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Purpose: A major barrier to the wider use of language sample analysis (LSA) is 
the fact that transcription is very time intensive. Methods that can reduce the 
required time and effort could help in promoting the use of LSA for clinical prac-
tice and research. 
Method: This article describes an automated pipeline, called Batchalign, that 
takes raw audio and creates full transcripts in Codes for the Human Analysis of 
Talk (CHAT) transcription format, complete with utterance- and word-level time 
alignments and morphosyntactic analysis. The pipeline only requires major 
human intervention for final checking. It combines a series of existing tools with 
additional novel reformatting processes. The steps in the pipeline are (a) auto-
matic speech recognition, (b) utterance tokenization, (c) automatic corrections, 
(d) speaker ID assignment, (e) forced alignment, (f) user adjustments, and (g) 
automatic morphosyntactic and profiling analyses. 
Results: For work with recordings from adults with language disorders, six 
major results were obtained: (a) The word error rate was between 2.4% for con-
trols and 3.4% for patients, (b) utterance tokenization accuracy was at the level 
reported for speakers without language disorders, (c) word-level diarization 
accuracy was at 93% for control participants and 83% for participants with lan-
guage disorders, (d) utterance-level diarization accuracy based on word-level 
diarization was high, (e) adherence to CHAT format was fully accurate, and (f) 
human transcriber time was reduced by up to 75%. 
Conclusion: The pipeline dramatically shortens the time gap between data col-
lection and data analysis and provides an output superior to that typically gen-
erated by human transcribers. 
Here, we present the results of application of an 
automated pipeline that creates transcripts in the Codes for 
the Human Analysis of Talk (CHAT) transcription format 
(https://talkbank.org/manuals/CHAT.pdf) from raw audio 
input. Use of the CHAT format is required for language 
samples to be added to TalkBank databases such as the 
Child Language Data Exchange System (for child lan-
guage), FluencyBank (for stuttering), AphasiaBank (for 
aphasia), TBIBank (for traumatic brain injury [TBI]), 
PhonBank (for phonological development), BilingBank (for 
bilingualism), RHDBank (for right hemisphere disorders 
[RHDs]), ASDBank (for autism), and several others. Data 
from these banks have been used in over 9,000 
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publications, as reported through Google Scholar. Use of 
TalkBank data and programs forms a core part of the cur-
riculum in speech and communication science in over 100 
universities, and these methods are used in 24 countries to 
guide clinical practice. Because TalkBank repositories use 
the single common CHAT format, all the data in these cor-
pora can be analyzed consistently using the Computerized 
Language Analysis (CLAN) programs (https://dali.talkbank. 
org) for corpus analysis and language profiling; the 
TalkBankDB database system (https://talkbank.org/DB), 
which provides an API (application programming inter-
face) linking to R for statistical analysis; and the new Col-
laborative Commentary system (https://talkbank.org/CC), 
which facilitates transcript coding and analysis by groups 
of students, clinicians, and researchers. There are other 
popular methods for producing transcripts from raw 
audio, such as EUDICO Linguistic Annotator (ELAN; 
Wittenburg et al., 2006), Systematic Analysis of Language
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Transcripts (SALT; J. Miller & Chapman, 1983), and 
Sampling Utterances and Grammatical Analysis Revised 
(SUGAR; Pavelko & Owens, 2017). However, these other 
methods do not produce CHAT transcripts and therefore 
cannot be analyzed by these TalkBank systems for corpus 
analysis, language profiling, and collaborative commen-
tary. Moreover, inclusion of data into TalkBank for open 
data sharing (Lin et al., 2020; Wilkinson et al., 2016) 
requires that the transcripts be in CHAT format. 

Prior to the introduction of this pipeline, spoken lan-
guage data contributed to TalkBank repositories had to be 
manually transcribed and coded in accord with CHAT for-
mat. In the 1970s and 1980s, transcribers often relied on a 
foot pedal to control the movement of an audiotape on a 
recording machine. Later, transcribers used personal com-
puters to transcribe from digital audio. It is widely recog-
nized that the tedious process of hand transcription creates a 
major barrier to the use of language sample analysis (LSA) 
in clinical practice (Bernstein-Ratner & MacWhinney, 
2016). Even for nonclinical speech, the ratio of transcrip-
tion time to recording time is 11:1 on average (Novotney 
& Callison-Burch, 2010). For clinical samples, that ratio 
can be much larger, particularly if it includes annotation 
of retraces, pauses, errors, and nonstandard phonology. 

The TalkBank project has developed several methods 
to facilitate human transcription. One method, called Walker 
Controller, echoes the actions of the foot pedal for rewinding 
and advancing with keyboard function keys. Another, more 
time-consuming method, called Sonic CHAT, uses delinea-
tion of areas in a waveform display window for highly accu-
rate alignment of transcripts to segments of the audio. A third 
method, called Transcriber Mode, allows the user to break up 
the audio into bulleted segments by pressing the space bar at 
the end of each utterance. After that, the user can return to 
each bulleted segment to replay and transcribe. Transcriber 
Mode is the most time-efficient method, but the utterance 
time values generated in this method do not take account of 
inter-utterance pauses and therefore do not accurately reflect 
utterance length. Moreover, none of these methods provides 
time alignment on the word level. For detailed phonological 
analysis, fluency analysis, and conversational sequencing 
analysis, it is important to have accurate marking of the 
beginning and end times for both words and utterances. This 
type of detailed time alignment or diarization can be per-
formed manually in the Praat program (https://praat.org), but 
creating these alignments can be a tedious process. 

To provide quicker and more accurate transcription 
and diarization, we created a pipeline, called Batchalign, 
that generates transcripts in CHAT format from raw 
audio samples. The pipeline performs automatic speech 
recognition (ASR), utterance tokenization, utterance- and 
word-level diarization, morphosyntactic coding, profiling, 
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and fluency analysis with greatly reduced involvement 
from the researcher or clinician. 

During its development, Batchalign was used to cre-
ate word-level alignments for over 1,000 already-transcribed 
files in the AphasiaBank segment of TalkBank, as well as 
to generate new transcripts from 42 raw audio files in 
DementiaBank and 12 raw audio files in TBIBank. In this 
article, we describe the stages of the pipeline, its constituent 
tooling, and the use of human intervention to segment 
utterances, add annotations, and correct errors. 

We formulate the research question here as how to 
best use speech technology to create an accurate and dia-
rized CHAT transcript with maximal automation and 
minimal human input. The shape of CHAT format is 
specified in the CHAT manual at https://talkbank.org/ 
manuals/CHAT.pdf, and accurate adherence to CHAT 
standards can be verified through use of the Chatter pro-
gram available from https://talkbank.org/software/chatter. 
html. The transcript must include proper spelling of all 
spoken words, accurate combination of words into utter-
ances, and assignment of utterances to the correct speaker. 
In addition, there must be proper marking of nonword 
forms, disfluencies, and repetitions. To allow for fluency 
analysis, there should be time values given for the begin-
ning and end of each word and each utterance. There are 
six criteria for evaluating the success of this effort. The out-
comes of interest are (a) word error rate (WER), (b) accu-
rate utterance tokenization, (c) accurate word-level diariza-
tion, (d) accurate utterance-level diarization, (e) adherence 
to CHAT format, and (f) minimization of requirements for 
human clean-up. We evaluate these outcomes through 
application of the pipeline to a corpus from people with 
mild cognitive impairment (MCI) described below. 
Method 

Batchalign combines two existing tools along with a 
variety of newly developed methods. Processing in the 
pipeline involves seven steps: (a) ASR, (b) utterance toke-
nization, (c) automatic corrections, (d) speaker ID assign-
ment, (e) forced alignment (FA), (f) user adjustments, and 
(g) automatic morphosyntactic and profiling analyses. The 
design considerations and operations of each step are 
described in the following sections. The full pipeline, along 
with instructions for installation and usage, is available 
for download at https://github.com/talkbank/batchalign. It 
is freely available for Windows, Linux, and macOS with-
out any password, and we encourage users to use it to 
transcribe and analyze recordings they have created. If 
data are being prepared for inclusion in TalkBank, we are 
happy to provide support for installation and use of the 
system.
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ASR 

The first step in the pipeline involves sending an 
audio file over the web for processing by an ASR system. 
The output of this process is a diarized transcript. Diariza-
tion involves assigning utterances to specific speakers and 
marking the time values of the beginnings and ends of all 
utterances and words. Although the pipeline is agnostic 
regarding the ASR service being used, the current default 
version leverages the output of Rev AI (https://rev.ai), a 
commercial ASR service (C. Miller et al., 2022) with an 
online application programming interface (API). ASR is 
performed via the official REST API of Rev AI. When 
designing the pipeline, we evaluated six other commercial 
speech recognition systems, as well as the ESPNet research 
ASR system (Hayashi et al., 2020). The decision to use 
Rev AI was based on three considerations. 

First, the downstream tasks in the pipeline—FA and 
morphology analysis—require that the transcript contain 
the exact words spoken to extract phoneme information, 
parts-of-speech, and other relevant word-level information. 
However, systems such as Amazon Transcribe output 
numbers in the form of Arabic numerals, rather than spo-
ken language words. For lexical, phonological, and gram-
matical analyses, we needed the ASR system to provide 
accurate renditions of these word forms without postpro-
cessing. Rev AI allows for this by making it possible for 
the user to turn off inverse text normalization that would 
convert five dollars to $5. 

Second, a feature of most commercial ASR systems 
that makes them unsuitable for our task is the automatic 
removal of filled pauses, repetitions, and other verbal dis-
fluencies (e.g., you know, um, mhm). Although this removal 
may be advantageous for many uses, it misrepresents the 
actual language being used and blocks the use of the data 
for fluency analysis. Fortunately, ASR through Rev AI 
includes an option for retaining these features. 

Third, the Rev AI system has achieved important 
advances in accuracy based on the recent introduction of 
an end-to-end (E2E) system that leverages the availability 
of corpora for training a deep-learning model. The Rev 
AI system processes more than 15,000 hr of human-
checked transcription each week across a wide variety of 
languages, building up a large database for training. C. 
Miller et al. (2022) present a fuller account of the details 
of the current Rev AI system and its use of human anno-
tation to improve ASR performance. Jetté (2022) explains 
the computational construction of the new E2E system. 

Upon completion, the ASR returns a time-aligned 
string of words spoken, a numerical tag for each predicted 
speaker, and grouping of words spoken by each speaker 
into time-aligned turns. Batchalign replaces these time 
values with more accurate values in Step 3. However, these 
initial time values help guide further steps in the pipeline. 

Utterance Tokenization 

The second step in the processing pipeline involves 
segmenting the word stream into utterances. ASR systems, 
such as Rev AI, provide output as a string of words (Malik 
et al., 2021) grouped into turns based on speaker identity. 
However, like other LSA methods, the CHAT format and 
the CLAN programs are designed to work on utterances 
rather than turns. Furthermore, analysis of retracing or flu-
ency measures, such as the mean length of utterance, requires 
that the words be assembled into properly delimited utter-
ances (Brown, 1973). In addition, use of TalkBank’s MOR/  
MEGRASP system (https://talkbank.org/manuals/mor.pdf) 
for automatic morphosyntactic analysis assumes that the 
transcript is composed of utterances. Therefore, the pipeline 
must include a system that accurately organizes words into 
utterances. 

Conventional Utterance Segmentation 
Speech utterance segmentation presents obvious par-

allels to traditional sentence segmentation. However, seg-
mentation of talk data provides unique challenges (Fraser 
et al., 2015). We treated the problem of utterance segmen-
tation as one of utterance tokenization followed by punc-
tuation restoration. Conventional tokenization schemes 
tend to group coordinate clauses together, even when they 
are being produced as separate units in spoken language. 
For instance, consider the following output from ASR: 

they get their father and the father climbs up the 
tree to try and get the cat 

Conventional punctuation restoration approaches 
(Chen et al., 2021; Nagy et al., 2021) will produce this sin-
gle utterance output: 

They get their father and the father climbs up the 
tree to try and get the cat. 

However, in accordance with the principles for utter-
ance segmentation summarized in pages 60–72 of Chapter 
9 of the CHAT manual (https://talkbank.org/manuals/ 
CHAT.pdf), and in alignment with the concept of T-units 
(Foster et al., 2000), we would want this to be segmented 
into these two utterances: 
and the father climbs up the tree to try and get the cat. 

they get their father. 
A Novel Utterance Tokenizer 
To address this issue, we devised a novel segmenta-

tion model. Fortunately, the TalkBank corpora already
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contain many Gold Standard utterances that were seg-
mented by hand in accordance with the required stan-
dards. Using these data, we trained a novel utterance 
segmentation model consistent with the existing literature 
(Wu et al., 2022) that treats text segmentation as a 
token-level sequence labeling punctuation restoration 
task. 

The segmentation model was trained via Hugging 
Face (Wolf et al., 2020) with a BERT-base model (Devlin 
et al., 2018) using the entirety of the CHAT version of the 
MICASE (The Michigan Corpus of Academic Spoken 
English; Römer, 2019) corpus in TalkBank. MICASE 
(https://ca.talkbank.org/access/MICASE.html) includes tran-
scribed data from 300 participants in a wide variety of 
interactions between students and faculty at the University 
of Michigan. It includes 165 transcripts with 1,634,035 
words, along with 11.7 GB of audio. These interactions 
include advising, colloquia, thesis defense, interviews, lab 
meetings, office hours, seminars, service encounters, student 
presentations, study groups, and campus tours. The interac-
tions have all been transcribed in CHAT with full adher-
ence to CHAT transcription conventions. Each utterance is 
delimited by a period, question mark, or exclamation mark; 
the placement of these marks is therefore used to mark the 
ends of utterances. 

The first step of utterance segmentation involves 
grapheme-level tokenization via the Hugging Face 4.23.1 
Byte-Pair encoding tokenizer (Wolf et al., 2020). Each 
resulting token is assigned one of six labels by the model: 
If the grapheme to be labeled is predicted to be adjacent 
to the end of the utterance—that is, if a period, question 
mark, or exclamation mark follows it—it is assigned 
Label 2 for periods, Label 3 for question mark, or Label 
4 for exclamation mark based on their punctuation. If a 
comma follows the token, it is assigned Label 5. Tokens 
whose first character is capitalized are assigned Label 1. 
Finally, if the token is not assigned a label based on the 
previous characteristics, it is assigned Label 0. 

The second step, after obtaining the model predic-
tion on graphemes, is to assemble passages based on the 
labeled graphemes with the predicted punctuation added. 
For instance, if a grapheme is predicted to be in Group 2, 
a period character is added to the end of the token during 
assembly. 

The third and final step to obtain utterance 
tokenization is to pass the reassembled passage into the 
NLTK Punkt tokenizer (Bird et al., 2009), which will 
split the utterance based on the newly introduced punctu-
ation. This results in data that are  formatted in accor-
dance with CHAT standards. Except for use of NLTK 
Punkt, all segments of this second step involve novel 
programming. 
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Automatic Correction 

The third step in the pipeline involves the use of 
novel transcript correction programs to reformat certain 
common words and codes in the output of the second 
step. These corrections are designed to maximize the accu-
racy of the programs for morphosyntactic analysis and 
language profiling used in the final step of the pipeline 
because those programs work best when words are spelled 
accurately and when disfluencies are marked properly. 

First, the pipeline scans and replaces transcriptions of 
individual forms. It replaces filled pauses, such as um, with
more distinctive forms such as &-um, thereby enabling 
downstream analysis and profiling programs to correctly 
tabulate disfluency behavior. It standardizes forms like 
mm-hmm and mm-hum that express agreement as the sin-
gle form mhm. It uses CLAN’s LOWCASE command and 
its large proper noun database to ensure that all proper 
nouns are capitalized, thereby facilitating morphological 
and syntactic analysis. The pipeline can also combine two 
or more words that function syntactically as a single unit 
into one word with one or more underscores. For exam-
ple, in between is converted to in_between and on account 
of is converted to on_account_of. Finally, using CLAN’s 
RETRACE program, the pipeline creates clear markings 
of word repetition by adding the marker [/] between 
repeated forms. As in the second step, all components of 
this step involve novel programming, although some of 
the pieces include modified versions of existing C++ code 
for CLAN commands. 

At this point, the pipeline generates a draft CHAT 
file to be used by further steps in the system. The draft 
transcript contains annotated speaker tiers, speaker diariza-
tion, segmented utterances, and the corrected word forms 
mentioned above. Up to this point, all pipeline processing 
has been entirely automatic. The next section describes a 
role for brief human intervention to assign speaker IDs. 

Speaker ID Assignment 

The fourth step in the pipeline involves human inter-
vention to assign speaker ID codes. CHAT requires that 
each speaker be given a conversational role and a speaker 
ID. For example, the target child in studies of language 
development has the role Target_Child and uses CHI as 
the ID. In clinical interviews, the investigator or clinician 
has the role Investigator and the ID of INV. The output 
of ASR from Rev AI identifies speakers as Speaker0, 
Speaker1, Speaker2, and so forth. To assign the correct 
role and ID to each Rev AI code, the program presents 
the user with the longest example utterance from each 
speaker along with the time of that utterance. This allows 
the user to replay the segment to determine who is
•2421–2433 July 2023
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speaking, although this is sometimes clear just from read-
ing the text. For example, it could be that Speaker1 is the 
child being recorded. In this case, the user enters the 
three-letter code CHI for the child and the role Target_ 
Child. For transcripts with four or fewer speakers, this 
process takes approximately 2 min to complete. 

FA 

The fifth step in the pipeline involves passing the 
transcript to a program for FA. FA is a process that asso-
ciates each utterance and each word with a beginning and 
ending time. In CHAT format, these times are given in mil-
liseconds, starting from the beginning of the recording. For 
this process, we elected to use the Montreal Forced Aligner 
(MFA; McAuliffe et al., 2017) with speaker adaptation and 
grapheme-to-phoneme (G2P) dictionary generation. Mahr 
et al. (2021) showed that, with child language samples, 
MFA performed the best of all standard FA tools, achiev-
ing 87% accuracy at the phoneme level. Diarization at this 
level is beyond what we are currently using for the 
TalkBank language sample analyses reported on here, but 
this level is available from MFA if needed. Mahr et al. 
(2021) attribute the superior performance of MFA to the 
relatively larger size of its training corpus and the use of 
speaker adaptation. They note that no aligners are cur-
rently trained with child language data, and they believe 
that the collection and use of child language training data 
could markedly improve current performance. 

The lattice alignment scheme in Kaldi (Povey et al., 
2011), on which the MFA is built, does not perform well 
with large intervals of data (beyond 1–2 min). Fortunately, 
MFA provides the ability to split audio into segments 
before supplying it to Kaldi—provided a Praat TextGrid 
with segmented transcripts and corresponding audio inter-
vals is available in conjunction with the audio. These initial 
values can be derived from two possible sources. When 
using the pipeline with ASR, the time values for utterances 
provided by Rev AI can be used as provisional values. 
Alternatively, when processing transcripts with utterance-
level time values already marked, one can use MFA directly 
by adding the -prealigned switch to the pipeline command. 
In both cases, CLAN’s CHAT2PRAAT program extracts 
initial rough alignments from the source CHAT file, along 
with cleaned versions of the utterance, and places them into 
a TextGrid file for use by MFA. MFA will then replace 
the provisional alignments with final alignments. 

The MFA segment of the pipeline uses the English 
(United States) ARPA G2P Model 2.0.0 to generate a dic-
tionary from the graphemes of all the words in the tran-
script. It scans the entire input transcript and converts all 
graphemes to combinations of possible phonemes. These 
phoneme combinations are then used by the English 
(United States) ARPA acoustic Model v2_0_0 trained 
using the Librispeech corpus (Panayotov et al., 2015). 
After a series of trials, we found that using an alignment 
beam width of 100 words produces the most accurate 
alignment for the transcripts used here. 

A list of time-annotated words is then returned by 
MFA in the format of a Praat TextGrid file. New utter-
ance segmentations and word-level alignments are gener-
ated by matching the words inside the TextGrid file with 
the original input CHAT transcript—ensuring that dis-
fluency annotations previously supplied are retained. 

For each diarized speaker utterance in the input, the 
final CHAT file contains the main utterance tier with 
utterance-level alignment information in “bullets” at the 
end of each utterance with start and stop times in millisec-
onds. These bullets can be collapsed to increase readability 
or expanded to show the times. The pipeline inserts a 
%wor tier for each utterance with millisecond time-
marking bullets after each word. For example, consider 
the following input: 
*INV: + < &-um (.) how do you think your 
speech is these days? •52004_54174•
FA with MFA produces the following transcript: 
*INV: + < &-um (.) how do you think your 
speech is these days? •52004_54174•

%wor: + < &-um (.) how •52004_52204• do
•52204_52284• you •52284_52404• think •52404_ 
52764• your •52764_52864• speech •52864_53434• is
•53474_53554• these •53744_53914• days •54024_ 
54174•? 
In the CLAN editor, the verbose time values can be 
reduced to a single bullet character by typing ESC-a, mak-
ing the utterance appear in the following form: 
*INV: + < &-um (.) how do you think your 
speech is these days? •

%wor: + < &-um (.) how • do • you • think •
your • speech • is • these • days •? 
Human Correction 

The sixth step in the pipeline involves human correc-
tion. Up to this point, processing of a 30-min recording 
takes 7 min or less. This is considerably faster than the 
8 hr or more for a human transcriber to reach this same 
level. Moreover, the human transcriber would not have
Liu et al.: Automation of Language Sample Analysis 2425



been able to mark time periods for words and utterances. 
However, there are several steps that must be completed 
before the transcript is ready for further analysis. 

The first step involves running the CHECK program 
in the CLAN editor by typing ESC-L. CHECK requires 
that the time values on the utterances all be sequential. In 
other words, an utterance that is later in the transcript can-
not have a time value that is earlier than the preceding utter-
ance. Occasionally, ASR assigns incorrect start times to 
utterances composed of single words such as sure or yeah. 
To correct this, one must open the bullet marks in the tran-
script using ESC-a to adjust the time values to be sequential. 
An effective way of dealing with this is to code such back-
channel comments using the & = * code, as in this example: 
2426
*PAR: well, I was still recovering & = *INV:yeah 
from my stroke. 
After fixing the problems with utterance times that 
were noted by CHECK, the ESC-8 continuous playback 
function can be used to play through the entire transcript. 
For a 30-min transcript, this will take approximately 1 hr, 
allowing for time for corrections during playback. A simple 
type of correction involves repairing misspellings or incorrect 
words. Such errors occur most frequently when ASR is not 
able to recognize an out-of-vocabulary proper noun. These 
errors can be corrected during the playback step. Another 
type of correction involves the addition of special marks for 
sentence termination. ASR ends each utterance with a 
period, and sometimes this needs to be changed to a ques-
tion mark (?), an exclamation mark (!), or an incompletion 
mark (+. . .). During this process, it is also easy to correct 
any errors in speaker assignment made by Rev AI. CLAN 
provides a menu of shortcut keys that can switch assignment 
between speakers with a single shortcut such as command-2. 

CLAN also provides a method for automatically 
joining or splitting utterances. Because utterance-level time-
codes are linked to the word-level time codes, resegmenting 
utterance-level timecodes by hand requires tedious adjust-
ment of the word-level timecodes. To avoid this problem, 
the user can mark places for resegmentation with the sym-
bol &&& and then run CLAN’s SEGMENT program to 
reformat automatically. After these corrections, the lan-
guage sample is ready for analysis. There are two sets of 
facilities available in CLAN to enable further automatic 
analysis of the completed data: morphosyntactic analysis 
and profiling commands. 
Morphosyntactic Analysis 

To generate automatic profile analyses, it is not 
enough to just have an accurate and diarized transcript. 
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Profiling programs also require that the language be ana-
lyzed for its morphological and syntactic structure. CLAN 
provides a chain of analytic tools for this step in the anal-
ysis. The five components of this chain are MOR, 
PREPOST, POST, POSTMORTEM, and MEGRASP. 
MOR reads a set of lexical files to create a runtime lexi-
con based on left-associative grammar (Hausser, 1989). 
After MOR completes, there may be some ambiguities to 
be resolved and some patterns that require correction. 
PREPOST works to disambiguate forms such as nonverb 
ambiguities based on local context. Then POST uses part-
of-speech sequence regularities to disambiguate between 
parts of speech. POSTMORTEM then corrects a few 
remaining structures. The result is an unambiguous analy-
sis of the morphological components of all words on the 
%mor line. MEGRASP then uses the part-of-speech cate-
gories on the %mor line to create a dependency grammar 
analysis (Kübler et al., 2009) for each utterance. This 
analysis is placed on a %gra line, which users can double-
click to invoke the GraphViz web service to display a fully 
connected graph of the structure with labeled nodes and 
labeled directed arcs. The chain runs automatically on any 
collection of files through the single command: mor *.cha. 
A full description of the operation and requirements of 
the chain is provided in the MOR manual at https:// 
talkbank.org/manuals/mor.pdf. 
Profiling Commands 

Once the %mor and %gra lines are completed and 
checked, transcripts can be analyzed using CLAN’s lan-
guage profiling analyses to compute a variety of clinically 
relevant indices along with comparisons to the database. 
These analyses include Developmental Sentence Score 
(DSS), Index of Productive Syntax (IPSyn), KIDEVAL, 
C-NNLA, C-QPA, EVAL, EVAL-D, and FluCalc. The 
DSS (Lee, 1974) and IPSyn (MacWhinney et al., 2020; 
Scarborough, 1990) are measures of the usage of morpho-
syntactic structures that were originally created for the 
study of child language. However, they have also proven 
useful for the study of speech from adults with language 
disorders. Trained users of DSS and IPSyn may require as 
much as an hour to create these profiles by hand (Overton 
& Wren, 2014), whereas they can be created in less than a 
minute using the computer versions. 

EVAL (Forbes et al., 2012), C-NNLA (Fromm et al., 
2020; Thompson et al., 1995), and C-QPA (Fromm et al., 
2021; Rochon et al., 2000) are computerized versions of 
measures designed for analysis of language in aphasia. 
EVAL-D is a version of EVAL designed specifically for 
analysis of language in dementia. FluCalc (Bernstein-Ratner 
& MacWhinney, 2018) is designed to measure disfluencies, 
such as initial segment repetition, blocking, prolongation,
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pausing, word repetition, phrase repetition, and retracing. 
FluCalc uses the accurate word-level and utterance-level 
diarization produced by MFA to construct a full profile of 
fluency or disfluency in each participant. Details regarding 
the measures included in each of these profile analyses can 
be found in the CLAN manual at https://talkbank.org/ 
manuals/CLAN.pdf. 

For narrative and picture description tasks, CLAN’s 
CoreLex program (Dalton et al., 2022) can measure the 
typicality of lexical use in describing the major elements 
of a picture or story. For example, when telling the 
Cinderella story, the program looks for mention of slipper, 
pumpkin, stepmother, and other core lexical items. The 
combination of EVAL-D, FluCalc, and CoreLex provides 
clinicians with a rich set of measures that can then be 
compared automatically against norms and benchmarks in 
the larger AphasiaBank or DementiaBank protocol data-
bases in terms of means and standard deviations. For 
researchers building machine learning (ML) analyses 
(Luz et al., 2021), these profiling systems provide all the 
measures that have been shown to be important in diag-
nosing dementia with the exception of acoustic features. 

A reference implementation of the pipeline used to 
obtain the results reported above is available to the public 
on the free Anaconda platform on all major operating sys-
tems. After installing a copy of Anaconda, users can fol-
low the instructions available on the TalkBank GitHub 
page (https://github.com/TalkBank/batchalign) to obtain 
and use the pipeline. 
Results 

We evaluate the success of the pipeline along six 
dimensions: (a) WER, (b) utterance tokenization accuracy, 
(c) word-level diarization accuracy, (d) utterance-level dia-
rization accuracy, (e) adherence to CHAT format, and (f) 
minimization of requirements for human clean-up. Our 
analysis is based on the pipeline’s processing of untran-
scribed audio from the Delaware corpus in DementiaBank 
(Lanzi, 2021) available from https://dementia.talkbank.org 
with doi:10.21415/Q0JX-5 W20. These recordings were 
collected over the Internet during 2021–2022 through 
Zoom from 38 individuals with MCI and 21 age- and 
education-matched healthy controls. 

The language samples were elicited using the 
DementiaBank protocol, which is available from https:// 
dementia.talkbank.org/protocol/. The tasks in this pro-
tocol include the Cookie Theft picture description 
(Goodglass et al., 2000), the Cat Rescue picture narrative 
(Nicholas & Brookshire, 1993), Rockwell’s “Going and 
Coming” (Rockwell, 1947), the Cinderella picture book 
story retell (Grimes, 2005), how to make a peanut butter 
and jelly sandwich, and a personal narrative. The 38 MCI 
transcripts have 26,413 words spoken by the patients, and 
the 21 control transcripts have 20,379 words spoken by 
the control participants. The total duration of these 
recordings is just over 10 hr. 

Diagnosis as MCI was based on results from the 
Montreal Cognitive Assessment (Nasreddine et al., 2005), 
the Boston Naming Test–Short Form (Kaplan et al., 2001), 
the Hopkins Verbal Learning Test–Revised (Benedict et al., 
1998), and the Wechsler Memory Scale–Revised (Wechsler, 
1987). Further details regarding inclusion/exclusion criteria, 
demographics, and evaluation criteria are given in Lanzi 
et al. (2023). 
WER 

To evaluate the accuracy of ASR using Rev AI, we 
first examined the WER, which is defined as the sum of 
word insertions, deletions, and substitutions, divided by 
the total number of words. We took a random sample of 
1% of the 26,413 words in the 38 MCI transcripts and a 
1% random sample of the 20,379 words in the transcripts 
from the 21 healthy controls. WER was 3.6% for the MCI 
patients and 2.4% for the controls. Occasional ASR errors 
such as these can be fixed during the final playback pro-
cess in the CLAN editor. Because this error rate is so low, 
there are minimal impacts of these few errors on the fea-
tures that are involved in the next stage of utterance toke-
nization, thereby minimizing any possible compounding of 
error through the stages of the pipeline. 

Utterance Tokenization Accuracy 

Next, we evaluated the accuracy of the system for 
utterance tokenization. We did this by comparing the first 
pass results from the pipeline with the human-corrected 
final transcripts from the Delaware corpus. We achieved 
an F1 score of 86.9% for MCI and 85.1% for the controls. 
Table 1 compares these results for the Batchalign pipeline 
with representative samples (Alam et al., 2020; Chen 
et al., 2021; Fraser et al., 2015; Shi et al., 2021) of state-
of-the-art results from other tokenization systems that 
used formal speech data from TED Talks (Federico et al., 
2012). Those results are given in the last four rows of 
Table 1. That table reports accuracy in terms of precision, 
recall, and F1 scores. Precision is defined as the number of 
true positives divided by the number of all positive results, 
including the false positives. Recall is defined as the num-
ber of true positives divided by the number of all cases 
that should be tagged as positive, including those that 
were incorrectly tagged as negative. F1 scores are defined 
as the harmonic mean of precision and accuracy. The F1
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Table 1. Precision, recall, and F1 values in percentage for sentence tokenization. 

Model/corpus Precision Recall F1 

Batchalign-Delaware MCI 86.2 90.0 86.9 

Batchalign-Delaware Controls 81.7 88.8 85.0 

CRF (Fraser et al., 2015) – – 43.0 

RoBERTa-base (Alam et al., 2020) 84.0 83.9 83.9 

RoBERTa-large+SCL (Alam et al., 2020) 84.8 83.1 83.9 

FT + POS + SBS (Shi et al., 2021) 82.9 85.7 84.3 

ELECTRA-large+Disc-ST (Chen et al., 2021) 83.7 86.7 85.2 

Note. Dashes indicate data not reported. F1 values = the harmonic mean of precision and recall; MCI = mild 
cognitive impairment; CRF = conditional random field; SCL = supervised contrastive learning; POS = part of 
speech; SBS = sequence boundary sampling; FT = Funnel Transformer; Disc-ST = discriminative self-training. 
scores obtained by these other systems are quite compara-
ble to those obtained by Batchalign, even though an anal-
ysis dealing with multiparty clinical interview data is 
inherently more challenging than one dealing with pre-
pared monologue. Compared to the four models based on 
TED talk data, Batchalign achieves a higher recall and a 
lower precision because it is sometimes overly greedy in 
splitting utterances. These utterance splitting errors can be 
corrected by using the SEGMENT tool in CLAN, as 
described earlier. 

Table 1 also presents F1 scores obtained in the only 
other published study of tokenization of clinical samples 
from Fraser et al. (2015). That study used a conditional ran-
dom field (CRF) method (Okazaki, 2007) to identify utter-
ance boundaries. The input to the analysis was a hand-
corrected transcription that was force aligned to the audio, 
providing lexical and prosodic information, along with inter-
word time values. The CRF system was applied to aligned 
transcripts from 11 patients with semantic dementia (SD), 
17 patients with progressive nonfluent aphasia (PNFA), and 
23 age- and education-matched healthy controls. Neither 
SD nor PNFA is characterized by marked articulatory prob-
lems, but rather by problems with sentence formulation and 
lexical retrieval. Speech samples were elicited using retelling of 
the Cinderella story after paging through a wordless picture 
book, following the same method used in the AphasiaBank 
protocol (https://aphasia.talkbank.org/protocol/english/) and 
the DementiaBank protocol. The F1 scores from this analysis 
• •

Table 2. Percentage of results annotated to be within a
computed with t test at 95% confidence. 

N words Group Sy

277 Control Monosyll

278 Control Multisylla

555 Control Overall

108 Cog. impairment Monosyll

109 Cog. impairment Multisylla

217 Cog. impairment Overall

Note. Cog. = cognitive.
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were .43 for SD, .47 for PNFA, and .51 for controls. Fraser 
et al. (2015) also report an F1 score of .57 for a similar-sized 
segment of the TDT4 Broadcast News corpus (catalog.ldc. 
upenn.edu/LDC2005S11). These F1 utterance segmentation 
scores are much lower than the F1 scores for Batchalign as 
shown in Table 1. 

Word-Level Diarization Accuracy 

Mahr et al. (2021) explored the use of MFA for the 
task of child language alignment. We expanded upon the 
evaluation of Mahr et al. by comparing the performance 
of Batchalign on word-level alignment of audio from par-
ticipants with MCI and controls (Lanzi, 2021). We sam-
pled the performance of Batchalign automatically and 
evaluated it manually. We selected a 1% random sample 
of each group in the corpus, binned by cognitive impair-
ment, with the number of words as described in the first 
column of Table 2. Based on preliminary trials, the per-
formance of the aligner on mono- and multisyllabic words 
can vary significantly. Therefore, care was taken to also 
bin the monosyllabic data separately. 

Human annotators were provided with audio seg-
ments produced by FA of each selected word and were 
asked to identify whether the sound corresponded to the 
intended word in the transcript. Three responses were 
available: The sound contains most of the desired word 
(consistent with the “success” metric of Mahr et al.), the
•

lignment either fully or partially; confidence bands 

llable count Fully or partially aligned 

abic 90.61% ± 3.46% 

bic 96.75% ± 2.10% 

93.68% ± 2.03% 

abic 78.70% ± 7.85% 

bic 91.67% ± 5.30% 

85.19% ± 4.78% 

2421–2433 July 2023

https://aphasia.talkbank.org/protocol/english/
http://catalog.ldc.upenn.edu
http://catalog.ldc.upenn.edu


 

 

sound contains exactly the desired word fully correctly 
segmented, or the sound does not contain the desired 
word. Table 2 gives the results of human validation of the 
automatic alignment process. Overall alignment perfor-
mance was worse for patients with cognitive impairment 
(p < .05). The difference was most marked for monosyl-
labic words, and it did not differ significantly between 
groups for the multisyllabic words. These results are com-
parable to those obtained by Mahr et al. (2021).

Utterance-Level Diarization Accuracy 

Diarization accuracy at the utterance level is based 
on the use of the start time of the first word in the utter-
ance and the end time of the last word. This means that 
utterance-level diarization is guaranteed to be at least as 
accurate as word-level diarization accuracy and often 
higher because those inaccuracies that arise in the middle 
of the utterance do not affect utterance-level diarization 
accuracy. 

Adherence to CHAT Format 

The pipeline is designed to produce a transcript that 
fully adheres to CHAT format, thereby permitting further 
profiling analysis. This adherence is checked in the sixth step 
of the pipeline. After MOR tagging, a final check uses the 
Chatter XML validator retrievable from https://talkbank. 
org/software/chatter.jar. Once the transcript passes this final 
check, it is in full compliance with the CHAT standard. All 
transcripts in our test set from the Delaware corpus passed 
this level of evaluation. 

Clean-Up Minimization 

A basic goal of this research is to minimize the 
human transcriber’s work required to produce an accu-
rate, diarized, and tagged transcript for further LSA. Up 
to the sixth step of human correction, processing takes 
about 7 min for a 30-min audio sample with about 3 of 
the 7 min used in the  speaker assignment step.  At  that
point, relying on the CLAN editor’s continuous playback 
function, the transcriber goes through the whole result of 
Batchalign to fix errors. For a 30-min recording of data 
of the type used in our  current testing, this work will
take between 60 and 90 min. This reduces total transcrip-
tion time from about 10 hr to less than 2 hr. There are a 
variety of factors that will make these numbers vary 
markedly, including the quality of the audio, the nature 
of the interaction, the number of speaker overlaps, the 
accuracy of speakers’ pronunciations, the language status 
of the participants, and the training level of the tran-
scriber. When there are problems along these dimensions, 
transcriber time can increase markedly. If the sample 
comes from a speaker with marked phonological disor-
der, it may not be appropriate to use Batchalign at all. 
These issues are considered further in the Discussion 
section. 
Discussion 

We have described a new suite of automated facili-
ties for speech data recognition, segmentation, alignment, 
and analysis that can generate properly formatted CHAT 
transcripts with time alignments on the word and utter-
ance levels. The Batchalign pipeline can be run automati-
cally except for two segments that require human inter-
vention. It allows clinicians and researchers to create 
CHAT transcripts automatically, providing access to addi-
tional facilities in CLAN for automatic morphosyntactic 
analysis and automatic profiling while minimizing the 
need for time-consuming manual transcription. Thus, use 
of Batchalign can markedly shorten the gap between data 
collection and data analysis. 

An additional feature of Batchalign is its potential 
to address the issues of reliability and replicability 
(Munafò et al., 2017). Measures such as Cohen’s kappa 
(Cohen, 1968) cannot be used to determine reliability 
between two human transcribers because words, unlike 
codes, are not nominal variables. Some transcribers may 
be more accurate than others, and the performance of a 
given transcriber can vary markedly across days and 
materials. Like human transcribers, the pipeline is not 
fully accurate. However, its accuracy in terms of WER, 
time boundaries, and utterance segmentation can be mea-
sured, evaluated, and replicated in a deterministic manner. 
Moreover, future advances in training sets and algorithms 
for speech technology can lead to continuous increases in 
precision and recall. 

We are interested in providing versions of the pipe-
line that can work with other analysis systems, such as 
ELAN, SALT, and SUGAR, as mentioned earlier. 
Batchalign already includes format conversion programs 
for ELAN and Praat, and CLAN includes format con-
version commands for SALT and SUGAR. These con-
versions can be made available as options. Some users 
may wish to analyze data with Python scripts. For this 
work, researchers can make use of the XML and JSON 
versions of CHAT files that can be created using the 
Chatter XML validator. 

In this study, we focused on the E2E use of the 
Batchalign pipeline to create transcripts from raw audio. 
However, there is another entry point to the pipeline 
whereby existing transcriptions with rough human-annotated 
utterance-level alignments can be forced-aligned for
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word-level diarization and more accurate utterance-level dia-
rization. Many of the existing transcripts in TalkBank have 
exactly this format because they were created by human 
transcribers using methods that aligned utterances with 
media in an approximate manner. Improving on the diariza-
tion of these transcripts involves running with the -prealigned 
switch that invokes only the use of MFA. 

Despite its advantages, this method still faces at 
least six important limitations, as follows. 

1. Accurate ASR requires high-quality audio input. 
Recordings made in noisy classrooms, testing rooms 
with fan noise, or home environments with poor 
acoustics will present challenges to ASR accuracy. 
Clever placement of digital recording devices and 
reduction of noise sources can alleviate some of 
these problems. 

2. The recordings we have used thus far involve two-
speaker interactions with only moderate amounts of 
overlap. Dealing with speaker overlap is currently a 
major challenge for ASR systems (Huang et al., 
2022). 

3. Our current use of the pipeline has focused on pro-
tocol interviews with adults. We expect that there will 
be greater problems involved in use of the pipeline with 
children, particularly very young children. However, 
our initial tests with school-age children in the Illinois 
International Stuttering Research Project (Yairi & 
Ambrose, 2005) corpus at https://fluency.talkbank.org/ 
access/Password/IISRP.html and the MacWhinney 
longitudinal corpus of two siblings at https://childes. 
talkbank.org/access/Eng-NA/MacWhinney.html indi-
cate that the pipeline performs well with both normal 
and moderately disordered child language samples. 

4. There are also major challenges for ASR with adult 
speakers with disordered articulation or stuttering. 
There have been efforts to train corpora for adults 
who stutter (Lea et al., 2021) and adults with dysar-
thria (Kim et al., 2008). However, work along these 
lines is still in progress. In general, Batchalign would 
not be a good choice for work with samples from 
participants with phonological disorders. It would 
not work well with samples from people with fluent 
aphasia marked by frequent paraphasias. It would 
also not work well with people with global aphasia, 
apraxia of speech (Haley et al., 2012), or logopenic 
primary progressive aphasia (PPA; Keator et al., 
2019). At the same time, our initial tests with other 
data types in TalkBank indicate that it can be used 
with children ages 4 years and older who have no 
clear phonological problems (Moyle et al., 2007). It 
can also be used with adults with dementia (Luz 
• •2430 Journal of Speech, Language, and Hearing Research Vol. 66
et al., 2021), TBI (Elbourn et al., 2023), RHD 
(Minga et al., 2022), some forms of PPA (Tippett 
et al., 2017), and Parkinson’s disease. We are now 
using Batchalign on a regular basis when adding 
new, but not yet transcribed, data to the segments 
of TalkBank that include language from participants 
in these clinical groups. 

5. Thus far, we have only used the pipeline with data 
from English. Our work with language from Austra-
lians with TBI has indicated that Rev AI does a 
good job with this dialect of English. How well it 
will work with other dialects is not yet clear. We 
have also used it successfully with assessments in 
Spanish for psychosis, but the absence of data for 
training tokenization for that language makes addi-
tional hand retokenization necessary. Outside of 
Spanish, we have no experience using the pipeline 
for yet other languages, although Rev AI includes 
recognizers for 36 languages. 

6. Some projects may collect data that are subject to 
Health Insurance Portability and Accountability Act 
restrictions, which then further block the use of 
external services such as Rev AI. For such cases, we 
plan to make use of the open-source Whisper system 
from OpenAI (https://openai.com/blog/whisper; Baevski 
et al., 2020). 

Given these limitations and gaps in testing, we 
would currently recommend that the pipeline be used pri-
marily for transcription and analysis of two-party conver-
sations between English-speaking adults who do not have 
marked articulatory or phonological problems. Future 
work will focus on quantifying and adjusting to these vari-
ous limitations and maximizing the accuracy of the cur-
rent system. 

Another goal for future research will be the con-
struction of baselines for model evaluation. Constructing 
these baselines will involve sampling from a wide variety 
of recording types and clinical types. A recent Associa-
tion for Computational Linguistics workshop highlighted 
this as a general problem, particularly for the study of 
language disorders (Church et al., 2021). Stoppa et al. 
(2022) explain how the lack of a baseline data set for 
testing has restrained progress on the application of ML 
methods to the detection of the early onset of dementia. 
To correct for this problem, we (Luz et al., 2021) 
have established the Pitt corpus in DementiaBank as 
the baseline for algorithm testing through Interspeech 
challenges in 2020 (https://dementia.talkbank.org/ADReSS-
2020/) and 2021 (https://dementia.talkbank.org/ADReSS-
2021/). We hope to create similar methods, baseline cor-
pora, and challenges for the study of ASR applications for 
language disorders.
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