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Purpose: Current electromagnetic tongue tracking devices are not amenable for 
daily use and thus not suitable for silent speech interface and other applica-
tions. We have recently developed MagTrack, a novel wearable electromagnetic 
articulograph tongue tracking device. This study aimed to validate MagTrack for 
potential silent speech interface applications. 
Method: We conducted two experiments: (a) classification of eight isolated 
vowels in consonant–vowel–consonant form and (b) continuous silent speech 
recognition. In these experiments, we used data from healthy adult speakers col-
lected with MagTrack. The performance of vowel classification was measured by 
accuracies. The continuous silent speech recognition was measured by phoneme 
error rates. The performance was then compared with results using data col-
lected with commercial electromagnetic articulograph in a prior study. 
Results: The isolated vowel classification using MagTrack achieved an average 
accuracy of 89.74% when leveraging all MagTrack signals (x, y, z coordinates; 
orientation; and magnetic signals), which outperformed the accuracy using 
commercial electromagnetic articulograph data (only y, z coordinates) in our 
previous study. The continuous speech recognition from two subjects using 
MagTrack achieved phoneme error rates of 73.92% and 66.73%, respectively. 
The commercial electromagnetic articulograph achieved 64.53% from the same 
subject (66.73% using MagTrack data). 
Conclusions: MagTrack showed comparable results with the commercial elec-
tromagnetic articulograph when using the same localized information. Adding 
raw magnetic signals would improve the performance of MagTrack. Our prelimi-
nary testing demonstrated the potential for silent speech interface as a light-
weight wearable device. This work also lays the foundation to support Mag-
Track’s potential for other applications including visual feedback–based speech 
therapy and second language learning. 
Spoken language is conveyed via well-coordinated 
speech movements (Gafos & van Lieshout, 2020). Articula-
tory movement during speech is key to studying the under-
lying mechanisms of speech production. Scientifically, for 
example, whether the principles that apply to limb 
• • •
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movements (e.g., Fitts’ law) hold true for speech movement 
is still unsure (Gafos & van Lieshout, 2020). How exactly 
the tongue and lip motions are mapped to speech outcomes 
is still poorly understood (Green et al., 2013). Clinically, it 
is important to understand how tongue and lip motion pat-
terns are impacted by specific disorders. A better under-
standing of articulatory movement could improve early dis-
ease detection, monitor disease progression, and optimize 
the efficacy of therapeutic drug trials for neurological disor-
ders such as amyotrophic lateral sclerosis (Green et al., 
2013; Hahm et al., 2015; J. Wang, Kothalkar, et al., 2016).
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Practically, articulatory movement is used in some assistive 
devices such as silent speech interface (SSI; Denby et al., 
2010; Gonzalez-Lopez et al., 2020; Schultz et al., 2017) and 
tongue-controlling systems (e.g., tongue-controlling wheel-
chair; Sebkhi et al., 2022). Articulatory movement can also 
be used for providing visual feedback of tongue motion in 
speech therapy (Katz et al., 2014) and in language and pro-
nunciation learning (Benway et al., 2021; Katz & Mehta, 
2015). 

SSIs are devices that convert articulatory movement 
to speech and have the potential of recovering the speech 
ability for people who lost their voice but can still 
articulate such as laryngectomees (Denby et al., 2010; 
Gonzalez-Lopez et al., 2020; Schultz et al., 2017). Laryn-
gectomees are individuals who have their larynx surgically 
removed due to the treatment of cancer (Bailey et al., 
2006). Without their larynx, laryngectomees are unable to 
produce speech sounds. Laryngectomees currently use 
three types of speech modes in their daily communication 
(called alaryngeal speech): electrolarynx (Kaye et al., 
2017), tracheo-esophageal puncture speech (Chen et al., 
2001), and esophageal speech (Nijdam et al., 1982). Electro-
larynx speech relies on a battery-powered, external electro-
mechanical device that produces either pharyngeal or oral 
cavity vibrations (Kaye et al., 2017). Tracheo-esophageal 
puncture speech requires an additional surgery that makes 
a one-way valve from the trachea to the esophagus, which 
allows airflow from the trachea to drive the vibration of 
the throat wall (Chen et al., 2001). Esophageal speech 
involves ingesting air into the esophagus and then expel-
ling it to drive throat wall vibration to produce sound 
(Cao et al., 2021). Alaryngeal speech typically results in 
an unnatural-sounding voice (extremely hoarse or robotic), 
which discourages speakers’ willingness to communicate 
and often results in social isolation and depression (Eadie 
et al., 2016). Although the articulation patterns of laryngec-
tomees are different from those of healthy speakers (e.g., 
longer duration and more lateral movement; Teplansky 
et al., 2020), their patterns are consistent in producing the 
same speech. SSIs have been recently demonstrated to be 
able to generate more natural-sounding voice for laryngec-
tomees (Cao et al., 2021). 

SSIs are typically implemented using two types of 
algorithm designs. The first is the recognition and synthe-
sis design (Cao et al., 2021; Denby et al., 2010; J. Wang 
et al., 2014), which recognizes text from articulation 
(Fagan et al., 2008; Kim et al., 2017; Meltzner et al., 
2018) and then employs text-to-speech synthesis (Taylor, 
2009) to convert the recognized text to speech. The pro-
cess to recognize text from articulation is called silent 
speech recognition (SSR). The second SSI design is the 
direct synthesis design (Cao et al., 2018; Diener et al., 
2019; Gonzalez et al., 2017; Shandiz et al., 2021), which 
Cao et a
directly maps articulation to speech. Significant progress 
has been made by studies using both of the SSI algorithm 
designs. Cao et al. (2021) implemented SSIs for laryngecto-
mees using the first design (recognition and synthesis), from 
which higher naturalness but lower intelligibility audio sam-
ples were generated, compared with alaryngeal speech. Kim 
et al. (2017) explored multiple speaker normalization 
approaches to improve the speaker-independent SSR. End-
to-end automatic speech recognition models have been 
investigated in SSR as well (Kimura et al., 2020). Recently, 
representation learning has been demonstrated to be effec-
tive in SSR (H. Wang et al., 2021). For the second design 
of SSI (direct synthesis design), two recent studies have 
demonstrated that the direct synthesis–based SSIs have the 
potential of generating audio samples with high intelligibil-
ity (Cao et al., 2019; Gonzalez & Green, 2018). To mitigate 
the effort in synchronous articulatory and acoustic data col-
lection, Gonzalez et al. (2022) proposed an algorithm based 
on multiview-based time warping (Gonzalez-Lopez et al., 
2022) for aligning the separately collected articulatory and 
acoustic data. Cao et al. (2022) proposed an approach of 
converting other speakers’ audio data to the target speaker 
for SSI training for maintaining speaker identity of the out-
put speech. 

Other than the software designs, a key challenge for 
SSI development is to track the tongue motion patterns 
during speech using wearable devices suitable for daily 
use. Several articulation tracking devices for SSI have 
been developed and used. These devices include electro-
magnetic articulograph (EMA; Cao et al., 2018; Kim 
et al., 2017; Rebernik, Jacobi, Jonkers, et al., 2021), per-
manent magnetic articulograph (Gonzalez et al., 2017), 
surface electromyography (Diener et al., 2019), and ultra-
sound imaging (Shandiz et al., 2021). Most of the devices 
have shown their potential for SSI. Our team has been 
using EMA for SSI algorithm development (Cao et al., 
2018, 2021; J. Wang et al., 2013, 2015). 

There were two commercially available EMA devices: 
AG series (AG500, AG501) by Carstens (Yunusova et al., 
2009) and Wave (renamed as Vox for the next generation) 
by Northern Digital Inc. (NDI; Berry, 2011). Unfortu-
nately, NDI discontinued their devices in 2020 (Denny, 
2020), and the AG series is currently the only commercially 
available EMA (see AG501 in Figure 1a and Wave in Fig-
ure 1b). Both Carstens and NDI EMA devices have high 
spatial accuracies (0.12–1.37 mm for Wave, 0.5 mm for 
AG 500, and claimed 0.3–1.0 mm for AG501; Berry, 2011; 
Rebernik, Jacobi, Tiede, & Wieling, 2021; Savariaux et al., 
2017; Yunusova et al., 2009). Despite our progress in algo-
rithm development for SSI using data collected using both 
Carstens AG series and NDI Wave, current EMAs are lim-
ited to lab use and are not wearable for use in everyday liv-
ing, as is required for SSIs.
l.: MagTrack: A Wearable Tongue Motion Tracking System 3207



Figure 1. (a) Carstens AG501 system. (b) NDI Wave system. Figure 2. (a) Eyeglasses frame and the tongue motion sensor of 
the MagTrack system. (b) USB connection between the MagTrack 
and the recording laptop. 
Recently, we developed a novel, lightweight, and 
wearable EMA device: MagTrack (Sebkhi et al., 2021). 
MagTrack contains articulation tracking hardware and 
integrated software. The device (see Figure 2a) consists of 
a small inertial measurement unit as a sensor attached to 
the tongue, with a size of 6 × 6 × 0.8 mm3 , and an eye-
glasses frame for magnetic field generation. During 
speech, the sensor moves in a local magnetic field gener-
ated by the glasses frame (see Figure 2a), and the varia-
tion of the magnetic field is captured by the sensor and 
fed to the MagTrack software. The software localizes 
• •3208 Journal of Speech, Language, and Hearing Research Vol. 66
(converts) the three-dimensional (3D) raw magnetic signals 
into the 3D positional (xyz) and the two-dimensional (2D) 
orientational (pitch and roll) information, with a pre-
trained deep neural network (DNN; Sebkhi et al., 2021). 
Therefore, MagTrack returns raw magnetic, positional, 
and orientational signals. The coordinate origin is a fixed 
point located on the frame of the glasses. The software 
also provides a user interface for real-time visualization of 
tongue movement. 

Compared to commercial EMA devices, MagTrack 
has key advantages of being lightweight and wearable. In 
addition, MagTrack is easy to set up with the procedures 
of software installation and connecting hardware to a 
computer with a USB cable (see Figure 2b). Unlike AG 
series and Wave, MagTrack has no extra hardware for 
data capture and processing (data are preprocessed in a 
chip in the glasses and are localized by software on a 
computer). Despite these advantages, MagTrack has dem-
onstrated a lower localization spatial accuracy (1.6–2.4 mm)
•3206–3221 August 2023



compared to EMA devices (about 0.5 mm; Berry, 2011; 
Sebkhi et al., 2021; Yunusova et al., 2009). Thus, whether 
tongue motion information captured by MagTrack is suf-
ficient for SSI application is undetermined. 

In this study, we performed SSR experiments to val-
idate the use of MagTrack for SSI. Before the SSR experi-
ments, we directly compared the articulatory data col-
lected from MagTrack with a commercial EMA (NDI 
Wave). Then two experiments were conducted: isolated 
vowel recognition (consonant–vowel–consonant [CVC] 
classifications on eight English vowels) and continuous 
SSR. The vowel recognition used support vector machines 
(SVMs; Cortes & Vapnik, 1995) as the classifiers with 
data collected from two male subjects using MagTrack. 
The experimental results were measured by classification 
accuracies and compared with our previous similar work 
done by J. Wang, Samal, et al. (2016). The continuous 
SSR experiments used data collected from two different 
male subjects using MagTrack. Two conventional hybrid 
speech recognizers, the hidden Markov model (HMM)– 
Gaussian mixture model (GMM) and HMM–DNN, were 
used (Juang & Rabiner, 1991) and measured by phoneme 
error rates (PERs). In addition, one of the subjects in the 
current MagTrack experiment had also participated in our 
prior commercial EMA (NDI Wave) study, which used the 
same speech stimuli. A comparison between MagTrack 
with the commercial EMA data from the same subject was 
performed in the continuous speech recognition experiment. 
Method 

Data Collection 

Participants and Stimuli 
Four of our male researchers participated in this 

study as subjects. All MagTrack data collection was con-
ducted at the participants’ homes during the COVID-19 
pandemic while the participating university campuses were 
closed. They were instructed to speak at their normal pace 
and loudness. Two of the participants (Subjects 1 and 2, 
age: 35 and 25 years) collected isolated vowel data (with 
MagTrack), and another two researchers (Subjects 3 and 
4, age: 43 and 33 years) participated in the continuous 
speech data collection (with MagTrack). As mentioned, 
one of them (Subject 4) also collected EMA data in the 
lab at the University of Texas at Dallas (J. Wang’s previ-
ous institution) before COVID-19. No history of prior 
speech, language, hearing, or cognition difficulty was self-
reported from any of the participants. This study was 
approved by the institutional review boards at The Uni-
versity of Texas at Austin, the Georgia Institute of Tech-
nology, and the University of Texas at Dallas. 
Cao et a
For the isolated vowel data, eight English vowels in 
CVC syllables (/bab/, /bib/, /beb/, /bæb/, /bʌb/, /bɔb/, /bob/, 
and /bub/) were used as vowel stimuli. These eight selected 
syllables were utilized in previous works (J. Wang et al., 
2013, 2015; J. Wang, Samal, et al., 2016). We call them 
“isolated vowels” (rather than isolated CVCs) because they 
have the same consonant context and also for simplicity. 
By utilizing the same stimuli, we are able to evaluate the 
MagTrack in comparison to commercial EMA devices. 

For continuous speech recognition, two phrase lists 
were used as the stimulus. One phrase list includes a total 
of 432 phrases. The first 132 phrases in the list were 
selected from phrases that are frequently spoken by the 
users of augmentative and alternative communication 
devices (Beukelman & Mirenda, 1998). Then 300 addi-
tional phrases were added, which included sentences fre-
quently used in daily communication. The other stimuli 
were a phoneme-balanced list of 400 sentences developed 
by Kalikow et al. (1977). 

Procedure 
Two simple steps were needed to set up MagTrack 

before data collection. We first installed the MagTrack 
software on a laptop computer running Microsoft Win-
dows 11 operating system. Then, we connected the Mag-
Track device to the computer with a USB cable (see Fig-
ure 2b). After that, the sensor was attached to the tongue 
tip with dental glue (Peri-Acry1 90, GluStitch). Our prior 
work showed that a single sensor on the tongue tip and 
two sensors on the upper and lower lips could be sufficient 
for SSI to produce intelligible speech (Cao et al., 2019). 
Therefore, we leverage the use of one sensor on the tongue 
tip (1 cm from the apex) for SSI application in this study. 
As introduced, MagTrack returns the captured raw mag-
netic data (3D), positional data (3D), and orientational 
data (2D). The 3D positional data include left–right (x), 
superior–inferior (y), and anterior–posterior (z). Tongue 
motion and speech audio were recorded synchronously, 
which was controlled by the software provided with the 
device (Sebkhi et al., 2021). The sampling rate of articula-
tory data was 250 Hz. 

The commercial EMA device used in this study was 
the NDI Wave system (see Figure 1b). The articulatory 
movement and the speech audio were recorded synchro-
nously. The 3D positional (xyz) and 3D quaternion (rep-
resenting roll and pitch) signals were captured by each of 
the sensors (sampling rate = 100 Hz). Consistent with 
MagTrack, 3D positional data include left–right (x), 
superior–inferior (z), and anterior–posterior (y) dimen-
sions. Four sensors were attached to the tongue tip (5– 
10 mm to tongue apex), tongue back (20–30 mm back 
from tongue tip), middle of the upper lip, and lower lip. 
The tongue sensors were attached with the same dental
l.: MagTrack: A Wearable Tongue Motion Tracking System 3209



glue (Peri-Acry1 90, GluStitch), and the lip sensors were 
attached with tape. Only data from the tongue tip were 
used in this study for a comparison with the MagTrack. 
We used both positional and orientational information of 
tongue tip motion captured by the commercial EMA 
(NDI Wave) in these experiments. Orientational informa-
tion has been demonstrated helpful in SSI application 
(Cao et al., 2018). 

The CVC data collection was completed over multi-
ple sessions, in which the subjects took breaks between 
each session (20 recordings per session, eight CVC sam-
ples per recording). Both Subjects 1 and 2 completed data 
collection in 2 days. Subject 1 recorded three and two ses-
sions on Day 1 and Day 2, respectively (100 recordings, 
800 samples in total). Subject 2 recorded two sessions on 
both Days 1 and 2 (80 recordings, 640 samples in total). 
In continuous speech data collection, Subject 3 recorded 
300 phrases from the phonetic-balanced phrase lists 
(Kalikow et al., 1977) with the repetitions of some phrases, 
which provided 6,539 phonemes in total. Subject 4 recorded 
432 phrases with MagTrack using the same stimuli with 
the commercial EMA (8,824 phoneme samples in 432 
phrases). There are 39 unique phonemes (from the Carnegie 
Mellon University pronouncing dictionary), and silences 
were indicated at the beginning and end of each phrase in 
the transcriptions. 

Data Analysis 

We performed a direct comparison experiment of 
tongue motion trajectories of commercial EMA and Mag-
Track and two SSR experiments (vowel classification and 
continuous speech recognition). Both vowel classification 
and continuous speech recognition experiments were 
speaker dependent, in which the training, validation, and 
testing sets are from the same speakers. 

Direct Comparison of Trajectories 
We first performed a direct comparison on the 

tongue tip trajectories of the commercial EMA and our 
• •

Figure 3. An example of raw magnetic signals when the subject was prod
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MagTrack. Here, only y and z dimensions (superior–inferior 
and anterior–posterior) were considered as they are more 
significant in speech production. 

A nonlinear alignment technique, dynamic time 
warping (DTW; J. Wang et al., 2014), was used to align 
the data (same stimuli) in this experiment. First, the 
mean of each dimension was subtracted. Then, DTW was 
first applied to the parallel (same stimuli) EMA and Mag-
Track data samples from Subject 4. After DTW alignment, 
the Pearson correlations were computed on the two dimen-
sions. A higher correlation value indicates higher similarity. 

We did not use linear alignment in this experiment 
because the data are collected from two sessions and the 
starting points of these data samples are not consistent. A 
manual segmentation (to indicate the real starting point of 
each data sample) is needed, which is time-consuming for 
these data (more than 800 phrases). As indicated in recent 
literature (Wisler et al., 2022), nonmatched starting points 
may significantly affect the linear alignment results. Thus, 
we did perform manual adjustment of the starting points 
in the vowel classification experiment below. The manual 
adjustment of the starting points was not needed in the 
continuous SSR experiment because the algorithm will 
align them automatically. 

Besides the localized signals (spatial coordinates), 
raw magnetic signals are also provided by MagTrack as 
mentioned. The example of raw magnetic signals is pre-
sented in Figure 3, which shows the raw output of the 
magnetometer for the following utterance: “I don’t under-
stand.” There is one magnetic output per axis, and this 
output is represented as a 16-bit value that measures the 
magnetic intensity. These magnetic measurements are fed 
into a machine learning model that predicts the spatial 
position and orientation of the sensor (x, y, z coordinates 
and orientations). More details about the magnetic localiza-
tion can be found in Sebkhi et al. (2021). As raw magnetic 
data are not provided in commercial EMAs, we did not 
perform the comparison of the magnetic signals from 
MagTrack and the commercial EMA. The two experiments
•
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below were performed with and without using raw mag-
netic signals in MagTrack data as input to determine the 
usefulness of the raw magnetic data when combined with 
positional and orientational data. 

Vowel Classification 
In this experiment, we performed similar CVC classifi-

cation experiments with SVM produced by J. Wang, Samal, 
et al. (2016). SVM (Cortes & Vapnik, 1995) is a supervised 
machine learning algorithm that could be used for classifica-
tion and regression. SVM classifiers were more commonly 
used, which learn by finding hyperplanes that best separated 
the data space. The support vectors are the data points that 
are closest to the hyperplanes. By employing kernel methods 
(Hofmann et al., 2008), SVM can also perform a nonlinear 
separation. As a non–deep learning algorithm, SVM has 
been demonstrated to be powerful, especially in some cases 
that are not suitable for deep learning models (e.g., insuffi-
cient training data). DNNs were explored in the preliminary 
experiments but demonstrated lower performance, possibly 
due to the small size of data; thus, they were not used in 
this vowel classification experiment. 

We first used only the 2D positional signals (y and z 
without left–right direction) as that in the study of J. 
Wang, Samal, et al. (2016) for comparison, then added x-
direction position, orientation, and magnetic signals to 
explore the highest performance. The collected CVC Mag-
Track data were manually parsed into clips of whole CVC 
syllables. We followed the procedure by J. Wang, 
Kothalkar, et al. (2016) to down-sample each of the CVC 
clips to 10 frames to reduce feature dimension. Then, the 
concatenation of the 10 data points from each dimension 
(possibly include xyz position, roll, pitch, magnetic, and 
their combinations) was used as the input of SVM (the 
maximum dimension is [3D position +2D orientation 
+3D magnetic] × 10 data points = 80D) for eight-class 
classification (/bab/, /bib/, /beb/, /bæb/, /bʌb/, /bɔb/, /bob/, 
and /bub). The performance was measured by the classifi-
cation accuracies, which were computed by the number of 
correctly classified samples divided by the total number of 
samples, where a sample is a production of CVC. Five-
fold cross-validation experiments were performed on each 
of the two subjects (Subjects 1 and 2). The whole data 
were first partitioned into five folds/parts. In each fold, 
one fifth of the data were used as testing data, and the 
rest were used as training data. The averaged accuracies 
over the five-fold were reported as the final performance. 
We used the Sklearn toolkit in Python for the SVM imple-
mentation in this experiment. 

Continuous SSR 
Continuous SSR is to recognize phoneme (or word) 

sequences from articulatory speech data. In this study, we 
Cao et a
performed phoneme-level recognition since the phoneme 
sequence output is more convenient for the following 
text-to-speech stage in SSIs (Cao et al., 2021). All the 
sentences were first transcribed to phoneme sequences 
(39 unique phonemes and silence) based on the Carnegie 
Mellon University pronouncing dictionary. We imple-
mented HMM-based automatic speech recognition models 
(Juang & Rabiner, 1991; Kim et al., 2017), with two dif-
ferent speech recognizers: GMM–HMM and DNN– 

HMM. The speech recognizers adopted HMM to model 
the temporal variations during speech such as varying 
durations of the same phonemes. A single phoneme 
would be represented by a three-state left-to-right HMM 
(begin-middle-end subphones); the time variation of this 
phoneme would be modeled by intra- or interstate transi-
tion (stay in the same state or go to the next state). 
The GMM and DNN were used for modeling the proba-
bility distribution of the observed articulatory signals 
(MagTrack or commercial EMA data frames) given the 
current phonemes. 

For the MagTrack data, the input to the speech rec-
ognition models includes positional and orientational sig-
nals with or without raw magnetic signals included. The 
orientational information of MagTrack includes the 
returned roll and pitch signals. For the commercial EMA 
(NDI Wave), the orientational information also includes 
roll and pitch but was represented by the 3D quaternion. 
The raw magnetic signals returned by MagTrack were val-
idated by comparing the experimental results with and 
without using them as input. All MagTrack signals were 
down-sampled to 100 Hz from 250 Hz, which were the 
same to the commercial EMA signals. The performance 
was measured by the PERs, which were computed by the 
sum of insertion, deletion, and substitution errors divided 
by the number of the phonemes tested. The insertion rec-
ognition errors are inserting phonemes that do not exist in 
the ground truth phoneme sequences. The deletion errors 
are missing some phonemes. Substitution errors occur 
when phonemes are mistakenly recognized as different 
ones. PER could be larger than 100%, if there are too 
many insertion errors. In order to leave sufficient testing 
(and training) data for satisfying phoneme distributions in 
each of the cross-validations, for Subject 3, we performed 
five-fold cross-validation experiments on the recorded 300 
phrases (6,539 phonemes); each validation used 240 and 
60 phrases for training and testing, respectively. For Sub-
ject 4 (432 MagTrack and commercial EMA phrases, 
8,824 phonemes), we performed eight-fold cross-validation, 
in which for each validation, the models were trained and 
validated on 378 phrases and tested with the remaining 54 
phrases. The Kaldi speech recognition toolkit was used for 
this experiment (Povey et al., 2011). More technique details 
are provided in the Appendix.
l.: MagTrack: A Wearable Tongue Motion Tracking System 3211



Statistical Analysis 
One-way analysis of variance (ANOVA) tests and pair-

wise two-tailed t tests were performed to compare the PERs 
in all cross-validations in the continuous SSR experiments. 
The main comparisons include (a) MagTrack with versus 
without using magnetic signals and (b) MagTrack with mag-
netic signals versus commercial EMA. A p value less than 
.05 is required to be considered as significantly different. 
Results 

Direct Comparison of Trajectories 

In the direct comparison experiment, the Pearson 
correlations between the data collected using our Mag-
Track and the commercial EMA after alignment with 
DTW were .72 and .63 for the superior–inferior (y) and 
anterior–posterior (z) dimensions, respectively. Figure 4 
gives examples of the tongue tip movement trajectories 
(MagTrack and commercial EMA) of Subject 4 when pro-
ducing “I don’t understand.” Figures 4a and 4b are the 
original tongue tip motion trajectories in y and z dimen-
sions from the MagTrack and commercial EMA (NDI 
Wave), respectively. The tongue tip trajectory patterns 
from the two devices look similar, although the starting 
points are different (possibly due to session difference, as 
mentioned in the Method section). Figures 4c and 4d are 
DTW aligned trajectories for y and z dimensions, respec-
tively, which visually demonstrate the high similarity of 
the tongue tip trajectories after the DTW alignment of 
data in Figures 4a and 4b, respectively. 

Vowel Classification 

Figure 5 shows the accuracies of vowel classification 
of Subjects 1 and 2. The average accuracy is 78.46% when 
using 2D (yz) positional information only, as in our previ-
ous work (J. Wang, Samal, et al., 2016), which was lower 
than the average accuracy of 81.6% achieved by commer-
cial EMA in J. Wang, Samal, et al. (2016). When the x-
dimension was used, the accuracy was increased to 83.98%. 
After that, as the orientational and magnetic information 
was added, the accuracies were improved to 88.07% and 
89.74%, which are higher than the commercial EMA results 
in the study of J. Wang, Samal, et al. (2016). 

Continuous SSR 

Figure 6 shows the PERs of continuous SSR using 
MagTrack data collected from Subjects 3 and 4, where 
two models, GMM and DNN, were used with or without 
magnetic signals. Unlike accuracy, a lower PER indicates 
a higher performance. One-way ANOVA test results 
• •3212 Journal of Speech, Language, and Hearing Research Vol. 66
showed that there was a statistical significance between at 
least two groups for both Subject 3, F(2, 2) = 3.33, p = 
.046*, and Subject 4, F(2, 2) = 3.81, p = .021* (significant 
results are marked with an asterisk). Table 1 provides the 
two-tailed t-test results for selected comparisons under differ-
ent experimental setups (using GMM or DNN with or with-
out using magnetic data) from the same subjects. Generally, 
including magnetic signals (orange bars in Figure 6) showed 
higher performance (lower PERs) than without using mag-
netic signals (blue bars) except Subject 3 using GMM. The 
improvement of using magnetic signals in GMM for Subject 
4 is not significant (see Table 1). When comparing the two 
models, DNN outperformed GMM either with or without 
using magnetic signals, except for Subject 3 without mag-
netic signals. For both subjects, the best results were 
achieved using DNN with magnetic signals. 

Figure 7 shows the PERs of continuous speech rec-
ognition using GMM and DNN with MagTrack (x, y, z 
coordinates; orientation; and magnetic signals) and commer-
cial EMA data (x, y, z coordinates and orientation signals 
only, as magnetic data were not available) from the same 
participant (Subject 4). One-way ANOVA test showed there 
was a statistical significance between at least two groups, 
F(2, 2) = 8.55, p = .0003*. The two-tailed t-test results for 
selected comparisons under different experimental setups 
(using GMM or DNN with MagTrack or commercial 
EMA data) are provided in Table 2. The PERs from the 
commercial EMA were generally lower than those from 
MagTrack, although the difference was not statistically sig-
nificant when using GMM (see Table 2). When comparing 
the two models, DNN statistically outperformed GMM. 

Table 3 gives the percentages of different types of 
errors (i.e., substitution, deletion, and insertion errors) of 
the DNN–HMM experiment on Subject 4. Substitution 
and deletion errors dominated the errors consistently across 
different experimental setups (using different input data). 

Table 4 lists the occurrences of the 10 most frequent 
specific substitution, deletion, and insertion errors of the 
DNN–HMM experiment on Subject 4. The most common 
substitution error observed was the voiced stop /d/ being 
substituted by the voiceless stop /t/ across various speech 
recording setups. The most common deletion error was 
the deletion of silence, which was also consistent across all 
setups. The most common insertion error was /ih/ when 
using EMA data and MagTrack data with magnetic sig-
nals. Instead, the most insertion error was /ah/ when using 
MagTrack data without magnetic signals. 
Discussion 

The direct comparison experiment clearly demon-
strated the similarity of the tongue tip trajectories captured
•3206–3221 August 2023



Figure 4. Examples of tongue tip motion trajectories, original and after DTW alignment, captured by MagTrack and NDI Wave from Subject 
4 when producing “I don’t understand.” (a) Example of superior–inferior (y) dimension of original tongue tip motion trajectories captured by 
MagTrack and NDI Wave. (b) Example of anterior–posterior (z) dimension of original tongue tip motion trajectories captured by MagTrack 
and NDI Wave. (c) Example of superior–inferior (y) dimension of DTW-aligned tongue tip motion trajectories captured by MagTrack and NDI 
Wave. (d) Example of anterior–posterior (z) dimension of DTW-aligned tongue tip motion trajectories captured by MagTrack and NDI Wave. 
DTW = dynamic time warping. 
by the two devices via moderate-to-strong Pearson correla-
tions (after DTW alignment). In addition, Figure 4 visually 
shows the similarity of the trajectories (before and after 
aligned). These results suggested our MagTrack is suitable 
for general speech articulation studies. 

For vowel recognition tasks, MagTrack positional 
data have demonstrated slightly lower performance than 
Cao et a
previous similar commercial EMA under the same data 
setup (use y and z position only; J. Wang, Samal, et al., 
2016) due to the lower localization accuracies. As the 
other information was added (x position, orientation, and 
magnetic), the accuracies could be higher than commercial 
EMA. Although the experimental setups were similar 
(e.g., articulatory information, data amount, and classifi-
cation model), only two researchers participated in the
l.: MagTrack: A Wearable Tongue Motion Tracking System 3213



Figure 5. Accuracies using MagTrack data averaged from the two subjects in the isolated vowel recognition experiment, compared with the 
accuracy using EMA in the study of J. Wang, Samal, et al. (2016). Error bars indicate standard errors. MagTrack-yz = using yz (2D) positional 
data; MagTrack-xyz =using 3D positional data; MagTrack-xyz-RP = using 3D positional + roll and pitch; MagTrack-xyz-RP-Mag = using raw 
magnetic data long with 3D positional and roll-pitch orientational data; EMA = electromagnetic articulograph. 
current experiments, whereas the commercial EMA results 
were from 13 subjects. These discrepancies may also affect 
the comparison results. 

In addition, it is surprising that adding x-axis 
improved performance here as the literature suggested that 
x-dimension (lateral movement) is not significant at least 
in typical speech production (Beautemps et al., 2001; 
• •

Figure 6. PERs of Subjects 3 and 4 in continuous silent speech recognit
nizers. Error bars indicate standard errors. Significant differences (p < .05
PER = phoneme error rate; GMM = Gaussian mixture model; HMM = hid
indicates using 3D positional + roll and pitch data; MagTrack-xyz-RP-Mag 
pitch orientational data.

3214 Journal of Speech, Language, and Hearing Research Vol. 66
Westbury, 1994). One possible explanation may be that 
machine learning is able to find subtle pattern differences 
that these conventional approaches could not detect. Our 
team found x-dimension could be significant in dysarthric 
speech due to amyotrophic lateral sclerosis in a prelimi-
nary study (unpublished). However, these observations 
need further validation with larger data sets from more 
subjects, which will be conducted in the future. 
•

ion experiments using GMM–HMM and DNN–HMM speech recog-
) are marked with “*”; nonsignificant difference is marked with “n.s.” 
den Markov model; DNN = deep neural network; MagTrack-xyz-RP 
indicates using raw magnetic data along with 3D positional and roll-
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Table 1. The results (t values and p values) of two-tailed t tests on Subjects 3 and 4 under different experimental setups using MagTrack data. 

Comparisons Subject 3 Subject 4 

With Mag vs. without Mag (GMM) t(8) = 5.37, p = .006* 
d = 1.03 

t(14) = −1.87, p = .1  
d = 0.39 

With Mag vs. without Mag (DNN) t(8) = −3.75, p = .02* 
d = 1.16 

t(14) = −4.71, p = .002* 
d = 0.84 

GMM vs. DNN (with Mag) t(8) = 7.35, p = .002* 
d = 2.09 

t(14) = 6.06, p = .0005* 
d = 1.25 

GMM vs. DNN (without Mag) t(8) = −3.75, p = .02* 
d = 0.18 

t(14) = 2.78, p = .03* 
d = 0.68 

Note. Subject 3 has five samples (cross-validations) from each of the two groups (df = 8). Subject 4 has eight samples (cross-validations) 
from each of the two groups (df = 14). Significant results are marked with an asterisk. With Mag = with magnetic signals included; d = 
Cohen’s d effect size; GMM = Gaussian mixture model; DNN = deep neural network. 
For continuous SSR, the PERs are high compared 
to those from audio speech recognition, which is not sur-
prising. Audio speech recognition could achieve lower 
than 10% PER because of rich information in the acous-
tics and larger data size (Baevski et al., 2020). Particu-
larly, SSR lacks acoustic information that helps distin-
guish voiced and unvoiced phonemes. As indicated in 
Table 3, deletion and substitution errors dominated the 
errors, which was likely due to lack of phonation informa-
tion. Specifically, as shown in Table 4, the most substitu-
tion errors occurred in consonant cognates (voiced and 
voiceless consonant pairs, e.g., /d/ and /t/). Deletion of the 
silence also contributed a significant portion of the recog-
nition errors likely for the same reason. These errors are 
expected to be reduced at the word- or subword-level rec-
ognition since more contextual information can be 
Figure 7. PERs using MagTrack and commercial EMA data from the sa
experiments using GMM–HMM and DNN–HMM speech recognizers. Erro
marked with “*”; nonsignificant difference is marked with ns. PER = pho
Markov model; DNN = deep neural network.

Cao et a
embedded in the recognition tokens (words or subwords). 
Future studies will explore word- or subword-level recog-
nition. Another reason for the high PER of SSR is the 
data size and the data coverage. The data size in this 
study is relatively small, and there is tongue tip motion 
only, which is insufficient to distinguish some of these 
phonemes that have significant tongue dorsum or back 
movement. Recasens (2002) suggested that the tongue tip 
and tongue dorsum act more independently for more ante-
rior consonantal productions. Our previous study also 
found tongue tip and tongue back are an actually optimal 
combination for speech classification (J. Wang, Samal, 
et al., 2016). However, as a starting point to test this new 
device, we think these PERs are actually encouraging. 
Future studies will be explored to improve PERs by, for 
example, adding more sensors and using a larger data set. 
me participant (Subject 4) in continuous silent speech recognition 
r bars indicate standard errors. Significant differences (p < .05) are 
neme error rate; GMM = Gaussian mixture model; HMM = hidden 
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Table 2. The results of two-tailed t tests comparing MagTrack and 
commercial electromagnetic articulograph (EMA) data from Subject 4. 

Comparisons Subject 4 

MagTrack vs. commercial EMA (GMM) t(14) = 1.33, p = .22 
d = 0.44 

MagTrack vs. commercial EMA (DNN) t(14) = 7.30, p = .0002* 
d = 0.89 

GMM vs. DNN (MagTrack) t(14) = 6.06, p = .0005* 
d = 1.25 

GMM vs. DNN (commercial EMA) t(14) = 7.01, p = .0002* 
d = 2.04 

Note. Subject 4 has eight samples (cross-validations) from each 
of the two groups (df = 14). Significant results are marked with an 
asterisk. d = Cohen’s d effect size; GMM = Gaussian mixture 
model; DNN = deep neural network. 
In general, we think the results of continuous speech 
recognition experiment on the data from both of the sub-
jects are promising, although Subject 4 performed better 
than Subject 3 (see Figure 6). This is possibly due to the 
smaller data set from Subject 3 (300 phrases) compared to 
that from Subject 4 (432 phrases). In addition, different 
stimuli were used. The 432-phrase list used by Subject 4 
was chosen from daily used sentences, whereas the phrase 
list used by Subject 3 was more phoneme balanced, which 
led to more triphones (720 for Subject 3 compared to 128 
for Subject 4; see the details in Table A1 in the Appendix). 

When comparing the commercial EMA and Mag-
Track (with magnetic signal included), the commercial 
EMA outperformed MagTrack by 0.83% and 2.2% in 
GMM and DNN, respectively (see Figure 7). The perfor-
mance differences (between commercial EMA and Mag-
Track) were not significant in GMM but significant in 
DNN (see Table 2). As introduced, MagTrack demon-
strated a lower spatial tracking accuracy (1.6–2.4 mm) 
than the commercial EMA devices used (about 0.5– 
1.37 mm). Therefore, it is not surprising that MagTrack 
achieved lower SSR performance than the commercial 
EMA. Even with the improvement brought by adding the 
raw magnetic data of MagTrack, the performances were 
still not as good as the commercial EMA using DNN (see 
Figure 7). Overall, DNN obtained the best results with 
the commercial EMA. However, the results obtained from 
• •

Table 3. Percentages of different types of errors (substitution, deletion,
experiment on Subject 4. 

Experiment PER (%) Substitutio

EMA-xyz-RP 64.53 26.24

MagTrack-xyz-RP 68.84 28.50

MagTrack-xyz-RP-Mag 66.73 28.71

Average 66.70 27.82

Note. PER = phoneme error rate; EMA = electromagnetic articulograph; 
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MagTrack are not significantly lower than that with the 
commercial EMA using GMM, which is encouraging. 

In summary, based on our preliminary results above 
and the advantages of wearability, we believe MagTrack 
has the potential of being used as the frontend of SSIs. In 
addition, we are actively improving the MagTrack. First, 
we have already added two additional sensors to support 
upper and lower lip tracking (unpublished). Second, the 
wireless connection between the glasses and the data 
recording computer (laptop) is under development. Third, 
the tracking accuracy of MagTrack is under ongoing 
improvement and can be improved in terms of tracking 
accuracy. The current localization (tracking) model that 
maps raw magnetic to positional signals is a DNN, which 
could be improved by replacing it with more advanced 
models such as recurrent neural network and convolu-
tional neural network. Other ongoing improvements 
include further reducing the weight of the glasses and 
making the eyeglasses more comfortable. 

Although this study focused on the validation of the 
potential of applying MagTrack in SSI, MagTrack has 
plenty of other potential applications as commercial 
EMA does and could be extended since it is wearable. 
For tongue-controlling rehabilitation applications such as 
tongue-controlling wheelchairs (Sebkhi et al., 2022), the 
wearable characteristic of MagTrack would be important. 
Other speech applications include basic and clinical speech 
kinematic studies (Gafos & van Lieshout, 2020; Recasens, 
2002), visualization-based speech therapies (Katz et al., 
2014), and second language learning (Li et al., 2019). 
Recasens (2002) collected EMA data during speech pro-
duction and found that the tongue tip and tongue dorsum 
act more independently for more anterior consonantal 
productions. Katz et al. (2014) built a customized interface 
with EMA that allows users to view their current tongue 
position during speech training. Li et al. (2019) suggested 
that visual biofeedback can facilitate speech production 
training in clinical populations and second language 
learners in their study. In addition, our previous studies 
indicated that articulatory data could improve dysarthric 
speech recognition when articulation information was 
added on top of acoustic input (Hahm et al., 2015; Kim
•

 and insertion) of the deep neural network–hidden Markov model 

n (%) Deletion (%) Insertion (%) 

36.53 1.76 

38.23 2.11 

35.68 2.34 

36.81 2.07 

RP = roll and pitch. 

3206–3221 August 2023



Table 4. The 10 most frequent specific substitution, deletion, and insertion errors of the deep neural network–hidden Markov model experiment on Subject 4. 

EMA-xyz-RP MagTrack-xyz-RP MagTrack-xyz-RP-Mag 

Sub Num Ins Num Del Num Sub Num Ins Num Del Num Sub Num Ins Num Del Num 

d ⇒ t 49 ih 13 sil 425 d ⇒ t 39 ah 16 sil 384 d ⇒ t 51 ih 17 sil 380 

t ⇒ n 32 ah 12 ah 235 t  ⇒ d 27 n 15 ah 237 t ⇒ d 34 iy 14 t 216  

d ⇒ n 26 n 11 ih 200 n ⇒ d 18 ih 14 n 228 t  ⇒ n 23 s 13 n 194 

t ⇒ d 25 b 7 n 195 ah ⇒ ae 17 ae 12 t 224 ah ⇒ ih 22 ah 11 ah 193 

ah ⇒ ih 21 dh 6 t 185 z ⇒ s 16 t 9 ih 170 s ⇒ z 21 uw 10 ih 155  

ao ⇒ aa 19 f 5 d 147 ih ⇒ iy 14 d 8 d 150 z ⇒ s 19 m 9 d 136 

r ⇒ er 17 w 4 iy 128 ah ⇒ 
uw 

13 hh 7 m 122 ao ⇒ aa 18 ae 8 k 115 

z ⇒ s 15 aa 3 m 119 t ⇒ dh 12 sil 5 k 111 ah ⇒ 
ow 

17 z 7 m 108 

ah ⇒ aa 14 ch 2 k 110 t ⇒ n 11 ey 4 ay 106 ih ⇒ ah 16 sh 6 s 104 

iy ⇒ ih 13 g 1 eh 106 ah ⇒ 
ow 

10 f 3 ae 100 n ⇒ iy 15 r 5 eh 102 

Note. After top 10, the substitution and insertion errors happened mostly only once. EMA-xyz-RP means using the positional (x, y, z coordinates) and orientational data (roll and 
pitch) of EMA data. Mag = adding magnetic data to positional data and rotational data in the experiment; MagTrack = the data are from our device, MagTrack; Sub = substitution 
errors; Ins = insertion errors; Del = deletion (missing) errors; sil = silence; EMA = electromagnetic articulograph.
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et al., 2019). With the wearable MagTrack, articulation 
information can be conveniently provided as a supplemen-
tary information source for dysarthric speech recognition.
Data Availability Statement 

The data set is currently not publicly available, but 
it is planned to be ready for distribution in the future. 
Further enquiries can be directed to the last author. There 
is no licensed patent or start-up company associated with 
this technology or device at this moment. 
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Table A1. Parameters of the models in the silent speech recognition. 

Appendix 

Technical Details of Continuous Silent Speech Recognition Experiment 

Articulatory input 
We performed phoneme-level speech recognition experiments on the MagTrack and electromagnetic articulograph 

(EMA) data collected. As introduced, the MagTrack returns 3D positional (xyz), 2D orientational (roll and pitch), and 3D mag-
netic signals. To add some contextual information, the first- and second-order derivatives were concatenated with the origi-
nal data frames. The EMA data returns 3D positional (xyz) data and 3D positional quaternion data that represent roll and 
pitch orientational information. The EMA data were concatenated with the first- and second-order derivatives as well. In 
summary, the input MagTrack data have a maximum dimension of 24, and the EMA data were 18-dimensional. For Mag-
Track, we performed experiments with and without using the 3D magnetic signals, in which the input dimensions were 24 
(with magnetic signal) and 15 (without magnetic signal). 

Speech Recognition 
We used two standard continuous speech recognizers, Gaussian mixture model (GMM)–hidden Markov model (HMM) 

and deep neural network (DNN)–HMM. GMM and DNN are used to modeling the probabilities of data for a given phoneme. 
HMM is to track the phoneme probability distribution with context. There are two types of representation of the phonemes 
to be recognized: monophone and triphone for HMM. For the monophone representation, we use three HMM states to rep-
resent each nonsilence phoneme (begin, middle, and end) and five states to represent the silence. For the triphone represen-
tation, we adopted decision tree–based clustering to find the optimal triphone combinations given the data set; each tri-
phone was represented by a three-state HMM. As introduced, we used different stimuli for Subjects 3 and 4. The total num-
ber of triphones for Subject 3 is 720, since the stimuli used were highly phoneme-balanced. The triphone number for Subject 
4 used 128 triphones, since the stimuli used were from daily communication. These numbers of triphones are also the out-
put dimension of the speech recognizer (number of classes to classify). As we can see, Subject 3 has much more triphones, 
which means more possible classes and will be a more challenging classification task. We only report the performances of 
triphone recognitions since they were much better than the monophone recognitions. 

The language model used in this study is the Bigram language model, which gives the probabilities of current 
phonemes given the previous phoneme. A summarized parameter setup in the speech recognition is shown in Table A1. 

Articulatory movement 
MagTrack With magnetic signals: position (3-dim) + orientation (2-dim) + magnetic (3-dim) + Δ + ΔΔ = 24-dim 

Without magnetic signals: position (3-dim) + orientation (2-dim) + Δ + ΔΔ = 15-dim 

EMA Position (3-dim) + quaternion (3-dim) + Δ + ΔΔ = (18-dim) 

Sampling rate MagTrack: 100 Hz (down-sampled from 250 Hz) 
EMA:100 Hz 

GMM–HMM topology 
Monophone 122 states (39 phones × 3 + 5 for silence) 

1,000 Gaussians 

Triphone 128 states (432-list) 
720 states (400-list) 
7,000 Gaussians 

Training method Maximum likelihood estimation (MLE) 

DNN–HMM topology 
No. of nodes 512 nodes for each hidden layer 

Depth 1–6 depth hidden layers 

Training method RBM pretraining, back-propagation 

Input 9 frames at a time (4 previous + current +4 succeeding frames) 

Input layer dimension 216 (9 × 24-dim MagTrack with magnetic signal) 
135 (9 × 15-dim MagTrack w/o magnetic signal) 
162 (9 × 18-dim EMA) 

Output layer dimension Monophone: 122 
Triphone:720 (Subject 3) 
Triphone:128 (Subject 4) 

Language model Bi-gram phone/word language model 

Note. dim = dimensional; EMA = electromagnetic articulograph; GMM = Gaussian mixture model; HMM = hidden Markov 
model; DNN = deep neural network.
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