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Abstract

Background: Mendelian randomization (MR) studies are susceptible to metadata errors

(e.g. incorrect specification of the effect allele column) and other analytical issues that

can introduce substantial bias into analyses. We developed a quality control (QC) pipe-

line for the Fatty Acids in Cancer Mendelian Randomization Collaboration (FAMRC) that

can be used to identify and correct for such errors.

Methods: We collated summary association statistics from fatty acid and cancer ge-

nome-wide association studies (GWAS) and subjected the collated data to a comprehen-

sive QC pipeline. We identified metadata errors through comparison of study-specific

statistics to external reference data sets (the National Human Genome Research

Institute-European Bioinformatics Institute GWAS catalogue and 1000 genome super

populations) and other analytical issues through comparison of reported to expected

genetic effect sizes. Comparisons were based on three sets of genetic variants: (i) GWAS

hits for fatty acids, (ii) GWAS hits for cancer and (iii) a 1000 genomes reference set.

Results: We collated summary data from 6 fatty acid and 54 cancer GWAS. Metadata

errors and analytical issues with the potential to introduce substantial bias were identi-

fied in seven studies (11.6%). After resolving metadata errors and analytical issues, we

created a data set of 219 842 genetic associations with 90 cancer types, generated in

analyses of 566 665 cancer cases and 1 622 374 controls.

Conclusions: In this large MR collaboration, 11.6% of included studies were affected by a

substantial metadata error or analytical issue. By increasing the integrity of collated sum-

mary data prior to their analysis, our protocol can be used to increase the reliability of

downstream MR analyses. Our pipeline is available to other researchers via the

CheckSumStats package (https://github.com/MRCIEU/CheckSumStats).
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Background

Summary data from genome-wide association studies

(GWAS) provide a rich resource for two-sample

Mendelian randomization (MR) studies of exposure–dis-

ease pathways (see Box 1 for a general overview of MR).

To strengthen causal inference, MR studies evaluate the

sensitivity of their results to violations of analytical or in-

strumental variable assumptions, such as the presence of

horizontal pleiotropy, for which an increasingly broad and

sophisticated range of methods are available.1–3 An

Key Messages

• Metadata errors (e.g. incorrect specification of the effect allele column) and other analytical issues can introduce

substantial bias into Mendelian randomization (MR) studies but have received relatively little attention in comparison

to other sources of bias, such as violations of instrument variable assumptions.

• We found that 11.6% of the studies in the Fatty Acids in Cancer Mendelian Randomization Collaboration were subject

to metadata errors or analytical issues with the potential to introduce substantial bias into MR analyses (e.g.

inferences of causal effect in the wrong direction or bias to the null).

• Previously developed guidelines for conducting MR studies provided insufficient safeguards against such errors.

• We developed additional guidelines and the CheckSumStats R package (https://github.com/MRCIEU/CheckSumStats)

that can reliably identify and correct metadata errors and other analytical issues at the study design stage.
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additional, often overlooked source of bias in MR studies

are errors in the underlying summary data or metadata.

For example, incorrect specification of the effect allele col-

umn may lead to effect estimates that are in the wrong di-

rection.4 These errors occur because conventions for the

inclusion or naming of data fields that avoid ambiguity

have not been widely adopted by the GWAS community,

increasing the potential for misinterpretation by data ana-

lysts.5 GWAS summary data can also be obtained from an

increasingly diverse range of sources, including online plat-

forms and study-specific websites, but it is not always clear

whether such results have been through post-GWAS filter-

ing steps [e.g. with low frequency or poorly imputed

single-nucleotide polymorphisms (SNPs) excluded], which

increases the potential for unreliable genetic associations.

The potential for metadata and summary-data errors is

compounded in relatively complex MR study designs, such

as in MR-PheWAS6–8 (MR-phenome-wide association

study), wide-angled MR7,9 and pan-disease MR,10 in

which summary-data sets from many different studies, cor-

responding to many different exposures and/or outcomes,

are collated and harmonized into a single analysis.Within

the GWAS field, quality control (QC) procedures have

been developed that can detect a wide range of analytical

issues and metadata errors, either at the GWAS stage11 or

at the post-GWAS meta-analysis stage.12 For example, it is

common practice to exclude genetic variants of low geno-

type or imputation quality or with low minor allele counts,

since inclusion of such variants can lead to unstable genetic

effect estimates and increase the rate of type I errors.12 A

widely used QC strategy for the identification of metadata

and summary-data errors in GWAS meta-analyses is to

compare study-specific statistics to external reference data

sets or to results based on theoretical expectations.12 Some

of these QC procedures can also be used in the MR context

to identify potential issues with the summary data. For ex-

ample, effect allele coding errors can be identified by com-

paring reported allele frequency with allele frequency in a

reference population. However, MR studies are subject to

a unique set of challenges that often hamper the applica-

tion of some previously developed QC checks. For exam-

ple, to reduce the risk of individual re-identification, some

consortia do not share allele frequency information with

external researchers or replace it with the allele frequency

of a reference population. A further hindrance is that met-

rics of genotype or imputation quality, or of between-study

heterogeneity (in the meta-analysis context), are often not

made available in GWAS results files. Some QC procedures

flag potential issues by comparing study-specific statistics

across studies12 but under the assumption that all studies

employed the same regression models with the same out-

comes, covariates and trait transformations, which is un-

likely in complex MR study designs. Some studies only

make small subsets of GWAS summary data available to

researchers, which makes detecting errors harder.

In the present paper, we describe a pipeline for the QC

of GWAS summary data developed for the Fatty Acids in

Cancer Mendelian Randomization Collaboration

(FAMRC)—a pan-cancer MR study that seeks to evaluate

the causal relevance of fatty acids for risk for most major

Box 1. General overview of Mendelian randomization studies

The main aim of MR is to assess the potentially causal nature and direction of associations between exposure and out-

come traits. Rather than studying the exposure–outcome relationship directly, i.e. using phenotypically measured levels

of the exposure, MR uses genetic polymorphisms as instruments or proxies for the exposure. If the genetic instrument

for the exposure is associated with the outcome of interest, this can be taken as evidence for a causal effect of the ex-

posure on the outcome, so long as instrumental variable (IV) assumptions are met: (i) the instrument is associated with

the exposure; (ii) the instrument is not associated with confounders of the exposure–outcome association; and (iii) the

instrument is associated with the outcome exclusively through its effect on the exposure. Although violations of

assumptions can be introduced by genomic confounding or horizontal pleiotropy, an increasingly sophisticated range

of sensitivity analyses are available that can be used to model the impact of such bias on MR findings.

In the two-sample approach to MR, genetic summary data for the exposure and the outcome are obtained from sepa-

rate studies. This greatly increases the scope of MR, as it means the method can be applied to any disease case–control

collection regardless of whether the exposure has been directly measured or not. The success of GWAS has greatly in-

creased the number of traits with available genetic association or summary data. In principle, any heritable trait with

summary genetic association data can be used to define an exposure or an outcome in a two-sample MR study and

thus the scope for what counts as an exposure or an outcome is very broad. Exposure and outcome traits can vary

from relatively simple molecular traits, such as expression or protein traits, to highly complex traits, such as human

behaviours and disease outcomes.
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cancers. The basic principle of our QC approach is to

identify metadata errors through comparison of study-

specific statistics to external reference data sets [e.g. the

National Human Genome Research Institute-European

Bioinformatics Institute (NHGRI-EBI) GWAS catalogue

and 1000 genome super populations] and to identify po-

tential analytical issues or summary-data errors through

comparison of reported to expected genetic effect sizes.

Using the pipeline, we created a data set of 219 842 genetic

associations with 90 cancer types, generated in analyses of

566 665 cancer cases and 1 622 374 controls in 51 studies.

The size and complexity of the FAMRC make it an ideal

collaboration in which to develop and evaluate QC pro-

cesses for the detection of errors that can introduce biases

into downstream MR analyses.

Methods

The FAMRC had four key design components: (i) fatty

acid instrument selection strategy; (ii) cancer outcome se-

lection strategy; (iii) cancer data preparation and harmoni-

zation; and (iv) identification of summary-data errors,

metadata errors and other analytical issues (Figure 1).

Fatty acid instrument selection strategy

We searched for GWAS of fatty acids published up to

December 2018 by searching the NHGRI-EBI GWAS cata-

logue13 (https://www.ebi.ac.uk/gwas/) and Open GWAS14

(https://gwas.mrcieu.ac.uk/), using fatty acid-related search

terms, including: fat, acid, fatty acid, DHA, omega, mono-

unsaturated, monounsaturated, polyunsaturated, satu-

rated, omega 3 and omega 6. Fifteen studies were

identified by this strategy. When full summary association

statistics were available, independent genetic associations

with P< 5e-8 were identified through linkage disequilib-

rium (LD) clumping (r2 threshold set to 0.01), with LD ref-

erence panels based on either the European or East Asian

1000 genome superpopulations (clumping was performed

using the ieugwasr package15). We also selected all SNP

associations reported in the GWAS catalogue, with no

specified P-value threshold. We further identified SNP

proxies, defined as SNPs having an r2 of �0.8 with any

one of the fatty acid SNPs in European or East Asian 1000

genomes reference data. We also searched for alias refer-

ence SNP identifiers (rsids) in the Single Nucleotide

Polymorphism Database (dbSNP) and 1000 genomes refer-

ence data, to make allowance for different rsids across dif-

ferent genome builds for the same SNP. We refer to the

genetic associations for fatty acids, their r2 proxies and

alias rsids as the ‘fatty acid SNP set’ (Figure 1). To identify

metadata errors, summary-data errors or other analytical

issues, we developed and applied a QC pipeline to the fatty

acid summary-data sets (described below).

Cancer outcome selection strategy

We searched for studies of cancer in the GWAS catalogue13

up to 1 November 2018. Search terms included:

cancer, carcinoma, neoplasm, neoplastic, tumor, tumour,

adenocarcinoma, glioblastoma, leukemia, lymphoma, mel-

anoma, meningioma, mesothelioma, myeloma, neuroblas-

toma and sarcoma. When multiple studies of the same

cancer outcome were identified, we prioritized the larger

study. When not already available via Open GWAS14

(https://gwas.mrcieu.ac.uk/) or the GWAS catalogue, we

invited the identified studies to share summary data for all

SNPs in their GWAS analysis (defined as ‘full GWAS sum-

mary data’). If studies were unable to share full summary

data, they were invited to share genetic association results

for the ‘fatty acid SNP set’. We further downloaded sum-

mary association statistics for cancers from Biobank

Japan16–18 (http://jenger.riken.jp/en/), FinnGen [data freeze

1 (14 January 2020)] (https://www.finngen.fi/fi) and UK

Biobank19,20 using the Open GWAS platform14 and ieug-

wasr package.15 We prioritized studies of cancer incidence

and excluded studies of cancer survival, mortality or

progression-related phenotypes.

For data sets obtained via correspondence, studies were

invited to share summary data up until December 2019, af-

ter which data collection was closed. Example data sharing

instructions can be found in the Supplementary materials

(available as Supplementary data at IJE online). For each

SNP, we asked studies to provide a minimum of: effect esti-

mates (log odds ratios and standard errors), the effect al-

lele, non-effect allele and effect allele frequency. We also

asked studies to provide metrics of SNP genotype quality,

such as P-values for Hardy–Weinberg equilibrium (HWE)

and metrics of imputation quality, such as info scores.

When the GWAS was a meta-analysis of multiple indepen-

dent studies, we additionally requested P-values for

between-study heterogeneity.

Cancer data preparation and harmonization

For each cancer with full summary data, we extracted the

following three sets of SNPs:

i. the fatty acid SNP set;

ii. the 1000 genomes reference set;

iii. the GWAS catalogue ‘top hits’ for cancer.

‘Top hits’ refers to the strongest or statistically signifi-

cant genetic associations for the cancer of interest from
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Figure 1 Study design flow chart. GWAS, genome-wide association study; SNP, single-nucleotide polymorphism; rsid, reference SNP identifier

1502 International Journal of Epidemiology, 2023, Vol. 52, No. 5



published studies (often defined as P-values <5�10–8).

When full summary data were not provided, QC analyses

were restricted to the ‘fatty acid SNP set’. We next formatted

the cancer summary-data sets to have similar tabular formats

(e.g. where results were distributed across multiple files we

merged these together) and to have consistently named data

fields. SNPs without rsids were mapped to an rsid using the

reported chromosome and base pair position. We excluded

duplicate and triallelic SNPs as well as SNPs with missing ef-

fect sizes and standard errors or with a minor allele count of

<50 in either cases or controls. If standard errors were not

reported, we attempted to infer these from confidence inter-

vals or P-values before excluding the SNP. We asked each

study to confirm the identity of the effect allele and effect al-

lele frequency columns in their data sets, unless this was un-

ambiguously specified in the metadata or associated readme

file. We manually mapped the cancer name for each data set

to the experimental factor ontology (EFO).21

QC pipeline to identify analytical issues or

summary and metadata errors

To identify metadata errors, summary-data errors or other

analytical issues, we developed a QC pipeline based on the R

programming language and associated packages.15,22–32 We

used the pipeline to: (i) confirm the identity of the effect al-

lele column (Figure 2); (ii) confirm the identity of the effect

allele frequency column (Figure 2); and (iii) identify analyti-

cal issues or potential errors in the summary data (e.g. an un-

usual number of GWAS hits or unusual distributions in

effect sizes). All the functions and tests of the QC pipeline

are available to other researchers via the CheckSumStats

package (https://github.com/MRCIEU/CheckSumStats).

Instrument-specific QC

To identify potential analytical issues or errors in the ge-

netic instruments for fatty acids, we compared genetic as-

sociation results identified through LD clumping (r2¼0.01

and kb¼ 10 000) to associations in the GWAS catalogue.

We set the significance threshold for LD clumping to the

threshold reported in the fatty acid GWAS: 5-e8 in

CHARGE (Cohorts for Heart and Aging Research in

Genomic Epidemiology Consortium),33 SCHS (the

Singapore Chinese Health Study)34 and NHAPC/MESA-

CHI (Nutrition and Health of Aging Population in China/

Multi-Ethnic Study of Atherosclerosis—Chinese ancestry

participants),35 1e-8 in the FHS (the Framingham study),36

2.3e-9 in Kettunen et al.37 and 1.03e-10 in the TwinsUK/

KORA (Twins United Kingdom/Cooperative Health

Research in the Region of Augsburg) study.38 We used the

1000 genomes European superpopulation as an LD

reference panel for CHARGE, the FHS, Kettunen et al. and

TwinsUK/KORA, and the East Asian superpopulation as

an LD reference panel for the SCHS and NHAPC/MESA.

We searched the GWAS catalogue for the lead SNP, identi-

fied by the latter clumping procedure, as well as SNPs

within 200 000 base pairs of the lead SNP (associations

were retrieved from the GWAS catalogue via the gwasra-

pidd package32). Data sets were flagged for further

investigation if any lead SNPs were absent from the GWAS

catalogue. We additionally searched for metadata and

summary-data errors in the fatty acid GWAS results

through comparisons of effect alleles and allele frequency

with external reference data sets and by comparing

reported to expected effect sizes (described below).

Confirming the effect allele column

To identify incorrect specification of the effect allele col-

umn, we compared summary association statistics in the test

data set (either a fatty acids or cancer data set) to summary

association statistics in the NHGRI-EBI GWAS catalogue13

(Figure 2). The latter is a manually curated database of

251 401 genetic associations from 4961 publications (as of

April 2021) and includes information on effect alleles, effect

sizes and EFOs. The genetic associations in the manually cu-

rated database typically correspond to the statistically signif-

icant findings (‘top hits’) from published studies (often

defined as P< 5e-8). In recent years, the GWAS catalogue

has started to host full GWAS summary statistics. However,

for this QC step, we are referring exclusively to the manu-

ally curated database of published ‘top hits’.

In the first step, we searched the GWAS catalogue for

SNPs associated with the EFO or reported trait of the test

data set. Second, for each SNP associated with the EFO

term, we extracted from the GWAS catalogue the effect

size, standard error, effect allele, effect allele frequency and

study ancestry (genetic associations were retrieved via the

gwasrapidd package32). SNPs missing any of this informa-

tion, or that were palindromic, were removed. Third, ge-

netic associations for these SNPs were then extracted from

the test data set. Fourth, the effect sizes and effect allele

frequencies from the GWAS catalogue and test data set

were harmonized to reflect the same effect allele and com-

pared in scatter plots (constructed using the ggplot pack-

age22). Comparisons were restricted to populations of

European or East Asian ancestry.

We then inspected the scatter plots for conflicting direc-

tions of association. For example, we declared a conflicting

direction of association if the effect allele was associated

with higher cancer risk in the GWAS catalogue but was as-

sociated with lower risk in the test data set. The level of

conflict was further labelled as ‘high’ if the P-value for the
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association was <0.0001 in both the GWAS catalogue and

the test data set and as ‘moderate’ if not, so as to make al-

lowance for chance deviations in effect direction in small

studies. If the test data set and the data in the GWAS cata-

logue corresponded to the same publication, the conflict

level was labelled as ‘high’ regardless of the P-value

strength. For comparisons of allele frequency, we declared

a conflict if the effect allele frequency was not greater (or

less) than 0.5 in both data sets. The level of conflict was

further labelled as high if the minor allele frequency was

�0.4 in both data sets, and as moderate if not. The latter

step makes allowance for chance deviations in allele fre-

quencies for SNPs with minor allele frequencies close to

0.5. Conflicts were also labelled as high if the allele fre-

quency differed by >10 points between the test and refer-

ence data sets. When interpreting the scatter plots, it is

important to take into account the total number of SNPs in

the comparison as well as the ancestry of the test and refer-

ence data sets. Conflicting associations are more likely to

reflect true effect allele coding issues when the conflict is

systematic across a large number of SNPs and when the an-

cestry of the data sets being compared is the same. When a

substantial proportion of SNPs displayed effect or allele

frequency conflicts, we flagged the test data set as contain-

ing a potential effect allele metadata error.

Confirming the effect allele frequency column

To confirm the effect allele frequency column, we

compare the test data sets to two types of reference data

sets: the 1000 genomes project39 and the exposure study.

In the case of the present analysis, we used CHARGE and

the SCHS as representative of exposure (i.e. fatty acid)

studies in Europeans and East Asians, respectively. For

comparisons with the 1000 genomes project, we created a

reference data set of 2297 SNPs that have the same minor

allele across the African, European, East Asian, American,

South Asian and Global super populations and that

also have a minor allele frequency of between 0.1 and 0.35

(this data set is available to other researchers in the

CheckSumStats R package) (Figure 2). We refer to the

2297 SNPs as the ‘1000 genomes reference set’. For com-

parisons with CHARGE and the SCHS, we created a refer-

ence data set corresponding to the fatty acid SNP set

described above (see ‘Fatty acid instrument selection strat-

egy’). We then compare minor allele frequencies between

Figure 2 Recommended procedure to confirm the identity of the effect allele and effect allele frequency columns in the results of a genome-wide as-

sociation study. EBI, European Bioinformatics Institute; EFO, experimental factor ontology; EAF, effect allele frequency; GWAS, genome-wide associ-

ation study; MAF, minor allele frequency; NHGRI, National Human Genome Research Institute; SNP, single-nucleotide polymorphism
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the test data set and the reference data set. The comparison

involves the following steps. First, we merge the test and

reference data set. Second, we recode the reported effect al-

lele and reported effect allele frequency in the test data set

to reflect the minor allele in the reference data set. Third,

we compare minor allele frequencies between the data sets

in scatter plots22 and inspect the plots for conflicting pat-

terns. A conflict is declared for individual SNPs if their al-

lele frequency is >0.5 in the test data set. If the frequency

is also �0.58, the conflict level is upgraded to ‘high’ (to

make allowance for chance deviations). Conflicts are also

labelled as high if the allele frequency differs by >10 points

between the test and reference data sets. If an inverse corre-

lation is observed across the vast majority of SNPs, this

indicates that the conflict is systematic and that the

reported effect allele frequency actually corresponds to the

non-effect allele. When there is a conflict for approxi-

mately half the SNPs, this implies that the reported effect

allele frequency column actually corresponds to the

minor allele and that the minor allele is not consistently

the effect allele. In the latter situation, the scatter plot will

show two separate groups of SNPs—one with a positive

correlation and the other with an inverse correlation—in

the allele frequency between the data sets. The strength

and linearity of the correlation in the allele frequency be-

tween the test and reference data sets also provide informa-

tion on the ancestral background of the participants used

to generate the test data set. An advantage of using our

‘1000 genomes reference set’ is that incorrect specification

of the effect allele frequency can be identified without

knowledge of the ancestral background of the test data set.

Identifying other analytical issues and

summary-data errors

To identify potential analytical issues or summary-data

errors, we compare the expected and reported effect sizes.

For continuous exposures, such as fatty acid levels, we gen-

erate expected betas using the formula:

beta ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p 1� pð Þ nþ z2ð Þ

q

where p is the minor allele frequency, n is the sample size

and z is the ratio of the effect size to its standard error. The

predicted effect size from this transformation can be inter-

preted as the standard deviation change in the exposure

per copy of the effect allele (assuming that z itself was gen-

erated in an additive genetic model). When the expected ef-

fect size is a log odds ratio, e.g. for cancer status analysed

in a logistic regression model, we generate the expected log

odds ratio for each SNP using a simulation method that

takes into account the SNP’s z-score, minor allele fre-

quency and the number of cases and controls40 and

assumes an additive genetic model. More details of the

method can be found in the Supplementary materials

(available as Supplementary data at IJE online).

We then regress the expected effect size (the per-allele

standard deviation change in a continuous trait or log odds

ratio for a binary trait) on the reported effect size and inter-

pret a slope very different from 1 (which we define as either

>1.20 or <0.8) as evidence for an unusual distribution in the

reported effect sizes. We also assess the overall shape of the

relationship between the expected and reported effect sizes in

scatter plots, with the expectation of linearity. Deviations of

the slope from one or non-linear patterns could reflect:

i. errors in the reported effect sizes, reported sample sizes

or reported allele frequencies;

ii. effect size scale conflicts [e.g. reported effect sizes have

not been standardized (for continuous traits) or effect

sizes have not been generated in a logistic regression

model (for binary cancer outcomes)]);

iii. the impact of covariate adjustment in the regression

model;

iv. deviations from HWE.

If we found that the summary association statistics for

cancer were generated in a linear model (e.g. BOLT-

LMM41), we transformed the effect size to a log odds ratio

scale using the following formula:

log odds ¼ beta

uð1� uÞ

where u is the case prevalence in UK Biobank. The stan-

dard error for the log odds ratio can be obtained with the

same transformation.

To see whether discrepancies between the reported and

expected effect sizes were related to metrics of genotype or

imputation quality, we compared discrepancies to reported

info or r2 imputation scores, P-values for HWE and, in the

case of meta-analyses, P-values for between-study hetero-

geneity and the number of studies. Potential errors in

reported effect sizes were also identified by comparing zb-

scores (inferred from the reported effect size and standard

error) to zp-scores (inferred from the reported P-value) in

scatter plots (also known as P–Z plots12).

Results

Fatty acid data sets

Our search of the GWAS catalogue identified 15 publica-

tions corresponding to 71 fatty acid traits, including 13
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monounsaturated fatty acids (MUFAs), 22 saturated fatty

acids, 6 omega 3 polyunsaturated fatty acids (PUFAs), 8

omega six PUFAs, 8 trans-fatty acids and 14 other fatty

acid characteristics (Supplementary Tables S1 and S2, and

Supplementary Figure S1, available as Supplementary data

at IJE online).33–38,42–50 The median number of fatty acids

assessed per publication was 6 (minimum¼2,

maximum¼34). Nine of the 15 publications were con-

ducted by, or overlapped with, the CHARGE consortium.

The median study sample size was 7811 (minimum¼284;

maximum¼17 267). The 15 publications corresponded to

seven independent studies or consortia. An interaction

study was the only fatty acid GWAS excluded.51 We subse-

quently invited the identified studies to share full summary

data with the FAMRC (except for Shin et al.38 and

Kettunen et al.,52 which were already available via Open

GWAS49). The vast majority of the GWAS analyses were

conducted in European ancestry populations (11/15), two

were conducted in populations of East Asian ancestry, one

in a population of South Asian ancestry and one in a trans-

ethnic GWAS of Europeans and East Asians. We collated

full summary data from 13 of 15 publications, correspond-

ing to six independent consortia or cohort studies:

CHARGE,33,42–44,47–50 SCHS,34 FHS,36 the TwinsUK/

KORA study,38 the NHAPC/MESA-CHI study35,47 and

Kettunen et al.37 In the SCHS, fatty acid GWAS analyses

were conducted separately amongst myocardial infarction

cases and controls. We combined these data sets by fixed-

effects meta-analysis in METAL.53 Overall, 124 summary-

data sets were available from the six studies (where each

data set corresponds to a single fatty acid GWAS analysis,

Supplementary Table S2, available as Supplementary data

at IJE online).

To identify metadata and summary-data errors, we ap-

plied a custom QC pipeline to the CHARGE, FHS, SCHS,

TwinsUK/KORA, NHAPC/MESA-CHI and Kettunen et al.

studies (Figure 3 and Supplementary Figures S1–S6, avail-

able as Supplementary data at IJE online). No allele fre-

quency or effect allele conflicts were observed, indicating

that the reported effect allele and effect allele frequency

columns were correctly indicated. A strong and positive

linear relationship between the expected and reported ef-

fect sizes was also observed in the FHS, TwinsUK/KORA,

NHAPC/MESA-CHI and Kettunen et al. studies, with

slopes close to 1, suggesting the absence of major analytical

issues in these studies.

The expected and reported effect sizes for selected fatty

acids were not, however, well correlated in the CHARGE

(Figure 3) and SCHS studies (Supplementary Figure S5,

available as Supplementary data at IJE online). We also

identified 109 independent GWAS hits for arachidonic

acid in CHARGE after LD clumping, of which only four

were also reported in the GWAS catalogue, compatible

with the presence of a large number of false positives. After

corresponding with the data provider, we were able to con-

firm that post-GWAS filtering of low-quality variants (de-

fined as SNPs with minor allele frequency of <5%,

imputation r2 < 0.5 or as SNPs that were present in only

one study33) had not been performed on the data set posted

to the CHARGE website. After excluding these SNPs, fol-

lowing recommendations of the data provider,33 we ob-

served a strong linear relationship between the reported

and expected effect sizes and a slope of 1.02

(Supplementary Figure S7, available as Supplementary

data at IJE online). The 109 independent GWAS hits also

decreased to seven in the cleaned data set, all of which

mapped to the fatty acid desaturase genomic region on

chromosome 11 or Pyridoxal Dependent Decarboxylase

Domain Containing 1 (PDXDC1) on chromosome 16,

regions harbouring established GWAS hits for fatty acids

(and therefore unlikely to be false positives). In the SCHS,

the relationship between the expected and reported effect

sizes was skewed by a single outlier SNP (Supplementary

Figure S5, available as Supplementary data at IJE online).

Further investigation revealed that the outlier was due to

incorrect specification of the sample size for this SNP.

We also identified two independent GWAS hits for se-

lected fatty acids in the NHAPC/MESA-CHI and SCHS

studies that were not present in the GWAS catalogue or in

the associated publications. We subsequently confirmed

that post-GWAS filtering steps for low-quality variants

had not been applied to the GWAS results files for the

NHAPC/MESA-CHI study and that the identified GWAS

hit had failed the reported QC checks (we therefore ex-

cluded this variant). In the SCHS, correspondence with the

data provider indicated that a file sharing error had oc-

curred and we therefore obtained a new set of GWAS

results files (in which conflicts with the GWAS catalogue

were no longer observed). Conflicts with the GWAS cata-

logue were not observed for the FHS, TwinsUK/KORA

and Kettunen et al. studies. The false positive GWAS hits

identified in the CHARGE and NHAPC/MESA-CHI

studies only apply to the results files shared with

the FAMRC and do not apply to the published GWAS

findings.33–35,42–44,47–50

After applying the SNP selection strategy and resolving

the analytical issues flagged by the QC pipeline, we identi-

fied 288 SNPs associated with 53 fatty acid traits (median

6 per trait). We identified a further 1841 SNP proxies using

the 1000 genomes European super population, 2251 SNP

proxies in the 1000 genomes East Asian super population

and 197 alias rsids in dbSNP and 1000 genomes reference

data. The total number of SNPs associated with fatty acids,

their r2 proxies and alias rsids was 2326 for European

1506 International Journal of Epidemiology, 2023, Vol. 52, No. 5

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data


Figure 3 Quality control report for genetic summary data from a genome-wide association of arachidonic acid in the Cohorts for Heart and Aging

Research in Genomic Epidemiology Consortium (CHARGE). Allele frequencies are expected to be <0.50. A high allele frequency conflict is defined as

an allele frequency of >0.58 in the test data set (CHARGE in this example) or if the allele frequency differs by >10 points between the test and refer-

ence data sets. Moderate allele frequency conflicts are allele frequencies of >0.50 but �0.58. Effect size conflicts are defined as different directions of

effect, represented by signed z-scores, between the test data set (CHARGE in this example) and the GWAS catalogue. The level of conflict is further la-

belled as ‘high’ if the P-value for the association is <0.0001 in both the GWAS catalogue and the test data set, and as ‘moderate’ if not. Effect allele
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studies and 2596 in East Asians (excluding duplicate

SNPs that overlapped amongst the fatty acid and proxy

sets) (Supplementary Tables S3 and S4, available as

Supplementary data at IJE online). We henceforth refer to

these SNPs as the ‘fatty acid SNP set’.

Collation of cancer data sets

As of January 2020, we had collated 166 summary genetic

data sets from 54 cancer studies16,54–102 (Supplementary

Table S5 and Supplementary Figure S8, available as

Supplementary data at IJE online). Thirty-eight studies

supplied a single data set, 10 studies supplied two to five

data sets and 6 studies supplied more than five data sets.

Of the 166 cancer data sets, 31 were from UK Biobank, 12

were from Biobank Japan and 29 were from FinnGen.

Fifty-nine data sets (from 41 studies) were obtained via

correspondence with study principal investigators, 6 data

sets (from 3 studies) were downloaded from the GWAS

catalogue and 101 data sets (from 12 studies) were down-

loaded from the Open GWAS project.14 Of the 101 Open

GWAS data sets, 12 were from Biobank Japan, 29 were

from FinnGen, 30 were from UK Biobank, 27 were from

GWAS meta-analysis consortia and 3 were from other

studies. Further details of the cancer studies can be found

in Table 1 and Supplementary Tables S5 and S6 (available

as Supplementary data at IJE online). Effect allele fre-

quency was available in 156 data sets (from 46 studies),

metrics of imputation quality (r2 or info scores) were

available in 53 data sets (from 25 studies) and P-values for

deviations from HWE were available in 6 (from 6 studies).

Of 65 data sets derived from 29 GWAS meta-analyses,

P-values for between-study heterogeneity were available in

18 (from 9 meta-analyses) and the number of studies per

SNP was available in 16 (from 7 meta-analyses).

We extracted three sets of genetic associations from

each data set for which full GWAS results were available

(132 data sets from 31 studies): (i) the fatty acid SNP set,

(ii) the 1000 genomes reference set and (iii) known cancer

hits in the GWAS catalogue. For 34 data sets from 25 stud-

ies, only a subset of GWAS results, corresponding to the

fatty acid SNP set, was available. We excluded duplicate

and triallelic SNPs; SNPs with missing effect allele, effect

sizes or standard errors; SNPs that could not be mapped to

an rsid; and SNPs with a minor allele count in cases of

<50. After these exclusions, there were 401 026 genetic

associations with cancer across 163 data sets in 52 studies.

Of these, 223 970 genetic associations corresponded to the

fatty acid SNP set, 93 121 corresponded to the 1000

genomes reference set and 24 860 corresponded to known

cancer associations in the GWAS catalogue. Three studies

providing genetic associations for the fatty acid SNP set

provided an additional 40 582 genetic associations for

SNPs within 500 kb of a fatty acid index SNP [ACCC

(ID3), UCSF_AGS þ SFAGS (ID133) and UCSF_Mayo

(ID 134)] (cancer study abbreviations explained in

Supplementary Table S6, available as Supplementary data

at IJE online).

Results of QC pipeline applied to the cancer data

sets

Metadata errors or analytical issues were identified in 41

cancer data sets from 20 studies (Supplementary Table S7,

available as Supplementary data at IJE online). These in-

cluded serious metadata errors (defined as incorrect label-

ling of the effect allele or effect allele frequency columns)

in five data sets from five studies. In three data sets, alleles

associated with higher cancer risk in the GWAS catalogue

were associated with lower risk in the test data set for

a substantial proportion of SNPs (Figure 4 and

Supplementary Figures S9 and S10, available as

Supplementary data at IJE online), suggesting that the ef-

fect allele column refers to the non-effect allele. This was

clearest for GliomaScan (ID 967) where 19/21 SNPs were

discordant with the GWAS catalogue but was less clear for

the NBS (ID 106) and BC-NHL (ID 5) data sets (cancer

study abbreviations explained in Supplementary Table S6,

available as Supplementary data at IJE online). In the BC-

NHL, although all SNPs were discordant to the GWAS cat-

alogue, the number available for comparison was small

and z-scores were not large (z�2.5). Therefore, we could

not rule out chance deviations from the GWAS catalogue

for this data set. In addition, the ancestry of the BC-NHL

(East Asian) was different to the ancestry of the reference

data set (European). Therefore, the observed conflict for

the BC-NHL data set could also reflect differences in LD

between populations. In the NBS (ID 106), equal numbers

of SNPs were highly discordant and highly concordant to

the GWAS catalogue. Due to the ambiguity of the effect al-

lele we decided to drop the BC-NHL (ID 5) and NBS (ID

106) data sets. Reported effect alleles were compatible

Figure 3 (Continued)

frequency conflicts with the GWAS catalogue are declared if the effect allele frequency is not greater (or less) than 0.5 in both data sets. The level of

conflict is further labelled as high if the minor allele frequency is �0.4 in both data sets, and as moderate if not. Effect allele frequency conflicts are

also defined as high if the effect allele frequency differs by >10 points between the test and reference data sets. EAF, effect allele frequency; GWAS,

genome-wide association study; MAF, minor allele frequency

1508 International Journal of Epidemiology, 2023, Vol. 52, No. 5

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data


Table 1 Cancer studies in the Fatty Acids in Cancer Mendelian Randomization Collaboration

Cancer Contributing studies Organ site/cell Cases Controls Population

Overall/pan cancer

Cancer (all-cause) UKB; FinnGen Multiple 101 440 437 298 European

Cancer (excluding non-melanoma

skin cancer)

UKB Multiple 50 643 372 016 European

Blood cancers

Acute lymphoblastic leukaemia BC-ALL; C-ALL; SJ-

COG

B lymphocytes;

lymphocytes

3178 33 048 European

B cell non-Hodgkin lymphoma BC-NHL B lymphocytes 253 1438 East Asian

Blood cancer UKB; BJ; FinnGen Leukocytes 6789 678 731 European and

East Asian

Chronic lymphocytic leukaemia InterLymph B lymphocytes 3100 7667 European

Chronic myeloid leukaemia KCML Myeloid cells 201 497 East Asian

Diffuse large B cell lymphoma InterLymph B lymphocytes 3857 7666 European

Follicular lymphoma InterLymph;

FinnGen

B lymphocytes 3005 104 448 European

Hodgkin’s lymphoma HLS Lymphocytes 3077 13 680 European

Leukaemia UKB Leukocytes 1260 372 016 European

Lymphoid leukaemia UKB; FinnGen Lymphocytes 958 468 317 European

Lymphoma UKB Lymphocytes 1752 359 442 European

Marginal zone lymphoma InterLymph B lymphocytes 825 6221 European

Multiple myeloma MMS; UKB;

FinnGen

Plasma cells 2495 478 726 European

Myeloid leukaemia UKB Myeloid cells 462 372 016 European

Non-follicular lymphoma FinnGen Lymphocytes 344 96 155 European

Non-Hodgkin lymphoma

unspecified

FinnGen Lymphocytes 155 96 344 European

Digestive system cancers

Biliary tract cancer BJ Biliary tract 339 195 745 East Asian

Cancer of digestive organs UKB; FinnGen Digestive organs 7272 450 421 European

Colon cancer GECCO/CORECT/

CCFR

Bowel 31 083 67 694 European

Colorectal cancer GECCO/CORECT/

CCFR; ACCC;

FinnGen

Bowel 82 546 211 703 European and

East Asian

Colorectal cancer in females GECCO/CORECT/

CCFR

Bowel 26 843 32 820 European

Colorectal cancer in males GECCO/CORECT/

CCFR

Bowel 31 288 34 527 European

Distal colorectal cancer GECCO/CORECT/

CCFR

Bowel 15 306 67 694 European

Oesophageal adenocarcinoma EAS; UKB Oesophagus 4852 389 175 European

Oesophageal squamous cell

carcinoma

N-UGC; BJ Oesophagus 3313 198 446 East Asian

Gastric adenocarcinoma BJ; N-UGC Stomach 8913 198 453 East Asian

Gastric cardia adenocarcinoma N-UGC Stomach 1189 2708 East Asian

Liver and bile duct cancer UKB Liver 350 372 016 European

Liver cancer BJ; CHC; UKB;

HKHC

Liver 3667 569 323 East Asian and

European

Non-cardia gastric adenocarcinoma N-UGC; NB-UGC Stomach 2033 4981 East Asian

Pancreatic cancer PanC4; PanScan

IþII; PanScan III;

BJ; FinnGen

Pancreas 9711 304 511 European and

East Asian

(Continued)
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Table 1 Continued

Cancer Contributing studies Organ site/cell Cases Controls Population

Proximal colorectal cancer GECCO/CORECT/

CCFR

Bowel 13 857 67 694 European

Rectal cancer GECCO/CORECT/

CCFR

Bowel 15 775 67 694 European

Small bowel cancer UKB Small bowel 156 337 003 European

Endocrine cancers

Endocrine gland cancer FinnGen Endocrine glands 328 96 171 European

Thyroid cancer EPITHYR; TCS;

UKB; FinnGen

Thyroid 2923 506 047 European

Skin cancers

Basal cell carcinoma 23NMSC; UKB;

HNMSC

Basal cells 21 477 745 697 European

Malignant non-melanoma skin

cancer

UKB Basal/squamous 23 694 372 016 European

Malignant skin cancer UKB; FinnGen NA 17 426 440 267 European

Melanoma MMAC; UKB Melanocytes 14 780 387 260 European

Squamous cell carcinoma 23NMSC; HNMSC;

UKB

Squamous cells 7808 628 831 European

Nervous system cancers

Brain cancer UKB; FinnGen Brain 748 468 373 European

Central nervous system and eye

cancer

FinnGen Brain 207 96 292 European

Glioma GICC/MDA;

GliomaScan;

UCSF_Mayo;

UCSF_AGS þ
SFAGS

Brain/glial cells 8624 12 985 European

Meningioma MENC Brain 1606 9823 European

Neuroblastoma NBS Neuroblasts 2101 4202 European

Uveal melanoma UMS Eye/melanocytes 259 401 European

Reproductive cancers

Advanced prostate cancer PRACTICAL Prostate 15 167 58 308 European

Breast cancer BCAC; UKB;

FinnGen

Breast 139 445 398 407 European

Cervical cancer MCCS; SCCS; BJ Uterus 4505 100 160 European and

East Asian

Clear cell ovarian cancer OCAC Ovary 1366 40 941 European

Early-onset prostate cancer PRACTICAL Prostate 6988 44 256 European

Endometrial cancer ECAC; BJ; FinnGen Uterus 14 271 252 606 European and

East Asian

Endometrioid ovarian cancer OCAC Ovary 2810 40 941 European

ER– breast cancer BCAC Breast 21 468 105 974 European

ERþ breast cancer BCAC Breast 69 501 105 974 European

Female genital cancer FinnGen Female genital

organs

672 53 590 European

High-grade serous ovarian cancer OCAC Ovary 13 037 40 941 European

High risk breast cancer KHBC Breast 1478 5979 East Asian

Invasive mucinous ovarian cancer OCAC Ovary 1417 40 941 European

Low-grade and low malignant po-

tential serous ovarian cancer

OCAC Ovary 2966 40 941 European

Low-grade serous ovarian cancer OCAC Ovary 1012 40 941 European

Low malignant potential mucinous

ovarian cancer

OCAC Ovary 1149 40 941 European

(Continued)
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with reported cancer hits in the GWAS catalogue for other

cancer data sets (Supplementary Figure S13, available as

Supplementary data at IJE online).

We identified three data sets in which reported allele

frequency was inconsistent with allele frequency in refer-

ence data sets (Figures 4 and Supplementary Figures S11

and S12, available as Supplementary data at IJE online).

This included GliomaScan (ID 967) in which the allele fre-

quency was inversely correlated with the allele frequency

across all SNPs in ancestry matched reference data sets, in-

dicating that the reported effect allele frequency

corresponded to the non-effect allele (Figure 4). In the

UCSF_AGS/SFAGS (ID 133) and TNC (ID¼ 132), there

were two groups of SNPs showing positive or inverse cor-

relations with the allele frequency in ancestry matched

data sets (Supplementary Figures S11 and S12, available as

Supplementary data at IJE online; cancer study abbrevia-

tions explained in Supplementary Table S6, available as

Supplementary data at IJE online), indicating that the

reported effect allele frequency actually corresponds to the

minor allele frequency and that the minor allele was not

consistently the effect allele. For these data sets, we decided

Table 1 Continued

Cancer Contributing studies Organ site/cell Cases Controls Population

Low malignant potential ovarian

cancer

OCAC Ovary 3103 40 941 European

Low malignant potential serous

ovarian cancer

OCAC Ovary 1954 40 941 European

Mucinous ovarian cancer OCAC Ovary 2566 40 941 European

Ovarian cancer OCAC; OCAC

(EAS); UKB; BJ;

FinnGen

Ovary 30 869 387 356 European and

East Asian

Prostate cancer PRACTICAL; UKB;

BJ; FinnGen

Prostate 95 512 378 951 European and

East Asian

Serous ovarian cancer OCAC Ovary 14 049 40 941 European

Respiratory cancers

Lung adenocarcinoma ILCCO Lung 11 245 54 619 European

Lung cancer ILCCO; BJ; UKB;

FinnGen

Lung 36 660 732 695 European and

East Asian

Lung cancer in ever smokers ILCCO Lung 23 848 16 605 European

Lung cancer in never smokers ILCCO Lung 2303 6995 European

Nasopharyngeal carcinoma TNC; MNC Nasopharynx 548 741 East Asian

Oral cancer INHANCE Mouth and throat 2990 6585 European

Oral cavity and pharyngeal cancer INHANCE; UKB;

FinnGen

Mouth and throat 7359 474 866 European

Oropharyngeal cancer INHANCE Mouth and throat 2641 6585 European

Pleural mesothelioma MPM Lung 407 389 European

Respiratory and intrathoracic

cancer

UKB; FinnGen Respiratory and

intrathoracic

organs

2559 455 134 European

Small cell lung carcinoma ILCCO Lung 2791 20 580 European

Squamous cell lung cancer ILCCO Lung/squamous

cells

7704 54 763 European

Urinary/other cancers

Bladder cancer NBCS; UKB;

FinnGen

Bladder 3719 460 518 European

Kidney cancer KidRISK; UKB;

FinnGen

Kidney 12 199 578 500 European

Kidney cancer in females KidRISK Kidney 1992 3095 European

Kidney cancer in males KidRISK Kidney 3227 4916 European

Urinary tract cancer UKB; FinnGen Urinary organs 2531 455 162 European

Ewing’s sarcoma ESS bone 401 684 European

Further details of the studies, such as PubMed identifiers and explanations of study abbreviations, can be found in Supplementary Tables S5 and S6 (available

as Supplementary data at IJE online).
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Figure 4. Quality control report for genetic summary data from a genome-wide association of glioma in the GliomaScan data set (ID 967). Allele fre-

quencies are expected to be <0.50. A high allele frequency conflict is defined as an allele frequency of >0.58 in the test data set (GliomaScan in this

example) or if the allele frequency differs by >10 points between the test and reference data sets. Moderate allele frequency conflicts are allele fre-

quencies of >0.50 but �0.58. Effect size conflicts are defined as different directions of effect, represented by signed z-scores, between the test data set

(GliomaScan in this example) and the GWAS catalogue. The level of conflict is further labelled as ‘high’ if the P-value for the association is <0.0001 in

both the GWAS catalogue and the test data set, and as ‘moderate’ if not. Effect allele frequency conflicts with the GWAS catalogue are declared if the
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to set the effect allele frequency to missing. Allele fre-

quency conflicts were not observed for other cancer data

sets (Supplementary Figures S14–S17, available as

Supplementary data at IJE online).

We identified 35 data sets (from 15 studies) in

which the reported effect sizes had an unusual distribution

when compared with expected log odds ratios, suggesting

potential summary-data errors or analytical issues

(Supplementary Figure S18, available as Supplementary

data at IJE online). Further investigation revealed that

summary data for 10 of the 35 data sets had been gener-

ated in linear mixed models of cancer in UK Biobank.

Effect sizes from such models can be interpreted as the

change in absolute cancer risk per copy of the effect allele.

We retained these data sets but transformed the reported

effect size into a log odds ratio scale.

Of the remaining 25 data sets (from 14 studies), we con-

firmed that the reported effect sizes were log odds ratios by

consulting the original study publications. For 18 data sets

(from nine studies), the discrepancy between reported and

expected effect sizes was largely attributable to incorrect

sample sizes, low imputation quality or a small number of

outlier SNPs with unusually large log odds ratios (e.g. log

odds ratios >1 or < –1). For example, in eight data sets

from the ACCC, GICC/MDA, GECCO and HNMSC stud-

ies, we incorrectly assumed that the number of participants

contributing to analyses was constant across SNPs

(Supplementary Figures S19–S22, available as

Supplementary data at IJE online; cancer study abbrevia-

tions explained in Supplementary Table S6, available as

Supplementary data at IJE online). This inconsistency

might introduce bias into methods that assume a constant

sample size across SNPs (e.g. methods that make use of ex-

ternal LD reference panels; see ‘Discussion’).

In three data sets from the TNC, NB-UGC and ECAC

studies, the discrepancy between the reported and expected

effect sizes was partly attributable to low imputation qual-

ity for some SNPs (Supplementary Figure S23, available as

Supplementary data at IJE online; cancer study abbrevia-

tions explained in Supplementary Table S6, available as

Supplementary data at IJE online). We also found that the

percentage deviation of the expected from the reported log

odds ratio was strongly and inversely related to metrics of

imputation quality (Supplementary Figure S24, available

as Supplementary data at IJE online) but not P-values for

deviation from HWE or P-values for heterogeneity

between studies (Supplementary Figures S25 and S26,

available as Supplementary data at IJE online). In 53 data

sets (from 25 studies) in which information on imputation

quality was available, there were 46 534 SNPs with impu-

tation quality scores of <0.8, including 1119 in the fatty

acid SNP set.

Discrepancies between the reported and expected effect

sizes in seven data sets from OCAC and PRACTICAL were

mainly attributable to a small number of SNPs with unusu-

ally large log odds ratios (>1 or < –1) (Supplementary

Figure S18, available as Supplementary data at IJE online;

cancer study abbreviations explained in Supplementary

Table S6, available as Supplementary data at IJE online).

The number of SNPs across all data sets with log odds ra-

tios of >1 or < –1 was 368, including five SNPs in the fatty

acid SNP set. Additional potential problems in reported ef-

fect sizes were identified in two data sets from the

UCSF_AGS/SFAGS and ILCCO studies, where the correla-

tion was <0.99 between zp-scores (z-scores inferred from

P-values) and zb-scores (z-scores inferred from reported ef-

fect sizes and standard errors) (Supplementary Figures S11

and S27, available as Supplementary data at IJE online). In

one data set, this was due to three SNPs with very large ef-

fect sizes (z> 99) but with P-values very close to 1 (>0.9).

The second data set showed a very irregular non-linear re-

lationship between the two sets of z-scores (Supplementary

Figure S27, available as Supplementary data at IJE online).

This data set was excluded. Correlations between the zb-

and zp-scores were >0.99 across other cancer data sets

(Supplementary Figure S28, available as Supplementary

data at IJE online).

Final collection of cancer summary-data sets

Application of the QC pipeline to cancer data sets led to

the exclusion of 3 data sets and 1 study, leaving 160 data

sets from 51 studies (Supplementary Figure S29, available

as Supplementary data at IJE online). The retained cancer

data sets represent 90 unique cancer types distributed

cross 30 tissue or organ sites and were generated in analy-

ses of 566 665 cancer cases and 1 622 374 controls

(Supplementary Figure S30, available as Supplementary

data at IJE online; Table 1 and Supplementary Tables S5

and S6).16,54–95,98–102 The median number of cases per

study was 2442 (minimum¼ 95; maximum¼ 122 977)

(Supplementary Figure S31, available as Supplementary

Figure 4. (Continued)

effect allele frequency is not greater (or less) than 0.5 in both data sets. The level of conflict is further labelled as high if the minor allele frequency is

�0.4 in both data sets, and as moderate if not. Effect allele frequency conflicts are also defined as high if the effect allele frequency differs by >10

points between the test and reference data sets. CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium; EAF, effect

allele frequency; GWAS, genome-wide association study; MAF, minor allele frequency

International Journal of Epidemiology, 2023, Vol. 52, No. 5 1513

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad018#supplementary-data


data at IJE online). Fifteen studies reported >10 000 cases,

25 studies reported 1000–10 000 cases and 11 studies

reported <1000 cases.

Discussion

Our pipeline flagged analytical issues, metadata and

summary-data errors in 23 studies (2 fatty acid GWAS and

21 cancer GWAS), including errors in 7 studies with the

potential to introduce substantial bias into downstream

MR analyses. These included a large number of false posi-

tive genetic associations for fatty acids and incorrect speci-

fication of the effect allele and effect allele frequency

columns. Other more minor issues included inconsistent ef-

fect size scales amongst cancer studies, incorrect assump-

tions about sample sizes across SNPs and outlier SNPs

with unusually large effect sizes.

Effect allele metadata errors

Of the issues identified, incorrect specification of the effect

allele column is the most serious, as it will lead to infer-

ences of causal effect in the wrong direction103,104 (when

the null hypothesis is false) and was flagged in 3 of 54 can-

cer studies. A related, albeit less serious, error is incorrect

specification of the effect allele frequency column, which

can cause harmonization problems for palindromic SNPs.

Failure to harmonize palindromic SNPs between exposure

and outcome studies may lead to increased heterogeneity

in MR findings, which could in turn bias results towards

the null (assuming the null hypothesis is false and that the

palindromic SNPs are valid instruments). A conventional

approach for avoiding these metadata errors is to compare

allele frequency between the GWAS of interest and an ex-

ternal reference data set12 or to confirm the effect allele

through correspondence with study authors (especially

when these are ambiguously labelled) or through consulta-

tion of readme files. Despite performing the latter checks,

five cancer studies were still affected by effect allele meta-

data errors. One of the metadata errors was introduced by

the FAMRC data analyst whereas others were potentially

due to human error by data providers. Our approach of

comparing summary associations statistics for known ‘top

hits’ between the GWAS of interest and the GWAS cata-

logue offers an additional safeguard against such errors.

False positive GWAS hits

False positive genetic associations for fatty acids were iden-

tified in two of six fatty acid consortia. Failure to account

for false positive hits could lead to the inclusion of genetic

variants in MR analyses that are not truly associated with

the exposure [a violation of instrumental variable assump-

tions (see Box 1)], which could have the effect of biasing

MR findings towards the null (assuming the null hypothe-

sis is false). The false positives arose because we designed

our instruments using the full summary association statis-

tics, downloaded from the consortium website or obtained

via correspondence, that had not gone through post-GWAS

filtering procedures (e.g. exclusion of low frequency or low

imputation quality variants). This instrument design strat-

egy is probably more susceptible to inclusion of false posi-

tive genetic associations compared with using the manually

curated findings described in a GWAS publication. The lat-

ter are subject to relatively rigorous reporting standards,

whereas there is little consensus on the format that GWAS

results should take when posted to study-specific websites.

Online platforms and databases that aggregate full summary

association statistics from different studies may also be sus-

ceptible to this kind of error.

It is important to consider the impact of sample size

when interpreting the presence of GWAS hits in the test

data set that are absent from the GWAS catalogue. For ex-

ample, if the GWAS being investigated is unpublished and

is larger than any previously published study, we can rea-

sonably expect a number of genetic associations to be iden-

tified that are absent from the GWAS catalogue but are

nevertheless true novel hits. When the GWAS being investi-

gated is smaller than any previously published study, one

should be more sceptical of any GWAS hits that are previ-

ously unreported.

Inconsistent effect size scales

We also found that cancer studies did not consistently ex-

press effect sizes as log odds ratios, with a substantial pro-

portion of cancer analyses within UK Biobank expressing

effect sizes as absolute changes in disease risk. The cancer

analyses in question employed BOLT-LMM—a linear

mixed model that allows the inclusion of related individu-

als, is more powerful and efficient than conventional re-

gression procedures41 and is a widely used method for

analysing binary disease traits in large-scale biobanks.105

In general, failure to account for effect size scale differen-

ces will hamper comparison of findings amongst different

studies and could lead to the misinterpretation of results.

Summary-data errors

Potential summary-data errors were flagged by mismatches

between expected and reported effect sizes. We found that

a substantial proportion of the mismatches were attribut-

able to imputed SNPs, SNPs with incorrect sample sizes

and SNPs with unusually large effect sizes. The sample size
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errors were due to the strategy of using the maximum

reported sample size to represent sample size across all

SNPs. However, not all samples in a GWAS necessarily

contribute to the analysis of every SNP, which is particu-

larly common in large meta-analysis consortia with many

independent studies. Incomplete sample overlap amongst

SNPs within a GWAS could introduce bias into methods

that assume a constant sample size, such as summary-data

methods that rely on an external LD reference panel to

model the correlation structure amongst SNPs in a genetic

instrument. In the presence of incomplete sample overlap

amongst SNPs, the use of an external LD reference panel

could lead to the overestimation of the covariance in SNP

effect sizes. For example, in the most extreme case of zero

sample overlap, the correlation in effect sizes for two SNPs

will be zero even if those two SNPs are in LD.106

General recommendations

When obtaining summary GWAS data via correspondence

with study authors, we recommend that researchers should

request access to full GWAS summary data, as this allows

a far more comprehensive assessment of summary-data re-

liability than is possible with only subsets of data. When

full access is not possible, researchers should request sum-

mary data for SNPs that are established GWAS hits for

their outcome of interest (i.e. not just the SNPs being used

to instrument the exposure), which can then be used to

confirm the identity of the effect allele through compari-

sons with the GWAS catalogue. In addition, researchers

could request summary data corresponding to the SNPs in

our 1000 genomes reference set, which contains 2297

SNPs with the same minor allele across all 1000 genomes

super populations, and which can be used to identify allele

frequency issues. An advantage of using our 1000 genomes

reference set is that effect allele frequency conflicts can be

identified without knowledge of the ancestral background

of the test data set. Alternatively, a similar QC check can

be achieved by comparing allele frequencies between the

exposure and outcome studies of interest (assuming they

are closely matched on ancestry). Where possible, research-

ers should also confirm the identity of the effect allele

metadata through correspondence with the data providers.

We also recommend that researchers confirm with data

providers the nature of all post-GWAS filtering procedures

that have been applied to the summary data. For example,

in our own collaboration, we ask each cancer study to con-

firm that their summary data have been through the same

QC procedures as described in their GWAS publications.

Failure to perform this check could lead to the inclusion of

large numbers of low-quality and unreliable genetic associ-

ations. It is also advisable to confirm effect size scales, to

support the correct interpretation of results. These consid-

erations supplement previously developed guidelines for

conducting MR studies.4,107,108

Our approach of comparing expected to reported effect

sizes, and of comparing summary association statistics to

external reference data sets, offers an additional safeguard

against the aforementioned errors and analytical issues. A

limitation of this approach is that not all flagged data sets

will necessarily be problematic because other factors, such

as covariate adjustment in the original GWAS or devia-

tions from HWE for reasons other than measurement er-

ror, could also cause deviations between expected and

reported effect sizes. Therefore, SNPs flagged by this ap-

proach may still be suitable for downstream MR analyses.

A limitation of our comparative approach is that it may

be less effective when there are zero, or few, known genetic

associations for the trait of interest. This could happen, for

example, when working with understudied or rare charac-

teristics, for which existing published GWAS may be un-

derpowered. In such a situation, comparisons with genetic

associations for closely related traits could still be informa-

tive. Alternatively, there are a growing number of online

platforms that collate summary data from multiple GWAS,

which in principle could also be considered as reference

data sets when the trait of interest is absent from the

GWAS catalogue. These include OpenGWAS (https://

gwas.mrcieu.ac.uk/), GWAS ATLAS (https://atlas.ctglab.

nl/), GWAS Central (https://www.gwascentral.org/),

PhenoScanner (http://www.phenoscanner.medschl.cam.ac.

uk/) and Global Biobank Engine (https://biobankengine.

stanford.edu/).

We manually mapped the text descriptions for each can-

cer type to the EFO, which could be inefficient when work-

ing with hundreds or thousands of traits. A more efficient

approach would be to use the EMBL-EBI Zooma (https://

www.ebi.ac.uk/spot/zooma) ontology mapping service,

which supports command line access via a REST API.

Two-sample population assumption

One of the key assumptions made in two-sample MR is

that the studies used to define the exposure and the out-

come come from the same population. The comparison of

allele frequencies between test data sets and reference pop-

ulations can in principle be used to evaluate this assump-

tion. For example, in our own analyses, allele frequencies

in the European origin cancer studies and 1000 genomes

European super population were consistently strongly cor-

related (the same applied to the East Asian origin studies

and the 1000 genomes East Asian super population), indi-

cating that the reported study ancestries were broadly ac-

curate. However, our QC procedure was not designed to
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specifically test for ancestral origins and was restricted to

SNPs with a narrow allele frequency range. A more effi-

cient approach would be to select SNPs with a much wider

range of variation in minor allele frequency than chosen

here. The need to assess the ‘same population’ assumption

is becoming more urgent with the growing diversity of

GWAS, including a growing number of trans-ethnic and

admixed studies.

Conclusion

We have developed a QC pipeline that can be used to flag

metadata and summary-data errors and a range of analyti-

cal issues in GWAS results, which in turn can be used to

enhance the integrity of downstream two-sample MR anal-

yses. We applied the pipeline to the FAMRC, identifying

errors with potential to introduce substantial bias in seven

studies. After resolving analytical issues and excluding

problematic studies, 160 data sets from 51 studies were

retained, representing 90 unique cancer types generated in

analyses of 566 665 cancer cases and 1 622 374 controls.

The methods developed here are available to other

researchers via the CheckSumStats R package (https://

github.com/MRCIEU/CheckSumStats).
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Where authors are identified as personnel of the International

Agency for Research on Cancer/World Health Organization, the
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of the International Agency for Research on Cancer /World Health

Organization.
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