
Methods

Exploring regression dilution bias using repeat

measurements of 2858 variables in £49 000 UK

Biobank participants

Charlotte E Rutter ,1,2,* Louise AC Millard ,1,3

Maria Carolina Borges ,1,3 and Deborah A Lawlor 1,3,4

1MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK, 2Department of Medical

Statistics, London School of Hygiene and Tropical Medicine (LSHTM), London, UK, 3Population Health

Sciences, Bristol Medical School, University of Bristol, Bristol, UK and 4Bristol NIHR Biomedical

Research Centre, University of Bristol, Bristol, UK

*Corresponding author. Medical Statistics Department, LSHTM, Keppel St, London, WC1E 7HT, UK.

E-mail: charlotte.rutter1@lshtm.ac.uk

Received 13 July 2022; Editorial decision 15 May 2023; Accepted 30 May 2023

Abstract

Background: Measurement error in exposures and confounders can bias exposure–out-

come associations but is rarely considered. We aimed to assess random measurement

error of all continuous variables in UK Biobank and explore approaches to mitigate its

impact on exposure–outcome associations.

Methods: Random measurement error was assessed using intraclass correlation coeffi-

cients (ICCs) for all continuous variables with repeat measures. Regression calibration

was used to correct for random error in exposures and confounders, using the associa-

tions of red blood cell distribution width (RDW), C-reactive protein (CRP) and 25-hydroxy-

vitamin D [25(OH)D] with mortality as illustrative examples.

Results: The 2858 continuous variables with repeat measures varied in sample size from

109 to 49 121. They fell into three groups: (i) baseline visit [529 variables; median (inter-

quartile range) ICC¼0.64 (0.57, 0.83)]; (ii) online diet by 24-h recall [22 variables; 0.35

(0.30, 0.40)] and (iii) imaging measures [2307 variables; 0.85 (0.73, 0.94)]. Highest ICCs

were for anthropometric and medical history measures, and lowest for dietary and heart

magnetic resonance imaging.

The ICCs (95% confidence interval) for RDW, CRP and 25(OH)D were 0.52 (0.51, 0.53),

0.29 (0.27, 0.30) and 0.55 (0.54, 0.56), respectively. Higher RDW and levels of CRP were

associated with higher risk of all-cause mortality, and higher concentration of 25(OH)D

with lower risk. After correction for random measurement error in the main exposure,

the associations all strengthened. Confounder correction did not influence estimates.

Conclusions: Random measurement error varies widely and is often non-negligible. For

UK Biobank we provide relevant statistics and adaptable code to help other researchers

explore and correct for this.
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Introduction

Measurement error is a widespread problem when estimat-

ing the association between two variables and can be ran-

dom (where measurements fluctuate unpredictably around

their true values) or systematic (where measurements fluc-

tuate predictably around their true values).1,2 Our focus is

on random error in which an underlying variable of inter-

est is measured with random variation (either due to true

random fluctuations or imprecision of measurement).

Regression dilution bias (RDB), also known as attenua-

tion by errors,3 refers to attenuation of an estimate be-

tween any covariable (i.e. exposure, confounder or

mediator) and an outcome towards the null due to random

measurement error in that covariable.3 Epidemiological

studies often comment, in the discussion, on how findings

might be underestimated because of RDB in an exposure

without considering random measurement error of con-

founders that may impact exposure estimates in unantici-

pated ways.1 It has also been noted that where random

measurement error is controlled for, this is often only done

for exposure–outcome associations without making any at-

tempt to control for random error in confounders.3,4

Whilst each confounder–outcome association would be bi-

ased towards the null in the presence of random error in

that confounder, the impact of this random error on the

main exposure–outcome effect would depend on the (unbi-

ased) direction and size of effect of the confounders on the

exposure and outcome.1 Thus RDB in confounders, as well

as in the exposure, could alter the exposure–outcome effect

estimates in either direction.

Some studies invite a subset of participants back for re-

peat assessments with the express purpose of providing

researchers with data that could be used to correct for ran-

dom measurement error, but these data seem to be rarely

used. The Avon Longitudinal Study of Parents and

Children (ALSPAC) repeated all 13 clinic assessments of

parents and children undertaken over the last �30 years5,6

in a subset of 3% of participants and UK Biobank (UKB)

did the same in up to �49 000 participants (�10%) to en-

able assessment of potential random measurement error.7

We have only identified three papers in ALSPAC8–10 and

four papers in UKB11–14 that have utilized repeat measures,

in all cases to correct for RDB in exposure–outcome associ-

ations only. Thus, even where data are available to address

random measurement error, they are rarely used, and the

research resources and participant time and effort to col-

lect these data are largely wasted.

The aim of this paper was to assess random measure-

ment error between repeat measures of all continuous vari-

ables in UKB and explore approaches to mitigate its

impact when estimating exposure–outcome associations.

First, we assessed whether random or systematic error was

likely present using intraclass correlation coefficients

(ICCs)15 and accuracy coefficients.16,17 Second, we used

an illustrative example to exemplify how to account for

random error in exposure and confounders using ICCs and

regression calibration. We provide ICCs and adaptable

code demonstrating how to adjust for RDB in exposure–

and confounder–outcome associations so that other

researchers can assess and account for random measure-

ment error in their own analyses. We have used UKB data

as the scope for use was large; at the end of 2021, there

were 25 000 registered researchers, with >4600 publica-

tions, with the number increasing exponentially from 120

Key Messages

• Random measurement error in the exposure and confounders can bias the association between exposure and

outcome towards or away from the null.

• Some prospective studies, including UK Biobank, provide repeat measures of variables in a subsample for exploring

bias due to random measurement error; these are rarely used.

• Our results demonstrate that measurement error is often non-negligible and may bias estimates.

• Agreement between repeated measures in UK Biobank varies by category of phenotype. Dietary and heart magnetic

resonance imaging variables are least stable whereas anthropometric and medical history variables are most stable.

• We have provided intraclass correlation coefficients for 2858 continuous variables from UK Biobank and adaptable

code to support researchers to correct for bias due to random error in exposures and confounders.
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in 2016 to 1700 in 2021 (Personal communication; Naomi

Allen, Chief Scientist UK Biobank, April 2022).

Methods

Study data

UKB is a large prospective cohort study of >500 000 adults

with a target age range of 40–69 years at recruitment

(5.5% response of those invited) open to researchers for

health-related research.7 The initial assessment, between

2006 and 2010, included physical measurements,

participant-completed responses to computer question-

naires, as well as laboratory analysis of blood and urine

samples. Around 20 000 participants were invited back for

a repeat visit in 2012–13 when most measurements and

sample assays were repeated. Some additional repeated in-

formation was collected via online questionnaires at other

times for �49 000 participants, e.g. the 24-h diet survey

(here we use two repeat measures from comparable online

surveys and not the measure from the baseline visit).

Imaging data were collected during visits starting in 2014

and repeated from 2019. Imaging data collection is ongo-

ing; here we present data for the first 4498 participants

with repeat measures.

From the full list of variables available on UKB show-

case18 we excluded those without repeat measures, those

that were not feasible covariables in regression analyses

(e.g. data processing information) and those that were not

continuous measures (or integer measures that could be

treated as continuous, having >20 distinct values). We fur-

ther excluded variables where >20% of participants had

the same value, and those where <100 participants had re-

peated measurements (Figure 1 and Supplementary Table

S1, available as Supplementary data at IJE online).

Information on how we dealt with values expressed as

e.g. �1 mile and those with multiple readings at a visit is

provided in Supplementary Text S1 and Supplementary

Figure 1 Data flow chart
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Tables S2 and S3 (available as Supplementary data at IJE

online).

Statistical analyses

Assessing error in repeat measures

We calculated the ICC for each variable, which shows the

level of agreement between two sets of measurements. In

this test–retest situation, i.e. repeated measures but sepa-

rated by weeks or months and not necessarily under identi-

cal circumstances (e.g. the person doing the assessment

may be different), the most appropriate method to assess

the ICC uses a two-way mixed effects model15

(Supplementary Text S2, available as Supplementary data

at IJE online). The ICC usually takes values of between 0

and 1, with higher ICC suggesting lower random measure-

ment error.

We also calculated the accuracy coefficient, a measure

of systematic bias, using Lin’s method.16,17 The accuracy

coefficient is a measure of how close the line of best fit be-

tween two repeat measures is to a line of 45� through the

origin (Supplementary Text S2, available as Supplementary

data at IJE online). It is always >0 and �1. For values

close to 1, the less likely there is to be systematic error as

the average difference between the pairs of measurements

is close to 0.

Correction for random measurement error

We focused on two commonly used methods: correction

using the ICC19 and regression calibration.20 The ICC

method can correct for RDB due to random error in the ex-

posure but it is not possible to account for random error in

confounders using this method. It involves first fitting a re-

gression model to estimate the exposure–outcome associa-

tion and then using the ICC statistic to correct this

estimate and associated confidence interval.

The correction factor k̂ is the reciprocal of the ICC.15

The uncorrected main effect estimate b̂ e.g. difference in

means, log odds, logit or log hazard, is multiplied by the

correction factor to get the corrected estimate b̂*. The con-

fidence interval uses the following formula to take account

of the uncertainty in the correction factor:

95% CI for b̂� ¼
f16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf 2

1 � f0f2Þ
q

f2

Where f0 ¼ b̂
2 � 1:962varðb̂Þ

f1 ¼ b̂
.

k̂
� 1:962cov b̂;1=k̂

� �

f2 ¼
1

k̂
2�1:962varð1=k̂Þ from Frost 200019

.

The covariance covðb̂;1=k̂Þ is 0 if the sample of repeated

measures is different to the main analysis sample. If the re-

peated sample is a small subset of the main sample, then

the covariance will be close to 0 and the parameters can be

treated as independent,19 which is what we assume in this

paper. Formulae for the variances of k̂ and 1=k̂ are in

Supplementary Text S3 (available as Supplementary data

at IJE online).

Regression calibration can be used to correct for bias

due to random error in the exposure and confounders (or

other covariables) together. It involves regressing the re-

peat measure of the exposure on the initial measure, in-

cluding in the model the same confounders used in the

main analysis model (first-stage model).20 Then the coeffi-

cients from this linear regression are used to predict fitted

values of the exposure for the whole data set. These pre-

dicted values are used in the main model in place of the

original values of the exposure (second-stage model). The

effect estimate from this model is thus corrected for expo-

sure–outcome RDB. To correct for random measurement

error in both the confounders and exposure, a first-stage

model is run for each covariable measured with error, ad-

justed for all other covariables (e.g. exposure and con-

founders). Predicted values from each of these first-stage

models are then used in the second-stage model. To ac-

count for uncertainty in both stages we recommend boot-

strapping the whole process to obtain corrected confidence

intervals.20

Both the above methods can provide unbiased estimates

of association with linear regression and approximately

unbiased estimates for non-linear Cox proportional haz-

ards and logistic regression.20,21

Illustrative example

To illustrate these methods, and the potential impact of

random measurement error on associations, we estimated

associations of red blood cell distribution width (RDW),

C-reactive protein (CRP) and 25-hydroxyvitamin D

[25(OH)D], with all-cause mortality. These three were

chosen because they had evidence of modest to strong ran-

dom measurement error and because they have all been

shown to be associated with several chronic conditions

that predispose to premature mortality and/or mortal-

ity.22–30 Of these, previous studies using Mendelian ran-

domization suggest a causal effect of higher CRP on

schizophrenia, though not cardiovascular disease, cancers

or several other chronic diseases, and of 25(OH)D on
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all-cause and cancer mortality.31–34 Furthermore, all may

be accurate predictors for premature mortality and correc-

tion for random error is important whether the multivari-

able regression analysis is exploring causality or just

association.

Confounders were selected a priori on the basis of being

known or plausible determinants of both the exposure and

mortality outcome. These were sex, age, ethnicity,

Townsend home neighbourhood area deprivation score,

lifetime smoking pack-years, alcohol consumption and

body mass index (BMI). Full details of how these were

measured and categorized are provided in Supplementary

Text S4 (available as Supplementary data at IJE online).

Four of these confounders—age, area deprivation, smoking

and BMI—were continuous. Of these, repeat measures

were not available for area deprivation. Difference in age

between the two repeat measurements accurately reflected

the participants ageing and so was not considered a poten-

tial source of random measurement error. Thus, we cor-

rected for potential bias due to random error in smoking

and BMI. It is possible that a non-linear format is more ap-

propriate for some confounders (e.g. both higher and lower

BMI may increase mortality), which is not within the scope

of this paper.

We fitted Cox proportional hazards models using date

of baseline assessment and date of death or end of follow-

up (28 February 2021) for those who survived to calculate

years of follow-up. Mortality data were available in the

UK Biobank for all participants via linkage to UK death

registries.

For each outcome we present confounder-adjusted results

with: (i) no correction for random measurement error; (ii)

correction for RDB due to exposure random error using ICC;

(iii) correction for RDB due to exposure random error using

regression calibration; and (iv) correction for random error in

both exposure and (continuously measured) confounders us-

ing regression calibration. Bootstrapping was used over the

whole regression calibration process (first-stage linear regres-

sion followed by second-stage Cox proportional hazards)

with 10 000 replicates to calculate confidence intervals.

All code is available at https://github.com/MRCIEU/mea

surement_error_adjustment/blob/master/README.md. Git

tag v0.1 corresponds to the version presented here. All analy-

sis was completed using Stata version 16.35

Results

Assessing error in repeat measures

Of the 8081 available UKB variables we were able to pro-

vide correction factors for 2858. Split into three groups,

these included 529 baseline visit variables, 22 online diet

questionnaire variables and 2307 medical imaging visit

variables. Most excluded variables were due to not having

a repeat measure (n¼ 3721) or not being continuously

measured (n¼ 762) (Figure 1).

Supplementary Tables S4–S6 and Supplementary

Figures S1–S10 (available as Supplementary data at IJE on-

line) provide metadata on the variables with repeat meas-

ures, including time between repeat measures, available

sample size, ICC, accuracy coefficient and correction fac-

tor statistics. The median time between the repeated visits

in baseline measurements varied between 34 and

56 months. All the online diet by 24-h recall variables had

a median of 4 months between visits and all the imaging

visit variables had a median of 27 months between visits.

The sample size of repeated measures across all variables

varied from 135 to 45 836.

Overall, the online diet by 24-h recall variables had the

lowest ICCs [median¼ 0.35, interquartile range

(IQR)=(0.30, 0.40)], baseline visit, mostly self-completed

questionnaire variables in between [median¼ 0.64, IQR ¼
(0.57,0.82)] and imaging visit variables the highest

[median¼ 0.85, IQR=(0.73, 0.94)]. Across all variables,

7% had ICCs of <0.50, 28% had ICCs of between 0.50

and 0.74, 29% had ICCs of between 0.75 and 0.89, and

36% had ICCs of �0.90. By variable category, the highest

ICCs were seen in anthropometric, medical history and

dual-energy X-ray absorptiometry (DXA) scan variables

and the lowest in 24-h recall dietary measures and heart

MRI (Figure 2). Most variables had accuracy coefficients

of >0.95 (Figure 3 and Supplementary Tables S4–S6, avail-

able as Supplementary data at IJE online) indicating gener-

ally low systematic error, though the amount of systematic

error differed by variable category [Figure 4 shows illustra-

tive ICCs and accuracy coefficients together for anthropo-

metric, diet by 24-h recall and heart MRI; with similar

figures for individual variable categories in Supplementary

Figures S1–S10 (available as Supplementary data at IJE on-

line), except metabolomics, DXA scan and brain MRI due

to number of variables]. As an example, standing height

had a high ICC and high accuracy, whereas seated height

had a high ICC and low accuracy (Figure 3). This was due

to different height boxes being used to sit on, with more

taller boxes used at the second visit than the first. This

might not be easily detected by researchers without check-

ing the repeat measurements and then the UKB documents

to understand this.

Correction for regression dilution bias—an

illustrative example

The ICC for RDW suggested moderate random error

[ICC¼ 0.52, 95% CI=(0.51, 0.53)], for CRP substantial

International Journal of Epidemiology, 2023, Vol. 52, No. 5 1549

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://github.com/MRCIEU/measurement_error_adjustment/blob/master/README.md
https://github.com/MRCIEU/measurement_error_adjustment/blob/master/README.md
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad082#supplementary-data


random error [0.29 (0.27, 0.30)] and for 25(OH)D moder-

ate random error [0.55 (0.54, 0.56)]. Little random error

was found for BMI [0.93 (0.92, 0.93)] and pack-years of

smoking [0.85 (0.84, 0.86)]. The accuracy coefficients for

all five were �0.99 indicating little systematic error

(Table 1 and Supplementary Table S4, available as

Supplementary data at IJE online).

For the three exposures there were between 3.57 and

3.81 million person-years of follow-up, which is an aver-

age of 11.8 years per participant. For RDW there were

23 509 deaths, giving an all-cause mortality rate of 6.17

per 1000 person-years [95% CI ¼ (6.09, 6.24)]; compara-

tive rates for CRP and 25(OH)D were 6.16 [95% CI ¼
(6.08, 6.24)] and 6.14 [95% CI ¼ (6.06, 6.22)],

respectively.

In confounder-adjusted analyses, higher RDW and lev-

els of CRP were associated with higher risk of all-cause

mortality, and higher concentration of 25(OH)D was asso-

ciated with lower risk of all-cause mortality (Table 2).

When these analyses were corrected for random error in

the main exposure (using either ICC correction or regres-

sion calibration) associations moved further from the null.

With further correction for random error in the smoking

and BMI confounders there was little further change

(Table 2).

Discussion

In this paper we provide summary ICCs and accuracy coef-

ficient data for 2858 UKB continuously measured repeat-

edly assessed variables. We also provide code that

researchers can adapt to explore the impact of random

measurement error in exposures and confounders in future

UKB studies. This is important as a subgroup of partici-

pants had a repeat assessment at cost to the funders and

participants in order to support assessment and correction

for random measurement error, but to date this has been

done for just a tiny fraction of the UKB studies. The

Figure 2 Box and whisker plot of intraclass correlation coefficients measuring overall agreement between repeated measurements by variable cate-

gory. The months in brackets after each category name are the median time between the first and second measures. For each category the vertical

line inside the horizontal box reflects the median intraclass correlation coefficient for that category; the box denotes the interquartile range (IQR); the

vertical lines at the end of the protruding horizontal lines from each box reflect the adjacent values (values within 1.5 times the IQR) and the dots de-

note separate points more extreme than the adjacent values. ID, infectious disease; DXA, dual-energy X-ray absorptiometry; MRI, magnetic reso-

nance imaging
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provided analysis code could also be useful for researchers

wanting to explore the impact of random measurement er-

ror in other studies with repeat measures.

In our illustrative examples key confounders had high

ICCs and hence correction of confounders for bias due to

random measurement error did not substantially change

the exposure-corrected results. This might not be the case

in other studies with different confounders as well as dif-

ferent populations and different ways of measuring. There

will be examples in which there will be considerable con-

founder random error for a given research aim and in those

cases it will be important to correct for this.

Assumptions of correcting for random

measurement error including RDB

The magnitude of the ICC may reflect random error and/or

systematic changes (e.g. change in measurement method,

age-related change). Here we used the accuracy coefficient

as a proxy to identify possible systematic changes with the

assumption that non-random error would show up as a dif-

ference in the mean values of the two measurements.

However, this will not always be the case and some sys-

tematic changes will not be identified this way (e.g. if one

group consistently increased and another consistently de-

creased this could result in the same mean value). As such,

possible reasons for systematic difference need to be con-

sidered for each variable of interest.

In this study the difference in time between measure-

ments varied from a median of 4 to 53 months for different

categories of variable. We might anticipate that greater

time between variables would increase the likelihood of

true (not random) differences. For example, as adults age

they on average eat less and different types of food,36 and

these differences will likely increase with time. The two

measures with the longest time between repeats were

smoking variables and measurements of antigens to differ-

ent infectious diseases, each with average differences of

53 months. Over that time differences in pack-years of

smoking could reflect true changes in behaviour and differ-

ences in antigen levels could reflect chronic infection,

rather than random variation.

However, our findings do not fully support this. For ex-

ample, the shortest time between measures (median

Figure 3 Box and whisker plot of accuracy coefficients measuring systematic difference between repeated measurements by variable category. The

months in brackets after each category name are the median time between the first and second measures. For each category the vertical line inside

the horizontal box reflects the median accuracy coefficient for that category; the box denotes the interquartile range (IQR); the vertical lines at the end

of the protruding horizontal lines from each box reflect the adjacent values (values within 1.5 times the IQR) and the dots denote separate points

more extreme than the adjacent values. ID, infectious disease; DXA, dual-energy X-ray absorptiometry; MRI, magnetic resonance imaging

International Journal of Epidemiology, 2023, Vol. 52, No. 5 1551



4 months) was for the dietary recall variables but this cate-

gory had one of the lowest median ICCs. By contrast, the

medical history category with a high median ICC had one

of the longest time differences (median 53 months), which

might reflect true changes in health over this time. Heart

MRI measures had a low median ICC but by contrast brain

MRI measures had a high median ICC despite the median

time between measurements being the same (27 months)

and for individuals the time difference will have been iden-

tical as these two measures are taken in the scanning clinic

at the same visit for a given participant. Thus, other factors

in addition to time differences might influence the ICC.

A further assumption is that there is some true underly-

ing or average value of the exposure of interest that is ei-

ther measured with error, fluctuates regularly or both. If a

specific measurement at a particular time point is the target

variable, then adjusting for RDB would not be appropri-

ate. Dietary measures for example are based on 24-h recall

of foods eaten and if a person’s food intake does vary from

day to day then their report might be accurate. However,

derived variables from this 24-h recall in UKB and other

studies are used to reflect the underlying average amount

of macro and micronutrients consumed each day and, as

our results show, this has considerable measurement error.

Additionally, in our illustrative example we were interested

in the effect of the underlying average values of RDW,

CRP and 25(OH)D, not the values on a particular day that

may fluctuate due to acute infection, diet or season. As ex-

posure of the skin to ultraviolet-B is the major source of

25(OH)D, its levels vary by season, which is likely a major

contributor to the ICC for this variable (e.g. if someone

had blood taken for the first measure in winter and the

Figure 4 Intraclass correlation and accuracy coefficients for variables in anthropometry, diet by 24-h recall and heart magnetic resonance imaging.

Results are the intraclass and accuracy coefficients with 95% CI for each variable in the three categories. Where the coefficients are very precisely esti-

mated the 95% CIs are not clearly visible. Coefficient values and their 95% CIs for all 2858 variables (i.e. those in this figure and all of those in other

categories not shown in this figure) are provided in Supplementary Tables S4–S6 (available as Supplementary data at IJE online). There are multiple

variables for height and weight: 50 Standing height—measured as part of the baseline assessment; 12 144 Height—measured in the subgroup of par-

ticipants attending the detailed imaging assessments as it is required to calibrate the DXA scans; 21 001 Weight—a derived variable amalgamating

multiple methods of measurement at the assessment centre visit; 23 098 Weight—taken during impedance measurement; 12 143 Weight (pre-imag-

ing)—measured in the subgroup of participants attending the detailed imaging assessments as it is required to calibrate the DXA scans. DXA, dual-

energy X-ray absorptiometry
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second in summer, we would expect notable differences).

This is random variation and, as we are interested in the ef-

fect of the underlying average concentration, it is impor-

tant to correct for RDB for 25(OH)D and other variables

with seasonal variability when they are exposures or

confounders.

Another assumption when correcting for bias due to

random measurement error in covariables is that the ran-

dom error (identified using repeated measures of the cova-

riable) is an accurate estimate of the error. If it is not, the

estimate may be differential with respect to the outcome

(i.e. the estimated random error in the covariable is related

to the observed values of the outcome when by definition

true random error would not be). If this assumption does

not hold then the association could be biased in either di-

rection and results of adjustment could be invalid.

Lastly, in correcting for random error in an exposure

and some confounders there is an implicit assumption that,

for the corrected result to be an unbiased estimate, no

other (e.g. binary or categorical) confounders are also sub-

ject to random measurement error and no other bias exists

(e.g. residual confounding, selection bias, systematic mea-

surement error) otherwise results may still be biased in ei-

ther direction. If bias from random measurement error is in

Table 1 Measures of random and systematic error for red blood cell distribution width, C-reactive protein, 25 hydroxyvitamin D,

body mass index and pack-years of smoking for illustrative examples

UK Biobank

field

number

Description Sample

size

Accuracy

coefficienta

Intraclass

correlation

coefficientb

(95% CI)

Correction

factorc, k̂

Var(k̂) Var(1/k̂)

30070 Red blood cell distribution

width

18 379 1.00 0.52 (0.51, 0.53) 1.9356 0.000410 0.000029

30710 C-reactive protein 16 549 1.00 0.29 (0.27, 0.30) 3.4987 0.007635 0.000051

30890 25 hydroxyvitamin D 15 435 0.99 0.55 (0.54, 0.56) 1.8091 0.000335 0.000031

21001 Body mass index 20 257 1.00 0.93 (0.92, 0.93) 1.0794 0.000001 0.000001

20161 Pack-years of smoking 4744 1.00 0.85 (0.84, 0.86) 1.1745 0.000030 0.000016

aAccuracy coefficient is a measure of systematic error between two measures.
bIntraclass correlation coefficient is a measure of overall agreement between two measures.
cCorrection factor (k̂) is the reciprocal of the intraclass correlation coefficient.

Table 2 Cox proportional hazard results for red blood cell distribution width (RDW), C-reactive protein (CRP) and 25 hydroxyvita-

min D [25(OH)D] associations with all-cause mortality, adjusted for sex, age, ethnicity, body mass index (BMI), smoking pack-

years, drinking and deprivation index

Model All-cause mortality hazard ratio

per 1% increase in the RDW

(95% CI) N¼324 467

All-cause mortality hazard ratio

per 1-mg/L increase in CRP

(95% CI) N¼317 917

All-cause mortality hazard ratio per

1-nmol/L increase in 25(OH)D

(95% CI) N¼303 858

(i) Uncorrected Cox proportional

hazard

1.203 (1.194, 1.212) 1.029 (1.028, 1.031) 0.993 (0.992, 0.994)

(ii) Corrected for regression

dilution in main exposure

using intraclass correlation

coefficient

1.430 (1.407, 1.453) 1.107 (1.099, 1.116) 0.988 (0.986, 0.989)

(iii) Corrected for regression

dilution in main exposure

using regression calibration

1.482 (1.398, 1.567)a 1.119 (1.095, 1.143)a 0.988 (0.987, 0.990)a

(iv) Corrected for regression

dilution in main exposure

and both BMI and smoking

pack-years (confounders) us-

ing regression calibration

1.480 (1.394, 1.565)a 1.118 (1.095, 1.142)a 0.989 (0.987, 0.990)a

aBootstrapped 95% CIs with 10 000 replications.
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the opposite direction to bias from another source then

adjusting for it may cause estimates to be further from the

true value.

These assumptions should be carefully considered to de-

termine the appropriateness of correcting for random error

in exposures and confounders; if it is unclear whether the

assumptions have been met, results adjusted for measure-

ment error in covariables might be best considered as sensi-

tivity analyses.

Study strengths and limitations

The main strength of this paper lies in the large sample size

and breadth of variables available in UKB. This has

allowed us to explore the extent that random error varies

across different categories of variables. The fact that UKB

is widely used means there is the potential for this paper to

help increase the number of studies correcting for random

error in exposures and confounders, and the methods can

also be used for other studies where repeat measures are

available.

One limitation is the length of time between repeat

measurements in UKB, which was greatest and most vari-

able for the baseline assessment repeats (median

53 months) with consistent and shorter gaps for the online

diet and image variables. With longer periods between

measures, differences may be more likely to reflect true sys-

tematic differences as discussed in the assumptions above.

Random misclassification in categorical covariables can

cause bias in the association of interest but current meth-

ods for dealing with bias due to random measurement er-

ror cannot address this (unless there are a large number of

ordinal categories that can be treated as continuous). Such

measurement error, along with other forms of potential

bias (such as non-random error in exposure, confounders

and outcome), should always be considered when inter-

preting results.

Conclusions and recommendations

Greater consideration should be given to exploring bias

due to random error in exposures and confounders.

Investigators setting up prospective studies should be en-

couraged to provide repeat measures in a subsample for

this purpose. If repeat measurements are available then

they should be used to investigate and potentially account

for random error in exposures and confounders.

It is important to explore random error in all covari-

ables (where possible) before using an adjustment.

Adjusting for RDB in the exposure only will never result in

a weaker association being found. However, if there is also

random error in the confounders then the estimates could

be biased in either direction. Where repeat measures are

not available in a study of interest, it may be possible to

use a correction factor from another study (such as the

ones provided here from UKB) to correct for exposure–out-

come RDB correction but this would not allow correction

for random error in confounders. This assumes that the

variable was measured in the same way in the two studies.

For transparency we recommend presenting all results

in analyses, as in our illustrative example, including the

ICCs and accuracy coefficients for exposures and con-

founders (where possible), along with three sets of results

that account for: (i) no measurement error in covariables,

(ii) measurement error in exposure and (iii) measurement

error in exposure and confounders.
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