapy treatment.

Exosomes are extracellular vesicles found in liquid biopsies 
and have excellent prospects for measuring various biological 
components related to tumorigenesis, tumor growth and metas-
tasis, and resistance to treatment.[5] Thanks to the immunoge-
nicity and molecular transfer function, exosomes are considered 
promising in cancer immunotherapy.[6] Furthermore, exosomes 
can be used for the early diagnosis and prognosis assessment in 
several cancers.[7,8] However, the predictive prognostic value of 
the exosome-related gene model in CRC remains unclear.

We developed an exosome-related gene risk model that could 
effectively predict the prognosis of CRC patients. At the same 
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time, we explored the possible value of the model in evaluating 
immune cell-infiltrating characteristics and predicting immuno-
therapeutic responses.

2. Materials and methods

2.1. Data acquisition

Clinical information and gene expression data from the 
GSE39582 dataset, based on the GPL570 platform, were down-
loaded from the gene expression omnibus database and used 
as a training set. The corresponding information of COAD and 
ROAD projects was downloaded from the cancer genome atlas 
(TCGA) and used as a validation set. Exosome-related genes 
were downloaded from the ExoCarta database.[9]

The exclusion criteria for clinical data were as follows: 
absence of relevant clinical information, and survival time of 
<30 days.

2.2. Generation of a prognostic risk model

The GSE39582 and TCGA datasets served as training and 
validation sets, respectively. The exosome-related genes in the 
training set were ascertained. Based on the selected genes, gene 
ontology and the Kyoto encyclopedia of genes and genomes 
enrichment analyses were performed using the “clusterProfiler” 
package.[10] The univariate Cox analysis of OS was performed 
using the training set to select exosome-related genes with 
remarkable prognostic significance (P < .01). We then used the 
least absolute shrinkage and selection operator Cox regression 
model for further screening of the genes. The selected genes were 
incorporated into a stepwise Cox regression analysis and visual-
ized by drawing forest plots.

2.3. Assessment and validation of the risk model

The exosome-related risk score for each patient was calculated 
on the basis of the selected gene expression levels and stepwise 
Cox regression coefficients:

risk score =
n∑
i=1

Coefi ∗ Expi

The patients were then divided into high- and low-risk groups 
based on the median risk score of the GSE39582 set. The con-
cordance index (C-index) was calculated for assessing the per-
formance of the risk model.

Kaplan–Meier (K–M) curves were plotted to compare the 
differences in OS between the high- and low-risk groups. The 
statistical difference between the 2 groups was evaluated using 
the log-rank test. P < .05 was considered statistically signifi-
cant. The relationships between the selected exosome-related 
genes and CRC patient prognosis were also analyzed by the 
K–M survival curves. The prognostic capability of the risk 
model was assessed by comparing the receiver operating char-
acteristic curves and area under the ROC curves (AUCs) of 
our risk model, and other clinicopathological factors in the 
training and validation sets. Moreover, the predictive value of 
the exosome-related risk model for different clinical character-
istics was explored.

2.4. Construction and assessment of a nomogram

Univariate and multivariate Cox analyses were performed to 
identify prognosis-related clinical factors in the training set 
(P < .05). A nomogram combining the exosome-related risk 
model and the selected clinical factors was constructed to 

Table 1 

Clinicopathological characteristics of colorectal cancer (CRC) 
patients in this study.

Characteristics 

No. (%)

Training cohort (n = 530) Validation cohort (n = 405) 

Age
 � <65 207 (39.06) 176 (43.45)
 � ≥65 323 (60.94) 229 (56.55)
Gender
 � Female 240 (45.28) 188 (46.42)
 � Male 290 (54.72) 217 (53.58)
AJCC stage
 � I–II 278(52.45) 212(52.35)
 � III–IV 252(47.55) 193(47.65)
T stage
T0–T2 55 (10.38) 83 (20.49)
T3–T4 475 (89.62) 322 (79.51)
N stage
 � N0 290 (54.72) 222 (54.81)
 � N+ 240 (45.28) 183 (45.19)
M stage
 � M0 470 (88.68) 338 (83.46)
 � M1 60 (11.32) 67 (16.54)
Event
 � Alive 357 (67.36) 350 (84.42)
 � Dead 173 (32.64) 55 (13.58)

AJCC = American Joint Committee on Cancer.

Figure 1.  Results of functional enrichment analyses. (A) Gene ontology (GO) enrichment analysis. (B) Kyoto encyclopedia of genes and genomes (KEGG) 
enrichment analysis.
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predict OS probabilities at 1, 3, and 5 years. Then, the “rms” 
package was used to produce calibration curves for evaluat-
ing whether the nomogram was accurate. The decision curve 
analysis was performed to measure the clinical value of the 
nomogram.

2.5. Inference of immune cell infiltration

The single-sample gene set enrichment analysis (ssGSEA)[11] 
estimated the fraction of specific immune cell types at a single 
sample level and evaluated the relative abundance of 28 immune 
cell types by using the “GSVA” package.[12] To explore the rela-
tionships between the exosome-related genes and immune-infil-
trating cells, we correlated the genes with the cells. Additionally, 
the stromal and immune scores of each CRC patient were cal-
culated on the basis of the ESTIMATE algorithm by using the 
“ESTIMATE” package.[13]

2.6. Immune checkpoint molecules

The correlations between the expression of the selected exo-
some-related genes with immune checkpoint molecules and 
that of the exosome-related risk model with the expression of 
immune checkpoint molecules were explored.

2.7. Evaluation of the immunotherapy effect

The efficacy of the anti-PD-L1 antibody in patients with 
advanced urothelial cancer was investigated in the IMvigor210 
immunotherapeutic cohort.[14] The complete transcrip-
tome data and clinical information were obtained from the 
“IMvigor210CoreBiologies” package. After calculating the risk 
score of each patient, the patients were divided into high- and 
low-risk groups. We then compared the immunotherapy effect 
of high- and low-risk groups.

2.8. Drug sensitivity analysis

CELLMINER is a query tool for NCI-60 and includes a large 
amount of pharmacological data.[15] We calculated the exo-
some-related risk scores of NCI-60 cell lines and explored the 
relationship between these scores and the half maximal inhib-
itory concentration (IC50) of FDA-approved drugs. Several 

chemotherapeutic drugs commonly used for CRC including flu-
orouracil, oxaliplatin, and irinotecan were explored. Differences 
in the IC50 Z-score between the different risk groups were 
also analyzed. Moreover, the relationship between the selected 
exosome-related genes and chemotherapy drug sensitivity was 
explored.

3. Results

3.1. Clinical characteristics of CRC patients

In total, 530 and 405 clinical samples were included in 
GSE39582 and TCGA, respectively. Table 1 presents the basic 
clinical information of CRC patients in the training (GSE39582) 
and validation (TCGA) sets.

3.2. Construction of the prognostic risk model

In total, 1617 exosome-related genes in the ExoCarta database 
were selected to establish prognostic gene signatures. Of them, 
1428 genes were detected in the training set.

Functional gene ontology enrichment analyses revealed that 
these genes were significantly correlated to the exosome-related 
function and immune response processes such as the cell-sub-
strate junction, vesicle lumen, and neutrophil degranulation 
involved in immune responses (Fig. 1A). According to the Kyoto 
encyclopedia of genes and genomes enrichment analysis, these 
genes were associated with exosome-related signal pathways 
(Fig. 1B).

To construct an exosome-related risk model for predict-
ing CRC patient prognosis, we performed the univariate 
Cox regression analysis (Supplement Table 1, http://links.
lww.com/MD/K72). A total of 105 genes were significantly 
associated with OS in the training set (P < .01). In total, 26 
candidate exosome-related genes were obtained through the 
least absolute shrinkage and selection operator Cox analysis 
(Fig. 2A and B).

Stepwise Cox regression analysis was performed on these 
genes. Ultimately, LAP3, GAS6, PTTG1IP, PPA1, RAB15, 
GNL3, PKN2, NCKAP1, TUBB4A, KLK6, and TSPAN15 were 
selected for constructing a prognostic risk model (Fig. 3). The 
relationships between the selected genes and the survival prob-
ability of the CRC patients were analyzed by plotting K–M 
survival curves. The selected genes were significantly correlated 

Figure 2.  Least absolute shrinkage and selection operator (LASSO) analysis of exosome-related genes. (A) LASSO coefficient of the 105 exosome-related 
genes. (B) Tenfold cross-validation of the LASSO Cox model.

http://links.lww.com/MD/K72
http://links.lww.com/MD/K72
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with CRC patient prognosis (Supplement Fig. 1, http://links.
lww.com/MD/K73).

3.3. Assessment and validation of the exosome-related risk 
model

The risk score was calculated as follows: risk score = 
−0.21*RAB15 − 0.44*LAP3 + 0.70*PKN2 + 0.15*KLK6 + 0.
34*GAS6 + 0.79*NCKAP1 − 0.41*GNL3 + 0.75*TUBB4A − 
0.37*TSPAN15 + 0.51*PTTG1IP − 0.33*PPA1. The patients 
were divided into high- and low-risk groups on the basis of the 
median score. The C-index of the exosome-related risk score 
model was 0.71. The K–M survival curves revealed that patients 
with low-risk scores performed better OS than those with high-
risk scores in both training and validation sets (Fig. 4A and B). 
Figure 4C presents the risk score distribution and the survival 
status of CRC patients in the training set. The validation set 
presented similar results (Fig. 4D).

The AUCs of the exosome-related risk model were 0.735 and 
0.784, respectively, which were better than those of other clini-
cal characteristics (Fig. 4E and F).

The predictive value of the exosome-related risk model for 
different clinical characteristics was further analyzed. In differ-
ent age groups, the prognoses were better in the low-risk groups 
(Fig. 5A and B). In both female and male patient groups, the 
low-risk groups exhibited better prognoses than the high-risk 
groups (Fig. 5C and D). Regarding different clinical stages, sur-
vival probabilities were higher in stage I to II and stage III to 
IV groups of low-risk groups (Fig. 5E and F). Thus, the exo-
some-related risk model exhibited an excellent prognostic value 
in different subgroups of CRC patients.

3.4. Nomogram construction and assessment

Univariate and multivariate Cox regression analyses of age, gen-
der, T stage, N stage, M stage, American Joint Committee on 

Figure 3.  Forest plot of the 11 exosome-related genes selected by stepwise Cox regression analysis.

http://links.lww.com/MD/K73
http://links.lww.com/MD/K73
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Cancer stage, and risk model were performed using the training 
set data. According to the univariate Cox regression analysis, 
age, N stage, M stage, American Joint Committee on Cancer 
stage, and exosome-related risk model were independent factors 
in predicting prognosis (P < .05). In the multivariate Cox regres-
sion analysis, age, M stage, and exosome-related risk model 
were independent prognostic variables (Table 2).

The nomogram was constructed by merging the selected fac-
tors to predict the 1-, 3-, and 5-year survival of CRC patients 
(Fig. 6A). AUCs of the 1-, 3-, and 5-year OS were 0.843, 0.822, 
and 0.796, respectively (Fig. 6B). The C-index of the nomogram 
was 0.766. According to the calibration curves, the survival rate 
predicted by the nomogram was closely related to the actual 
survival rate (Fig. 6C). Moreover, decision curve analysis was 
performed as shown in Figure 6D.

3.5. Evaluation of immune cell-infiltrating characteristics
Tumor proliferation and metastasis are closely associated with 
the tumor microenvironment (TME), especially immune-in-
filtrating cells. Therefore, the ssGSEA algorithm was used to 
investigate differences in immune cell infiltration between the 
high- and low-risk groups. Memory B cells, activated CD4 T 
cells, and activated CD8 T cells exhibited markedly increased 
infiltration in the low-risk group, whereas plasmacytoid den-
dritic cells, mast cells, immature dendritic cells, and other 3 
immune cell subtypes presented increased infiltration in the 
high-risk group (Fig.  7A). We then analyzed the correlation 
between these 11 genes and immune-infiltrating cells (Fig. 7B). 
LAP3, GAS6, PTTG1IP, PPA1, RAB15, GNL3, NCKAP1, and 
KLK6 genes were highly correlated with most immune-infil-
trating cells. In the validation set, ssGSEA revealed that effector 

Figure 4.  Evaluation of the risk model in the training and validation sets. (A) Kaplan–Meier (K–M) survival analysis of low- and high-risk groups in the training set. 
(B) K–M survival analysis of low- and high-risk groups in the validation set. (C) Correlation diagram of the risk model in the training set. (D) Correlation diagram 
of the risk model in the validation set. (E) Receiver operating characteristic (ROC) curves of the risk model and other clinical factors in the training set. (F) ROC 
curves of risk model and other clinical factors in the validation set.
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memory CD4 T cells, type 2 helper cells, activated CD4 T cells 
and memory B cells differed significantly in the high-risk and 
low-risk groups (Fig.  7C). LAP3, TUBB4A, PTTG1IP, GAS6, 
PPA1, RAB15, GNL3, NCKAP1, and KLK6 genes exhibited a 
high correlation with most immune-infiltrating cells (Fig. 7D).

Additionally, the stromal and immune scores in the training 
set were calculated on the basis of the ESTIMATE algorithm, 
which displayed that the proportion of stroma cells was higher 
in the high-risk group than in the low-risk group (Fig. 8A and 
B).

Figure 5.  The risk model can predict the survival of patients of different ages, genders, and AJCC stages. (A and B) Kaplan–Meier (K–M) survival analysis of different 
ages. (C and D) K–M survival analysis of different genders. (E and F) K–M survival analysis of different AJCC stages. AJCC = American Joint Committee on Cancer.

Table 2 

The univariate and multivariate Cox analyses results of overall survival (OS) related factors.

Characteristics Hazard ratio CI95 P value Hazard ratio CI95 P value 

Age 1.02 1.01–1.03 .001 1.02 1.01–1.04 <.001
Gender 1.29 0.95–1.75 .098 NA NA NA
T stage 1.9 0.97–3.72 .061 NA NA NA
N stage 0.59 0.44–0.8 .001 1.04 0.55–1.98 .904
M stage 5.23 3.63–7.53 <.001 2.5 1.07–5.85 .035
AJCC stage 2.1 1.71–2.6 <.001 1.38 0.74–2.54 .308
Risk model 2.72 2.26–3.27 <.001 2.26 1.87–2.74 <.001

AJCC = American Joint Committee on Cancer.
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3.6. Correlation between the risk model and immune 
checkpoint molecules

By conducting Spearman correlation analysis, we explored 
the correlation between the expression of the 11 exosome-re-
lated genes and immune checkpoint molecules including 
PD-1 (PDCD1), PD-L2 (PDCD1LG2), LAG3, and CTLA-
4. LAP3 expression was positively correlated with most 
immune checkpoint molecules (Fig.  9A and B). Figure  9C 
reveals that the exosome-related gene risk model correlated 
with the expression of immune checkpoint molecules. As 
shown in the chord plot, the exosome-related risk model cor-
related with the expression of immune checkpoint molecules 
such as PD-1, CTLA-4, and LAG3. In both training and val-
idation sets, the expression levels of the immune checkpoint 
molecules were lower in the high-risk group than in the low-
risk group, although some differences exhibited no statistical 
significance (Fig.  9D–E). Because of the difference between 
the results of the training and validation sets, we used the 
GSE17536 dataset for verification (Supplement Fig. 2, http://

links.lww.com/MD/K74). The results revealed a significant 
correlation between the risk model and the expression of 
immune checkpoint molecules.

3.7. The value of the risk model in predicting the 
immunotherapeutic response

The IMVigor210 cohort consisted of the clinical data of patients 
with advanced urothelial carcinoma anti–PD-L1 immunother-
apy. We investigated the ability of the exosome-related risk 
model in predicting patients’ responses to anti–PD-L1 immuno-
therapy in the IMvigor210 cohort. The exosome-related model 
exhibited a remarkable value in predicting OS. The low-risk 
group exhibited a significantly longer OS than the high-risk 
group (Fig. 10A). Figure 10B presented the differences in risk 
scores in different anti-PD-L1 clinical response groups. Patients 
with a complete or partial response exhibited lower risk scores, 
whereas those with a stable or progressive disease had higher 
risk scores. A significantly enhanced clinical response was noted 

Figure 6.  The construction and assessment of the nomogram. (A) The nomogram to predict the 1-, 3-, and 5-yr survival of colorectal cancer (CRC) patients. (B) 
Time-dependent receiver operating characteristic (ROC) curves for 1-, 3-, and 5-yr overall survival (OS) predictions by the nomogram. (C) The calibration curves 
for predicting 1-, 3-, and 5-yr OS by the nomogram. The closer the distance from the colored solid lines to the dotted line, the better the consistency between 
the predicted results and the actual results. (D) Of the nomogram, age, and AJCC stage, which showed the nomogram performed better clinical benefit than 
AJCC stage and age. AJCC = American Joint Committee on Cancer.

http://links.lww.com/MD/K74
http://links.lww.com/MD/K74
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in the low-risk group than in the high-risk group (40.96% vs 
27.47%, Chi-square test, P < .001, Fig. 10C).

3.8. Relationships between the exosome-related risk model 
and chemotherapy drug sensitivity

The CellMiner database was used to evaluate the difference in 
drug sensitivity between the high- and low-risk groups to ensure 
higher accuracy of treatment. The exosome-related risk scores of 
NCI60 cell lines were calculated, and the relationship between 
the scores and the IC50 of the 218 FDA-approved drugs across 

cell lines was analyzed (Supplement Table 2, http://links.lww.
com/MD/K75). Consequently, several common chemothera-
peutic drugs for CRC including oxaliplatin, fluorouracil, and 
irinotecan appeared to be significantly correlated with the exo-
some-related risk score (|Pearson correlation| > 0.3 and P < .05) 
(Fig. 11A–C). Notably, a high-risk score was linked to a lower 
IC50 of fluorouracil (Wilcoxon test, P < .01) and irinotecan 
(Wilcoxon test, P < .05) (Fig. 11D–E). These findings suggested 
that the exosome-related risk model was likely to be used as a 
predictor of chemotherapeutic drug sensitivity. Furthermore, we 
analyzed the relationship between the 11 exosome-related genes 
and drug sensitivity (Supplement Fig. 3, http://links.lww.com/

Figure 7.  Correlation between exosome-related risk model and immune microenvironment. (A) Differences in 28 immune infiltration cells between high- and 
low-risk groups in the training set. (B) The correlation between each exosome-related gene and each immune infiltration cell type in the training set. (C) 
Differences in 28 immune infiltration cells between high- and low-risk groups in the validation set. (D) The correlation between each exosome-related gene and 
each immune infiltration cell type in the validation set. (*P < .05; **P < .01; ***P < .001; ****P < .0001).

Figure 8.  The difference of stromal purity and immune between high- and low-risk groups. (A) The difference in stromal purity. (B) The difference in immune 
score.

http://links.lww.com/MD/K75
http://links.lww.com/MD/K75
http://links.lww.com/MD/K76
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MD/K76). Among them, significant negative correlations were 
noted among PTTG1IP and NCKAP1 and IC50 of key chemo-
therapeutic drugs in CRC.

4. Discussion
CRC is a common malignant tumor that causes cancer-related 
deaths worldwide.[16,17] Developing new biomarkers is a crucial 
strategy for effectively reducing mortality and improving the 
survival rate of CRC.

With the further understanding of exosomes, several studies 
have indicated that exosomes can be used as biomarkers in the 
diagnosis, prognosis, and treatment of tumor patients.[18,19] For 
example, a diagnostic gene model based on 6 exosome-related 
genes was established to diagnose CRC through bioinformatics 
analysis.[20] However, the prognostic value of the exosome-re-
lated gene risk model in CRC remained unclear.

In our study, LAP3, RAB15, GNL3, TSPAN15, PPA1 were 
selected as protective factors, while GAS6, PTTG1IP, PKN2, 
NCKAP1, TUBB4A, and KLK6 were risk factors.

Figure 9.  Correlation between the risk model and immune checkpoint molecules. (A and B) The correlation between the eleven exosome-related genes and 
immune checkpoint molecules in the training and validation sets (*P < .05; **P < .01). (C) Chord plot of the correlation between exosome-related risk model and 
immune checkpoint molecules. (D and E) The expression levels of immune checkpoint molecules in high-risk and low-risk groups of training and validation sets.

http://links.lww.com/MD/K76
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LAP3 is an exopeptidase that could catalyze pep-
tide substrates or the amino termini of protein hydro-
lysis https://www.sciencedirect.com/science/article/pii/
S0141813014006977?via%3Dihub-bib0040. High LAP3 
expression might increase the chance of survival of patients 
with diffuse large B cell lymphoma.[21] LAP3 mediated IFN-
γ-induced arginine depletion to malignant transformation of 
bovine mammary epithelial cells.[22] LAP3 knockdown reduced 
the efficacy of melphalan flufenamide, a drug efficient against 
breast cancer cells in vitro and in vivo.[23] RAB15 exhibited a 
significant association with the metabolic CMS3 subtype and 

cell cycle regulation. Moreover, the correlation between RAB15 
and tumor mutation burden was not significant.[24] GNL3 was 
selected as a predictor of the potential prognostic model in 
prostate cancer.[25] TSPAN15 expression was lower in COAD 
than in normal tissue. TSPAN15 was highly expressed in B 
cells, CD8 T cells, CD4 T cells, alpha-beta T cells, and gam-
ma-delta T cells.[26] PPA1 could serve as an activator of PI3K/
AKT/GSK3β/Slug-mediated breast cancer progression and was 
a potential therapeutic target for inhibiting tumor progres-
sion.[27] GAS6 plays a crucial role in promoting epithelial–mes-
enchymal transition and metastasis.[28] GAS6 binds to TAM 

Figure 10.  The ability of the exosome-related risk model in predicting patients’ responses to anti–PD-L1 immunotherapy. (A) Kaplan–Meier (K–M) survival anal-
ysis for high- and low-risk groups in IMVigor210 cohort. (B) The differences of risk scores in different anti-PD-L1 clinical response groups. (C) The proportion of 
patients with different responses to PD-L1 immunotherapy in high- and low-risk groups.

https://www.sciencedirect.com/science/article/pii/S0141813014006977?via%3Dihub-bib0040
https://www.sciencedirect.com/science/article/pii/S0141813014006977?via%3Dihub-bib0040
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receptors in tumor and immune cells, promoting tumor pro-
gression.[29] PTTG1IP was overexpressed in colorectal tumors, 
particularly in invasive WT p53 and mutant p53 tumors, 
thus implying that PTTG1IP was particularly significant as a 
marker for patient survival.[30] The high PKN2 level predicted 
poor prognosis of gastric cancer patients.[31] NCKAP1 served 
as a novel biomarker for diagnosing CRC or predicting the 
prognosis of CRC metastasis. Inhibition of NCKAP1 expres-
sion in CRC cell lines could inhibit cancer cell migration and 
invasion.[32] The high TUBB4A expression level was associated 
with aggressive prostate cancers and poor patient survival.[33] 
KLK6 exhibited a clinical utility and a prognostic value as a 
biomarker for CRC because its expression in CRC correlated 
significantly with the tumor stage, tumor grade, advanced 
Dukes’ stage, liver metastasis, and poor prognosis.[34]

In our research, we used the ssGSEA algorithm to investigate 
the differences in immune cell infiltration. The low-risk group 
with a better prognosis exhibited more abundance of memory B 
cells, activated CD8 T cells, activated B cells, and effector mem-
ory CD4 T cells than the high-risk group, and thus possessed 
higher anti-tumor immunity. By contrast, the high-risk group 
with poor prognosis exhibited a higher infiltration abundance 
of immature dendritic cells and mast cells in the training set. 
Dendritic cells are professional antigen-presenting cells that 
orchestrate innate and adaptive immunity during infections, 
autoimmune diseases, and malignancies.[35]

Stromal and immune cells from the TME are vital for tum-
origenesis and tumor progression, associated with CRC patient 
prognosis. We here used the ESTIMATE algorithm to calculate 
immune and stromal scores. The low-risk group had a lower 

stromal score than the high-risk group, whereas the immune 
scores exhibited no difference.

Immune checkpoint molecules play a crucial role in carcino-
genesis by promoting tumor immunosuppression. PD-1 and 
CTLA-4 are the most commonly studied immune checkpoint 
molecules because of their overexpression and abundance in 
various solid tumors and hematological malignancies.[36] CRC 
patients with higher PD-1, PD-L2, and CTLA-4 expression will 
benefit more from immune checkpoint inhibition therapies.[37] In 
this study, the expression of immune checkpoints such as PD-1, 
PD-L2, LAG3, and CTLA-4 was significantly correlated with 
LAP3 expression. Additionally, the low-risk group exhibited 
higher expression levels of immune checkpoint molecules, and 
thus, patients with lower-risk scores might benefit more from 
immunotherapy.

Based on the CellMiner database, oxaliplatin, fluorouracil, 
and irinotecan were found to have significant correlations with 
the exosome-related risk score. Among the selected exosome-re-
lated genes, significant negative correlations were observed 
between PTTG1IP and NCKAP1 and the IC50 of key chemo-
therapeutic drugs in CRC. The PTTG1IP gene expression level 
could serve as a predictor of the non-response of tyrosine kinase 
inhibitors in chronic myeloid leukemia.[38] In skin basal cell car-
cinoma, circ_NCKAP1 knockdown markedly inhibited cell pro-
liferation, whereas promoted cell apoptosis.[39]

In the IMvigor210 cohort, the exosome-related risk model 
generated a consistent result. Low-risk patients had a better 
therapeutic benefit than high-risk patients, which indicated that 
the exosome-related risk model was of great value in predicting 
patients’ responses to anti–PD-L1 immunotherapy.

Figure 11.  The exosome-related risk model as a predictor of chemotherapeutic drug sensitivity. (A–C) The half maximal inhibitory concentration (IC50) value of 
the chemotherapeutic drugs for colorectal cancer (CRC) (oxaliplatin, fluorouracil, and irinotecan) appeared to associate significantly with the exosome-related 
risk score. (D and E) The high-risk group showed a lower IC50 for fluorouracil and irinotecan (*P < .05; **P < .01).
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Additionally, the high-risk group had a lower IC50 value 
for fluorouracil and irinotecan than the low-risk group, which 
meant their sensitivity to these drugs was higher. Therefore, 
the exosome-related risk model could potentially predict the 
response to immunotherapy and drug sensitivity.

Our study has some limitations. First, our study was based 
on data from public databases. Data from further experiments 
on these genes in cellular and animal models, as well as clin-
ical studies, might have been more valuable. In addition, our 
risk model was established only using exosome-related genes, 
whereas some other hot and effective biomarker genes were 
absent.

5. Conclusions
In conclusion, our study established and validated an exosome 
risk model consisting of 11 exosome-related genes associated 
with immune infiltration. The constructed model could serve as 
an independent biomarker for predicting the prognosis of CRC 
patients and evaluating the immune cell infiltration level in the 
TME.
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