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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Antibodies that can bind to viruses but are unable to block infection in cell culture are known

as “nonneutralizing antibodies.” Such antibodies are nearly universally elicited following

viral infection and have been characterized in viral infections such as influenza, rotavirus,

cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutra-

lizing antibodies do not function in a protective way in vivo and therefore are not desirable

targets of antiviral interventions; however, increasing evidence now shows this not to be

true. Several virus-specific nonneutralizing antibody responses have been correlated with

protection in human studies and also shown to significantly reduce virus replication in animal

models. The mechanisms by which many of these antibodies function is only now coming to

light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, non-

neutralizing antibodies work in the extracellular space to recruit effector proteins or cells that

can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects

inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc

receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutraliz-

ing antibodies function against a range of viral infections.

Introduction

An abundance of antibodies are produced following virus infection. The antibodies that can

bind viral particles and block entry into cells are known as “neutralizing antibodies.” The anti-

bodies that can bind viral particles but do not prevent infection in vitro are called “nonneutra-

lizing antibodies” (nNAbs). It is often assumed that only neutralizing antibodies are important

in mediating protection against viral infection; however, it is now increasingly clear that

nNAbs can also play a key role in protecting hosts from viral infection.

Production of nNAbs has been recognised in response to virus infection for decades. While

their relevance has often been overlooked, as early as 1982, it was experimentally demonstrated

that a monoclonal nNAb against E1 glycoprotein of Sindbis virus was protective in mice [1].

Since then, a substantial number of studies have undoubtedly proven that monoclonal nNAbs

against diverse viruses can prevent disease in a range of animal models (Table 1).
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NNAbs have now been correlated with protection from viral infection and/or disease in

several human studies. Clinical trials for vaccines targeting influenza virus [2] and HIV [3]

found that protection was associated with nNAbs. Similarly, partial vaccine-mediated protec-

tion against human cytomegalovirus (HCMV) [4] and reduced risk of in utero HCMV trans-

mission [5,6] has been associated with nNAbs.

Mechanisms of nNAb-mediated protection

It is now clear that nNAbs function via a variety of mechanisms (Fig 1). Some mechanisms

rely on extracellular effector cells or proteins, whereas others are mediated by intracellular

activity. The majority of these functions require engagement of the constant (“Fc”) region of

antibodies. For some nNAbs, the exact mechanisms of action are still unclear, whereas others

function via multiple Fc-mediated mechanisms. It is important to note that many of the Fc-

mediated effector functions of nNAbs can also be mediated by neutralizing antibodies and are

not necessarily exclusive to nNAbs. In fact, optimal protection by neutralizing antibodies

against influenza [26] and HIV [27] infections is evident when antibodies also engage Fcγ
receptors.

Antibody-dependent cellular cytotoxicity (ADCC)

ADCC is canonically mediated by FcγRIII (CD16) expressed on granulocytes, such as natural

killer (NK) cells and neutrophils. Engagement of CD16 by immunoglobulin G (IgGAU : Pleasenotethat}IgG}hasbeenfullyspelledoutas}immunoglobulinG}atfirstmentioninthesentence}EngagementofCD16byimmunoglobulinGðIgGÞcomplexedtoan:::}Pleasecorrectifnecessary:) com-

plexed to an infected cell promotes the release of cytotoxic granules, a highly regulated process

that induces apoptosis in the infected cell [28]. Assays measuring ADCC evaluate surrogate

Table 1. Viruses experimentally proven to be protected against by monoclonal nNAbs. The studies included were all performed by passive transfer of antibody and

virus challenge in animal models, and each represents the first report for each virus type.

Virus Viral nNAb target Protective mechanism in vivo Year Reference

negative ssRNA Influenza Nucleoprotein Not determined 2008 [7]

Lymphocytic choriomeningitis virus Nucleoprotein Not determined 2013 [8,9]

Crimean-Congo hemorrhagic fever virus Glycoprotein 38 Complement-mediated 2019 [10]

Ebola virus Glycoprotein Not determined 2000 [11]

Marburg Glycoprotein 2 FcγR-mediated 2020 [12]

Sendai virus F protein Not determined 1990 [13]

postive ssRNA Coxsackie virus VP2 capsid protein Fc-mediated 2022 [14]

SARS-CoV-2 Nucleoprotein Not determined 2022 [15]

Murine hepatitis virus E2 glycoprotein and nucleoprotein Not determined 1986 [16]

Sindbis virus E1 glycoprotein Not determined 1982 [1]

Semliki Forest virus E2 glycoprotein Not determined 1983 [17]

Mayaro virus E2 glycoprotein FcγR-mediated 2021 [18]

West Nile virus NS1 protein FcγR-mediated 2006 [19]

Yellow fever virus Envelope and NS proteins Not determined 1986 [20]

Zika virus NS1 protein FcγR-mediated 2018 [21]

Lactate dehydrogenase-elevating virus VP3 env glycoprotein Not determined 1987 [22]

dsRNA Rotavirus VP6 inner capsid protein Intracellular 1996 [23]

dsDNA Herpes simplex virus 2 Glycoproteins A, B, C, D, E, F Not determined 1982 [24]

Murine cytomegalovirus Glycoprotein B Not determined 2017 [25]

dsDNA, double stranded DNA; dsRNA, double-stranded RNA; nNAb, nonneutralizing antibody; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2;

ssRNA, single-stranded RNAAU : AnabbreviationlisthasbeencompiledforthoseusedinTable1:Pleaseverifythatallentriesarecorrectlyabbreviated:.

https://doi.org/10.1371/journal.ppat.1011670.t001
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markers that quantify target cell viability or apoptosis, or effector cell degranulation through

CD107a expression or granzyme release [29,30].

Fc-mediated effector responses, and ADCC in particular, have been thought to play a major

role in control of infections that utilize cell-to-cell spread as a primary mode of dissemination,

such as herpes simplex virus (HSV) and cytomegalovirus (CMV). Both of these viruses can

cause severe disease in infected neonates, but maternal antiviral ADCC-mediating antibodies

have been associated with protection from disseminated HSV infection and from vertical

CMV transmission in clinical observational studies [6,31].

Antibodies capable of mediating ADCC have also been shown to be elicited by many RNA

viral infections, including influenza, HIV, Severe Acute Respiratory Syndrome Coronavirus 2

(SARSAU : Pleasenotethat}SARS � CoV � 2}hasbeenfullyspelledoutas}SevereAcuteRespiratorySyndromeCoronavirus2}atfirstmentioninthesentence}AntibodiescapableofmediatingADCChavealsobeenshownto:::}Pleasecorrectifnecessary:-CoV-2), hepatitis C virus, and respiratory syncytial virus (RSV) [32–36]. In animal

Fig 1. nNAb-mediated antiviral effector functions following antigen binding to Fab. NK cells can exhibit ADCC by detecting target cells (i.e., virus-infected

cells) opsonized by antibodies via the FcγRIII (CD16) receptor and induce apoptosis by releasing cytotoxic granules. Macrophages and other phagocytes

perform ADCP by recognizing opsonized viral particles via the FcγRI (CD64) and FcγRIIA (CD32) receptors leading to virolysis and downstream antigen

presentation of viral antigen. Antibodies activate the classical complement pathway after binding to the soluble complement complex, C1q. In addition to viral

aggregation and opsonization, antibody-dependent complement fixation on viral or target cell membranes can lead to the formation of the pore-forming MAC

and ADCML. Cooperation between nNAb (green) binding that exposes epitopes for neutralizing antibody (yellow) binding can enhance the efficacy of virus

neutralization. Antibodies can block viral replication intracellularly; for dsRNA viruses that maintain an intact innermost capsid inside cells, antibodies can

block mRNA egress. Intracellular antibodies can also be bound by TRIM21, which leads to proteasomal degradation of the virus–antibody complex and can

result in enhanced MHC class I antigen presentation. Created with Biorender.com. ADCC, antibody-dependent cellular cytotoxicity; ADCML, antibody-

dependent complement-mediated lysis; ADCP, antibody-dependent cellular phagocytosis; MAC, membrane attack complex; NK, natural killer; nNAb,

nonneutralizing antibodyAU : AnabbreviationlisthasbeencompiledforthoseusedinFig1:Pleaseverifythatallentriesarecorrectlyabbreviated:.

https://doi.org/10.1371/journal.ppat.1011670.g001
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models, SARS-CoV-2 nucleoprotein-targeting nNAbs that induced ADCC in vitro were

shown to reduce viral loads when passively transferred to mice prior to virus challenge [15].

This is likely due to surface expression of nucleoprotein [37], and indeed, nNAbs targeting

NS1 of Flaviviruses, which is also detectable on the cell surface, have demonstrated protection

in vivo [19,21].

Antibody-dependent cellular phagocytosis (ADCP)

ADCP is mediated by engagement of IgG immune complexes with FcγRI (CD64) and FcγRIIA

(CD32A) expressed on phagocytic effector cells, such as monocytes, macrophages, and den-

dritic cells [38]. Through engulfment and fusion with lysosomes to destroy immune com-

plexes, phagocytosis reduces the amount of infectious material. Further, macrophages and

dendritic cells are involved in antigen presentation of peptides from degraded pathogens on

major histocompatibility complex molecules to T cells [38]. ADCP assays measure uptake of

opsonized particles, such as whole virions or beads coated with specific antigens of interest, or

removal of infected target cells [39,40].

ADCP has been associated with protection from vertical CMV transmission in a human

observational study [5] and additionally implicated in reducing the risk of CMV viremia in

lung transplant recipients [41]. ADCP has also stood out as associated with reduced disease

risk in HIV vaccine trials, which has been corroborated by studies in the rhesus macaque

model [42]. In addition, greater ADCP function was associated with reduced mortality from

SARS-CoV-2 infection [43].

As both ADCP and ADCC require FcγR interactions, many studies do not easily differenti-

ate between the two and can only conclude that FcγR effector functions are required for nNAb-

mediated protection. An exception to this was a comprehensive analysis of influenza-specific

monoclonal nNAbs derived from vaccinated humans; nNAbs induced robust phagocytosis, but

not ADCC in vitro, and were protective in mice challenged with H7N9 influenza [44].

Complement activation

Antibody binding to viral epitopes can activate the classical complement pathway via C1q.

Binding of C1q to antigen–antibody complexes leads to formation of C3 convertase and depo-

sition of C3b on membrane surfaces. This can result in virus elimination by opsonization and

phagocytosis, or target cells and enveloped viruses may undergo osmotic lysis due to formation

of the membrane attack complex (MAC) [45].

As complement activation requires a source of complement proteins, cell-based neutraliza-

tion assays do not capture antibody-dependent complement-mediated virolysis or cytotoxicity

that may be beneficial in vivo. When complement was added to a standard neutralization

assay, monoclonal nNAbs to Sendai and Ebola Zaire virus demonstrated complement-medi-

ated virolysis and robust neutralization in vitro. These nNAbs were subsequently shown to be

protective following passive transfer in murine models [11,13]. Studies with a monoclonal

nNAb against West Nile virus envelope protein also showed complement-dependent and Fcγ
receptor–dependent protection in mice [46].

Some nNAbs that confer protection with complement activation have been shown to be

cross-reactive and cross-protective across virus genera. For example, passively transferred

nNAbs that activated complement and conferred protection against Sindbis virus challenge in

a murine model were also protective against lethal western equine encephalitis challenge in

mice [1], and passive transfer of IgG purified from dengue virus–immune hamsters were

poorly neutralizing but cross-reactive and protective against West Nile virus in mice [46].
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Epitope unmasking

Several studies have identified an unexpected synergy between neutralizing and nNAbs.

Howell and colleagues demonstrated that nNAbs improved the efficacy of neutralizing anti-

bodies against Ebola and Sudan virus in vitro [47] and extended these findings in vivo, demon-

strating cooperative protection by a neutralizing and nNAb pair in Ebola virus–infected mice.

It was consequently suggested that nNAbs may improve the efficacy of neutralizing antibodies

by altering or exposing viral epitopes.

Epitope unmasking by a nNAb was subsequently experimentally proven using a neutraliz-

ing/nNAb combination specific for Marburg virus glycoprotein. The nNAb increased the

accessibility of neutralizing antibody epitopes in the receptor-binding site to enhance neutrali-

zation [12]. Synergy between a nNab and a neutralizing antibody has also been identified in

SARS-CoV-2–infected mice. A nNAb mutated for enhanced FcγR binding and ADCC moder-

ately decreased SARS-CoV-2 spread but conveyed complete protection when combined with a

nonprotective neutralizing MAb lacking any Fc-effector function [48]. Although exact mecha-

nisms of action were undetermined, it is possible that alteration of neutralizing epitopes were

contributing to this protection.

Intracellular neutralization

Antibodies can enter cells via a number of routes including transcytosis and by attachment to

viruses [49]. Thus far, nNabs have been shown to disrupt viral replication inside cells via one

for double-stranded RNA (dsRNA) viruses, and another for an enveloped virus.

MAbs targeting the inner capsid protein (VP6) of a dsRNA virus in the genus Rotavirus
were first shown to be nonneutralizing yet protective in a seminal paper from the Greenberg

lab. Subsequent work found that protective anti-VP6 antibodies block pores in the inner cap-

sid, which is only exposed inside cells [50]. The replication cycle of dsRNA viruses is unusual

in that transcription occurs within the intact inner capsid in the cytoplasm, and newly tran-

scribed mRNA must egress through capsid pores. Pore blockade by antibodies will therefore

prevent mRNA escape. This mechanism represents a rare example of a nNAb where the vari-

able region plays a critical role.

A function for the Fc region of VP6-specific nNAbs was discovered more recently. It was

demonstrated that a VP6-specific nNAb could activate the unique intracellular antibody recep-

tor TRIM21 [51]. TRIM21 is an E3 receptor ligase that can bind to the Fc portion of antibodies

through its PRYSPRY domain [52]. Binding induces auto-ubiquitination and recruitment of

the proteasome to the virus–antibody complex, resulting in virus degradation.

nNAbs targeting viral nucleoproteins (also known as nucleocapsid, NP, or N-protein) are

commonly induced following infection with several enveloped viral families as shown in

Table 1. Antibody-mediated neutralization cannot occur in vitro as the viral capsid shields the

nucleoprotein in intact particles. Nevertheless, there are several studies that demonstrate

nucleoprotein-specific nNAbs are protective in vivo [7–9,15,16].

ADCC, ADCP, and complement activation have been shown to be irrelevant for the protec-

tive effect of nNAbs specific for lymphocytic choriomeningitis virus (LCMV) [8,9]. Instead, a

novel role for TRIM21 was identified, whereby nNAb-mediated protection was lost in

TRIM21-knockout mice [53]. Furthermore, nucleoprotein-specific antibodies were positively

associated with enhanced nucleoprotein-specific CD8+ T cell activation in the presence of

TRIM21. It was proposed that TRIM21-mediated degradation was leading to enhanced pre-

sentation of nucleoprotein-specific peptides on MHC class I molecules. Independent identifi-

cation of a key role for macrophages in nNAb-driven protection against LCMV supports a

role for antigen-presenting cells in this pathway [54].
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Nucleoprotein-specific nNAbs from viruses other than LCMV have also been postulated to

work in a similar TRIM21-dependent manner [49]. Studies with influenza virus have identi-

fied nucleoprotein-specific nNAbs that are protective against heterologous virus strains [7],

and an association between CD8+ T cell activation, macrophages, and antigen presentation

has been demonstrated [55].

Conclusions

Antibodies can mediate protection against viruses via a wide array of strategies not captured

by classical neutralization assays. This has historically led nNAbs to be overlooked, but it is

now evident than some nNAbs can be highly protective. Whereas the rudimentary principles

of some nNAb functions have been apparent for decades, significant advances in mechanistic

understanding have been made in recent years. This has been supported by development of

many new high-throughput nonneutralizing assays [56].

Greater understanding of nNAb activity is important when determining correlates of protec-

tion from infection and vaccination. It is now clear that measurement of nNAb activity should

be taken into consideration in all vaccine clinical trials. Attention to development of vaccine

strategies that can boost nNAb activity may also prove valuable for management of viral infec-

tions. The nonneutralizing functions of MAb therapeutics are similarly now becoming more

widely appreciated. Therapies that combine neutralizing and nonneutralizing MAbs have been

developed, and this strategy has documented protection against Ebola virus in nonhuman pri-

mates [57]. In addition, engineering therapeutic MAbs to have enhanced nonneutralizing func-

tions is now more commonplace, leading to increased overall antibody potency [58].

Improved awareness of the significance of nNAbs is going to require a multifaceted

approach; ongoing research into new mechanisms, continued development of nonstandard

functional assays, and extensive testing of clinical samples following virus infection or vaccina-

tion. Together, these will be essential to improve our knowledge and leverage these antiviral

antibodies for improved vaccines and immunotherapies.
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