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Abstract
Cognitive pupillometry is the measurement of pupil size to investigate cognitive processes such as attention, mental effort, 
working memory, and many others. Currently, there is no commonly agreed-upon methodology for conducting cognitive-
pupillometry experiments, and approaches vary widely between research groups and even between different experiments from 
the same group. This lack of consensus makes it difficult to know which factors to consider when conducting a cognitive-
pupillometry experiment. Here we provide a comprehensive, hands-on guide to methods in cognitive pupillometry, with a 
focus on trial-based experiments in which the measure of interest is the task-evoked pupil response to a stimulus. We cover 
all methodological aspects of cognitive pupillometry: experimental design, preprocessing of pupil-size data, and statistical 
techniques to deal with multiple comparisons when testing pupil-size data. In addition, we provide code and toolboxes (in 
Python) for preprocessing and statistical analysis, and we illustrate all aspects of the proposed workflow through an example 
experiment and example scripts.
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The size of the eye’s pupil reflects a wide range of cognitive 
processes (reviewed in Beatty & Lucero-Wagoner, 2000; 
Loewenfeld, 1958; Mathôt, 2018). Increases in arousal 
(“pupil-linked arousal”) or mental effort cause the pupil 
to dilate (i.e., become larger; Bradley et al., 2008; Hess & 
Polt, 1960; Kahneman & Beatty, 1966; Unsworth & Robi-
son, 2014); and increases in brightness cause the pupil to 
constrict (i.e., become smaller) even if the source of bright-
ness is merely imagined (Laeng & Sulutvedt, 2014), read 
about (Mathôt et al., 2017), covertly attended to (Binda 
et al., 2013a; Mathôt et al., 2013; Naber et al., 2013; Uns-
worth & Robison, 2017), or maintained in visual working 
memory (Husta et al., 2019; Zokaei et al., 2019). Pupil size 
is also often used as a noninvasive marker of activity of 
the locus coeruleus-norepinephrine (LC-NE) system (e.g., 
Aston-Jones & Cohen, 2005; de Gee et al., 2017; Joshi et al., 
2016; Murphy et al., 2014). The measurement of pupil size 
to investigate cognitive processes is what we will refer to in 
this article as cognitive pupillometry.

There is no commonly agreed-upon workflow for con-
ducting cognitive-pupillometry experiments: design criteria, 
preprocessing steps, and statistical analyses all differ vastly 
between studies. Some attempts at standardization have been 
made, but these are not easily applicable to cognitive pupil-
lometry because they are too broad (Kelbsch et al., 2019), 
focused on a different subfield (e.g., listening effort; Winn 
et al., 2018), or focused on specific preprocessing steps (Kret 
& Sjak-Shie, 2018; Mathôt et al., 2018). Furthermore, guide-
lines are often conceptual rather than specific implementa-
tions, and the lack of concrete examples and code makes it 
difficult for researchers to incorporate these guidelines into 
their own workflow.

Here we aim to provide a hands-on, start-to-finish guide 
to cognitive pupillometry; that is, we provide concrete guide-
lines for designing cognitive-pupillometry experiments, for 
preprocessing of pupil-size data, and for conducting appro-
priate statistical analyses (Fig. 1). All steps are illustrated 
with specific examples and code (in Python), which can be 
readily adapted to new experiments. In doing so, we will 
focus on what we consider to be a “typical” cognitive-pupil-
lometry experiment, which involves a computerized experi-
ment with a trial-based structure in which the outcome of 
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interest is a “task-evoked pupil response” to a stimulus that 
is presented on each trial.

By limiting our focus to a “typical” experiment, we can 
provide a comprehensive set of guidelines that cover every 
step of the process. But, of course, many experiments within 
cognitive pupillometry do not, or not exactly, follow this 
typical scenario. For example, to researchers interested in 
the relationship between sustained (tonic) pupil-size changes 
and tonic activity in the LC-NE system, pupil size during 
a pre-trial baseline may be a key measure of interest (e.g., 
Jepma & Nieuwenhuis, 2011; Pajkossy et  al., 2017)—
whereas for our purpose baseline pupil size is mainly a 
source of random noise; and to researchers interested in 
individual differences in cognitive abilities, resting-state 
pupil size as measured over a period of minutes may be a 
key measure of interest (e.g., Aminihajibashi et al., 2019; 
Tsukahara et al., 2016; Unsworth et al., 2021)—whereas for 
our purpose we are mainly interested in brief, task-evoked 
pupil responses. In other words, not all of our guidelines are 
directly applicable to all types of cognitive pupillometry; 
however, we believe that a thorough understanding of the 
basics (i.e., the topics covered in this manuscript) is useful 
in designing any kind of cognitive-pupillometry experiment.

Finally, our guidelines are meant to be illustrative, 
rather than prescriptive; that is, we show how things could 

be done—rather than how they should be done—in order 
to implement a workflow that is both easy to implement 
and that meets contemporary standards for good scientific 
practice. Our guidelines are intended to be a starting point 
for researchers who are interested in adopting (part of) our 
workflow, either by reusing our code directly or by imple-
menting (part of) our workflow using different tools (e.g., 
Geller et al., 2020; Hershman et al., 2019; Kinley & Levy, 
2021).

Example experiment

Throughout this paper, we will refer to an experiment that 
we have recently conducted as an example. The theoreti-
cal motivation and methodological details for this experi-
ment are described in Vilotijević and Mathôt (2022) and the 
associated preregistration (https://​osf.​io/​ma4u9). Here, we 
will limit ourselves to those aspects of the experiment that 
generalize to many other experiments.

In brief, we asked whether pupil size increases as a 
function of attentional breadth; that is, we asked whether 
the pupil is larger when participants attend to the visual 
periphery as opposed to central vision. This question has 
been addressed several times before (Brocher et al., 2018; 

Fig. 1   A schematic representation of the proposed workflow for conducting cognitive-pupillometry experiments

https://osf.io/ma4u9
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Daniels et al., 2012; Mathôt & Ivanov, 2019); however, 
previous studies were all limited by differences in task 
difficulty or visual input between conditions. Therefore, 
we set out to carefully reinvestigate this question while 
controlling for all possible confounding variables.

Each trial started with the presentation of a symbolic 
cue that informed participants of where a target was likely 
to appear (Fig. 2): in a central ring (near eccentricity), in a 
ring around this central ring (medium eccentricity), or in 
an outer ring (far eccentricity). The mapping between cue 
symbol and eccentricity (e.g., □ → near, ○ → medium, ◁ 
→ far) was randomly varied between participants. Next, 
the three rings appeared; each ring was filled with dynamic 
noise, that is, patches of oriented noise that changed every 
30 Hz. At a random moment between 2000 and 3000 ms 
after the onset of the dynamic noise, a target (a subtle 
luminance increment or decrement) appeared, after which 
the dynamic noise continued for another 300 ms. On 
80% of the trials, the target appeared at a random loca-
tion within the cued ring; on 20% of the trials, the target 
appeared at a random location within either of the other 
two rings. Participants indicated whether they had seen a 
luminance increment or decrement by pressing the left or 
right key on the keyboard. Accuracy was maintained at 
66% by a two-up-one-down staircase that manipulated the 

opacity of the target, separately for each eccentricity, using 
only responses from validly cued trials.

Our primary measure of interest was pupil size in the 
3000 ms interval after the presentation of the cue and before 
the earliest possible presentation of the target. We predicted 
that pupil size should increase with increased cue eccentric-
ity. Based on previous studies that investigated the effect of 
shifts of attention on pupil size, we expected this effect to 
emerge at the earliest 750 ms after the presentation of the 
cue (e.g., Mathôt et al., 2013); however, we did not have 
an a priori expectation about at which moment during the 
remaining 2250 ms interval the effect should emerge, nor for 
how long the effect should persist.

Experimental design

A typical cognitive-pupillometry experiment follows the 
structure of a typical cognitive-psychology or cognitive-
neuroscience experiment; that is, participants perform a 
computerized task that consists of many short trials during 
which stimuli are presented and responses are collected. By 
definition, one of the responses that is collected in a cogni-
tive-pupillometry experiment is the pupil response; however, 
in many cases behavioral responses are collected as well. 

Fig. 2   Schematic trial sequence for the example experiment. Partici-
pants reported whether a target was a luminance increment or, as in 
this example, a luminance decrement embedded in a dynamic stream 

of noise. The probable eccentricity (near, medium, far) of the target 
was indicated by a symbolic cue (a square in this example)



3058	 Behavior Research Methods (2023) 55:3055–3077

1 3

One or more independent variables are varied between tri-
als. Our example experiment described above follows this 
structure. For a general introduction to experimental design 
for cognitive psychology and neuroscience, see Kingdom 
and Prins (2016). For the remainder of this article, we will 
assume that the reader is familiar with these kinds of experi-
ments, and we will focus on those principles that are specific 
to cognitive-pupillometry experiments.

Stimuli should ideally be constant 
between conditions

Light is the main determinant of pupil size (Mathôt, 2018); 
therefore, when using visual stimuli, brightness should be 
constant between conditions. (Assuming, of course, that 
stimulus brightness is not itself a manipulation of interest.) 
For example, when comparing pupil dilation in response 
to arousing and non-arousing images, the average bright-
ness of the arousing and non-arousing images should be the 
same (e.g., Bradley et al., 2008). This is a minimum require-
ment for cognitive-pupillometry experiments, and is widely 
understood by researchers.

However, even when brightness is strictly controlled, 
other low-level differences between stimuli may still affect 
pupil size, and these are much more difficult to control. 
There are—and this is unfortunate for cognitive pupillo-
metrists—very few stimulus properties that do not affect 
pupil size: any form of visual change or movement induces 
pupil constriction (Barbur et al., 1992; Mathôt, Melmi, & 
Castet, 2015a; Slooter & van Norren, 1980; Ukai, 1985; Van 
de Kraats et al., 1977); color differences affect pupil size, 
generally such that blue stimuli result in a more sustained 
pupil constriction than red stimuli, though not necessarily 
in a more pronounced initial pupil constriction (Markwell 
et al., 2010); the distribution of brightness across the visual 
field affects pupil size, generally such that there is a bias 
towards foveal vision (Crawford, 1936; Hong et al., 2001), 
and to complicate matters further this foveal bias may be 
stronger for the initial phase of the pupil response than for 
more sustained pupil responses. And when it comes to audi-
tory (Wang & Munoz, 2015), tactile (van Hooijdonk et al., 
2019), and other sensory modalities, increased stimulus 
intensity generally results in increased pupil size.

Because of the many hard-to-predict ways in which low-
level stimulus properties affect pupil size, stimuli should 
ideally be kept strictly constant between conditions such that 
only the cognitive state of the participant is varied. This is 
sometimes referred to as the Hillyard principle, after Steven 
Hillyard, who advocated this principle for event-related-
potential (ERP) experiments (see also Luck, 2005).

Our example experiment abides by the Hillyard principle: 
there is no difference in the dynamic noise between condi-
tions; and because the mapping between cue symbol and 

cued eccentricity is randomly varied between participants, 
even slight potential differences in the pupil response to the 
different symbols, such as a slightly more pronounced pupil 
constriction in response to a triangle than to a circle, do not 
confound our results. (The location and size of the target do 
differ between conditions; however, the target only appears 
after the interval of interest.)

However, some research questions inherently require 
experiments that deviate from the Hillyard principle; for 
example, investigating the difference in the pupil response 
to arousing and non-arousing images requires comparing 
two different sets of images with each other. Therefore, in 
such cases the Hillyard principle cannot be upheld; how-
ever, it can still be approximated by matching visual stim-
uli between conditions on as many low-level properties as 
possible, such as brightness (at least), contrast, visual sali-
ency, and the distribution of luminance across the display 
(for examples, see Binda et al., 2013b; Naber & Nakayama, 
2013). There are no standardized tools to do this. However, 
a straightforward way to match visual stimuli on brightness 
and contrast is to equate the average pixel value (as a meas-
ure of brightness) and the standard deviation of pixel values 
(as a measure of contrast). An example script is provided at 
https://​osf.​io/​ngq5b/.

Importantly, matching is always approximative and never 
perfect. Therefore, a key criterion is that a reasonable and 
informed person, such as a good peer reviewer, should agree 
that, while some confounds likely remain, they are unlikely 
to affect the results.

Eye position should ideally be constant 
between conditions

The position and movement of the eyes affect pupil size in 
two main ways. First, for most eye trackers, the angle from 
which the camera records the eye affects the recorded (as 
opposed to the actual) size of the pupil. This eye-position-
based distortion of pupil size is often called the pupil-fore-
shortening error (PFE), and directly results from the fact 
that the surface of the pupil appears smaller in the camera 
image when it is recorded from the side, and thus looks like 
an ellipse, as compared to when it is recorded from the front, 
and thus looks like a circle. Some eye trackers are more 
susceptible to the PFE than others (Petersch & Dierkes, 
2021), and there are ways to compensate for the PFE algo-
rithmically during data analysis (Brisson et al., 2013; Gagl 
et al., 2011; Hayes & Petrov, 2016); however, although the 
PFE can certainly be minimized, you can never assume that 
pupil-size recordings are completely unaffected by the angle 
from which the eye tracker records the pupil.

Second, pupil size may really be affected by the position 
of the eye, independent of the PFE. This may happen when, 
say, the participant is seated such that it is more comfortable 

https://osf.io/ngq5b/
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to look at the lower part of the display than at the upper 
part of the display (Mathôt, Melmi, & Castet, 2015a). The 
increased effort or agitation associated with looking up may 
then result in pupil dilation. This is distinct from the PFE in 
the sense that it is not a recording artifact but a legitimate 
change in pupil size; however, even though it is real, it may 
still be a confounding factor in experiments in which eye 
position is not controlled.

Third, eye movements are followed by pupil constric-
tion (Knapen et al., 2016; Mathôt, Melmi, & Castet, 2015a; 
Zuber et al., 1966), presumably as a result of the changes in 
visual input that are caused by eye movements. Constriction 
also occurs after eye blinks, which are similarly accompa-
nied by a sudden change in visual input due to the closing 
and opening of the eyelid. This post-eye-movement and post-
blink constriction can be compensated for algorithmically 
during data analysis (Knapen et al., 2016; Yoo et al., 2021); 
however, just as for the PFE, you can never assume that pupil 
size is completely unaffected by eye movements and blinks.

Because of these considerations, eye position should ide-
ally be constant between conditions. In our example experi-
ment, we ensured this by asking participants to keep their 
eyes fixated on a central stimulus throughout the experiment, 
thus minimizing eye movements. In some experiments in 
which it is necessary for participants to make eye move-
ments, eye position can be strictly matched between condi-
tions (Mathôt, Melmi, & Castet, 2015a). However, in other 
experiments, for example experiments involving reading or 
other forms of natural eye movements, it is not feasible to 
strictly match eye position between conditions. In that case, 
eye position should be matched as closely as possible (Gagl 
et al., 2011). A key criterion is once again that a reason-
able and informed person should agree that eye position is 
unlikely to affect the results.

Trials should ideally be slow‑paced

The pupil light response (PLR) is the fastest pupil response 
with a latency of about 200 ms; that is, the pupil starts to 
constrict around 200 ms after stimulus onset, and reaches 
maximal constriction around 750 ms after stimulus onset. 
Therefore, experimental manipulations that affect the 
strength and/or latency of the pupil light response to a 
stimulus tend to arise within 500 ms (Binda & Murray, 
2015; Olmos-Solis et al., 2018; Wilschut & Mathôt, 2022). 
Another kind of pupil response that emerges rapidly is the 
orienting response that occurs when something captures 
attention; the orienting response is accompanied by a pupil 
dilation that peaks around 500 ms (Mathôt et al., 2014; 
Wang & Munoz, 2014). Therefore, the oft-heard claim that 
pupil responses are very slow is not necessarily true.

However, what is true is that most cognitive-pupillometry 
experiments focus on pupil responses that do arise slowly; 

specifically, most experiments focus on pupil dilation as a 
marker of arousal or effort (e.g., Bradley et al., 2008; Rieger 
et al., 2015; Urai et al., 2017; Zekveld et al., 2010). If there 
is a clearly defined triggering stimulus, such as a burst of 
noise, pupil size tends to peak around 1 s after stimulus onset 
(Hoeks & Levelt, 1993). However, in many studies, the trig-
ger is an internal cognitive process without a clearly defined 
temporal onset, such as a challenging calculation (Hess & 
Polt, 1964; Stoll et al., 2013) or a spoken sentence that is 
hard to understand (Koelewijn et al., 2012). In those cases, 
the resulting pattern of pupil dilation is hard to predict, but 
tends to be even slower and more diffuse.

Because of these considerations, cognitive-pupillometry 
experiments should ideally be slow-paced. However, experi-
ments should not be too slow-paced for the simple reason 
that, as a researcher, you also need to be able to collect a suf-
ficient amount of data within a reasonable time. As a rule of 
thumb, we suggest having the stimulus of interest followed 
by an interval of 2–3 s during which no other events happen 
(see also below), and which serves as the period of interest 
for pupil-size analysis. We suggest an intertrial interval of 
at least 3 s, to reduce (but not eliminate!) carryover effects 
in the pupil response from one trial to the next.

For this reason, in our example experiment, there was at 
least 3000 ms between the onset of the cue and the onset of 
the target stimulus. The intertrial interval, as measured from 
the response on one trial until the onset of the cue on the 
next trial, was around 4–6 s; this is longer than necessary for 
the purpose of pupillometry, but resulted from the fact that 
stimulus generation occurred during this interval and took a 
substantial amount of time.

Pupil size should ideally be measured 
while participants do nothing

An increase in physical effort is accompanied by pupil dila-
tion. This is true for intense physical exercise, and to a lesser 
yet measurable extent also for pressing a key on a keyboard, 
making a saccadic eye movement towards a target, pressing a 
button on a game pad—or more generally any action through 
which participants respond in an experiment. Combined 
with the fact that response times (RTs) often vary between 
conditions, this response-locked pupil dilation can be a con-
founding factor when not properly accounted for.

To illustrate this issue, consider a hypothetical experiment 
in which participants indicate whether a character string cor-
responds to a word (i.e., a lexical-decision task); the dif-
ficulty of the word is the independent variable (difficult vs. 
easy) and the pupil response to the word is the dependent 
variable. You might reasonably predict that processing a dif-
ficult word takes more mental effort, and should thus result 
in stronger pupil dilation, as compared to an easy word. (And 
given the proper experimental design this is quite likely what 
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you would find.) However, participants also respond more 
slowly to difficult words than to easy words. Because of this 
difference in RT, you will likely find that the pupil initially 
dilates more strongly in response to easy as compared to dif-
ficult words—simply because of the response-locked pupil 
dilation.

Because of this, a task-evoked pupil response should not 
be recorded while participants are also giving a response. 
Rather, the response should be delayed until sometime after. 
In a lexical-decision experiment, this could mean that the 
character string is followed by a period of about 2 s of pas-
sive viewing during which pupil size is recorded; only after 
this period do participants indicate whether they saw a word 
or a nonword (for similar approaches, see Einhäuser et al., 
2010; Snell et al., 2018). In our example experiment, we 
avoided response-locked pupil dilation by measuring pupil 
size during the interval preceding the target, before partici-
pants could even prepare a response, thus avoiding all motor 
preparation.

Ambient lighting should ideally be intermediate 
and matched to display brightness

There are four main concepts that are all related to light 
but that each reflect a different aspect. The total amount of 
light that is emitted by a light source, or luminous flux, is 
expressed in lumen (or candela); this measure is not often 
reported in experimental settings, because it does not cor-
respond to something that is directly observable (i.e., you 
cannot observe the light that a lamp emits in the direction 
away from you).

The amount of light that falls from any direction onto a 
surface (such as the pupil), or illuminance, is expressed in 
lux; this measure is often reported in experimental settings 
as an indication of the ambient light level in a laboratory, 
and is the combined result of ceiling lights, lamps, the back-
ground luminance of the display, and other sources of light 
in the laboratory. Illuminance can be measured with an illu-
minance meter, which is generally a small handheld device. 
To measure illuminance as it would be from the perspective 
of the participant, place the light sensor where the partici-
pant’s head would be and orient it towards the screen. For 
our example experiment, illuminance was 33 lux.

The amount of light that is emitted by a light source (such 
as a visual stimulus) in a specific direction (such as towards 
the pupil), or luminance, is expressed in candela per square 
meter (cd/m2); this measure is often reported in experimental 
settings as an indication of the intensity of a visual stimulus. 
Luminance can be measured with a luminance meter (or 
photometer), which is also a small handheld device, but is 
distinct from the illuminance meter; that is, you can gener-
ally not measure illuminance and luminance with the same 
device. To measure the luminance of a visual stimulus, first 

present the stimulus on the screen; next, point the sensor 
towards the stimulus from a close distance or (depending 
on the model) place the sensor on the screen while covering 
the stimulus with the device. For our example experiment, 
the luminance of both the background and the stream of 
dynamic noise was 33.1 cd/m2.

Finally, brightness refers to the subjective impression 
of luminance, and as such does not have a natural unit. 
Although luminance and brightness, strictly speaking, refer 
to different concepts, many authors, including ourselves on 
many occasions (such as in the heading above), use the terms 
interchangeably.

Pupil size varies between roughly 2 and 8 mm in diameter 
(Mathôt, 2018; Pan et al., 2022), depending mainly on the 
amount of light that enters the eye. Both illumination and 
luminance play a role: roughly speaking, the illumination of 
the laboratory determines baseline pupil size, whereas the 
luminance of the stimuli determines the strength of visually 
evoked pupil responses (see Stimuli should ideally be con-
stant between conditions).

For most cognitive-pupillometry experiments, pupil size 
should not approach the physiological lower and upper lim-
its of 2 and 8 mm, for the simple reason that maximally 
constricted or dilated pupils cannot constrict or dilate any 
further in response to experimental manipulations. Experi-
ments should therefore not be conducted in a very dark or 
very bright environment (unless there are specific reasons to 
do so—for example if the experiment requires dark-adapted 
pupils). However, within a broad range of baseline pupil 
sizes, and thus for a broad range of illuminance levels, task-
evoked pupil responses are reliably observed (Bradshaw, 
1969; Cherng et al., 2020; Pan et al., 2022; Peysakhovich 
et al., 2017; Reilly et al., 2019; Steinhauer et al., 2004). As 
a rule of thumb, baseline pupil sizes between 3 and 7 mm 
are suitable. In our dimly illuminated laboratory of 33 lux, 
baseline pupil sizes were around 3.5 mm. Some eye trackers 
only provide pupil size in arbitrary units without an easy 
way to convert these units to millimeters of diameter (see 
If necessary: converting pupil size from arbitrary units to 
millimeters of diameter); in this case, even without knowing 
the exact pupil size of the participants, you can safely aim 
for an illumination level that is dim but still allows you to 
read comfortably.

It is also important to use a display luminance that 
roughly matches the illuminance of the room; more specifi-
cally, using a bright stimulus display in an otherwise dark 
room results in discomfort glare, which is the unpleasant 
sensation that results from a small yet intense light source. 
Discomfort glare is accompanied by a pronounced decrease 
in pupil size (Tyukhova & Waters, 2019). The intermedi-
ate luminance (33.1 cd/m2) of the stimulus display in our 
example experiment looked subjectively natural given the 
illumination of the room.
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In sum, ambient lighting should ideally be intermediate; 
fortunately, because a broad range of illuminance levels is 
acceptable, no special equipment is needed to find the “cor-
rect” illuminance. Similarly, display brightness should ide-
ally match the ambient lighting, but since the main criterion 
is that the display does not subjectively stand out from its 
environment, no special equipment is again needed to find 
the “correct” luminance. However, it is convenient to nev-
ertheless have illuminance and luminance (or photo)meters, 
because these allow you to measure and report the exact 
conditions under which your experiment took place.

All data should ideally be stored in a single file 
per participant

A typical cognitive-pupillometry experiment is implemented 
using experiment-building software that is connected to an 
eye tracker that records gaze position and pupil size. In our 
example experiment, we used OpenSesame (Mathôt et al., 
2012) to implement the experiment, PyGaze (Dalmaijer 
et al., 2014) to implement eye tracking in the experiment, 
and an EyeLink eye tracker to record pupil size. In setups 
of this kind, there are two distinct data files: the data file of 
the experiment-building software (in our case the OpenS-
esame .csv file, which contains experimental variables, 
etc.) and the data file of the eye tracker (in our case the Eye-
Link .edf file, which contains eye-movement and pupil-
size data). It is possible to cross-reference these two data 
files afterwards during data analysis; however, doing so is 
cumbersome and error-prone.

Therefore, it is good practice to log all data to a single 
file already during the experiment; usually, this single file 
is the eye-tracker data file, because it is more convenient 
to send time stamps, experimental variables, and other rel-
evant information from the experiment-building software 
to the eye tracker, than it is to send all eye-position and 
pupil-size data from the eye tracker to the experiment-
building software. In our example experiment, we did this 
by marking the start and end of relevant intervals (cue inter-
val, dynamic-noise interval, etc.) in the EyeLink .edf file, 
and by logging all experimental variables (cue eccentricity, 
participant response, etc.) to the EyeLink .edf file at the 
end of each trial.

Finally, it is important to decide in advance how you 
intend to analyze the data (what analysis software you will 
use, what kind of information you need to extract, etc.), 
and to log the data in a format that makes this as easy as 
possible. In our example experiment, we used the Python 
EyeLinkParser module1; this module automatically pro-
cesses variables that have been logged with var [name] 

[value] messages in the .edf file, and we therefore 
designed the experiment to send messages in this format. 
In contrast, had we intended to analyze the data with the 
EyeLink Data Viewer software, we would instead have sent 
!V TRIAL_VAR [name] [value] messages, which is 
how Data Viewer assumes that variables are logged.

Preprocessing

Here we use the term “preprocessing” to refer to all steps 
involved in transforming the raw data, as it is stored during 
the experiment, into a format that is suitable for statistical 
analysis and visualization. The order matters, and the pre-
processing steps below are described in the order in which 
they should be performed.

Parsing raw data into an analysis‑friendly data 
structure

Preprocessing starts with a set of raw data files, one for each 
participant, that contain all relevant data; this data includes 
experimental variables, start and end markers for trials and 
relevant intervals, and gaze-position and pupil-size data. In 
our example experiment, this data file is the EyeLink .edf 
file, but every brand of eye tracker uses its own custom 
format.

The first step is to parse the raw data into a data struc-
ture that is suitable for further processing. This generally 
involves a programming library or user interface that has 
been specifically designed for this purpose. For example, 
gazeR is an R library that parses raw eye-tracking data into 
an R data.frame object for further analysis (Geller 
et al., 2020). CHAP (Cohen and Hershman Analysis Pupil; 
Hershman et al., 2019) and PuPl (Pupillometry Pipeliner; 
Kinley & Levy, 2021) are MATLAB-based user interfaces 
that parse raw data into custom data structures that are used 
internally for further processing.

For our example experiment, we used the Python Eye-
LinkParser library to parse the raw data into a Python 
DataMatrix object2. Assuming that data has been logged 
following the assumptions of EyeLinkParser (see All data 
should ideally be stored in a single data file), the parser auto-
matically recognizes experimental variables, and splits eye 
position and pupil size into separate intervals or “epochs” 
(e.g., cue interval, dynamic-noise interval, etc.). This results 
in a spreadsheet-like data structure in which each row cor-
responds to a single trial, and each column corresponds to 
a single variable (Fig. 3). For variables that contain a single 
value per trial, such as response_time, one cell in the 

1  https://​github.​com/​smath​ot/​python-​eyeli​nkpar​ser 2  https://​pydat​amatr​ix.​eu/

https://github.com/smathot/python-eyelinkparser
https://pydatamatrix.eu/
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DataMatrix contains a single value. However, for vari-
ables that contain time series, such as pupil size during the 
cue interval (pupil_cue), one cell contains a series of val-
ues. You can think of this as a spreadsheet in which certain 
columns, those containing time series (SeriesColumn 
objects), stick out of the spreadsheet to accommodate their 
additional dimension: time.

The fact that time-series data (e.g., pupil size) can coex-
ist with single-value data (e.g., response time) in a single 
DataMatrix object is convenient for further analysis. 
However, this is only one of many ways in which time series 
can be represented. Another common way is using a two-
dimensional spreadsheet in which each row corresponds 
to one sample, while other trial-level variables, such as 
response time, are duplicated for all samples from the same 
trial. (Analogously to how participant-level variables, such 
as subject number, are duplicated for all trials of the same 
participant in Fig. 3.) The main advantage of this kind of 
representation is that it is compatible with commonly used 
data structures, such as data.frame in R and pandas.
DataFrame in Python. The main disadvantages are that 
this representation consumes much more memory than nec-
essary (due to massive data duplication) and makes it less 
straightforward to perform certain common operations, such 
as averaging a time series across trials.

Interpolating or removing missing and invalid data 
(e.g., due to blinks)

Missing data occurs when the eye tracker fails to record 
any pupil size at all. This can happen when the participant 
moves slightly, causing the eye tracker to lose the eye, when 
there is a technical malfunction of the eye tracker, or when 
the participant has fully closed the eyes. Most eye trackers 
indicate missing data with a special value; in the case of the 
EyeLink, missing data is initially indicated with the value 
0. During parsing, missing data should ideally be recoded 

to NaN values (not a number), which is a standard way to 
represent missing or invalid data.

Invalid data occurs when the eye tracker does record pupil 
size, but the measured pupil size does not accurately reflect 
the actual pupil size. This can happen when the participant 
is in the process of blinking, such that the pupil is partly 
obscured by the eyelid, or when the eye tracker does not reli-
ably extract the entire pupil from the camera image. Unlike 
missing data, invalid data is not represented in any special 
format, and can only be detected indirectly, through various 
quality-check measures.

Pupil-size data, even when it is of high quality, invariably 
contains missing and invalid data (discussed also in Kret & 
Sjak-Shie, 2018; Mathôt et al., 2018). Therefore, an impor-
tant step in preprocessing is to first identify invalid data and 
remove it, that is, to turn invalid data into missing data. In 
principle, this is sufficient, because missing data does not 
cause measurement error in the way that invalid data does. 
However, missing data does reduce statistical power, and can 
make visualizations of average pupil data look less smooth. 
For these reasons, it is good practice to interpolate missing 
data whenever this is reasonably possible.

The goal of interpolation is to estimate missing or inva-
lid data by drawing a line through valid data points. This 
is usually done using either a linear interpolation, which 
draws a straight line between two valid data points, or 
using quadratic (cubic-spline) interpolation, which draws 
a smooth line through four valid data points, which results 
in interpolations that more closely resemble natural pupil-
size changes. There are various ways in which interpola-
tion of missing pupil-size data can be implemented; such 
procedures are sometimes referred to as “blink reconstruc-
tion,” since blinks are the primary reason for missing data 
(for alternative implementations, see Hershman et  al., 
2019; Kinley & Levy, 2021; Kret & Sjak-Shie, 2018). Here 
we will focus on the “advanced” algorithm as implemented 
in the DataMatrix blinkreconstruct() function. 
This algorithm is based on the procedure described in 

Fig. 3   A schematic representation of a DataMatrix object. Each 
row represents a trial. Each column represents a variable. Pupil-size 
data (here: pupil_stream) is stored in a special column type 

(SeriesColumn) that has an additional dimension to store how 
pupil size changes as a function of time (sample number)
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Mathôt (2013), and has been optimized to catch many of 
the edge cases in which the original algorithm failed.

The algorithm uses a recursive procedure in which it 
first reconstructs pupil size during blinks. To do so, it 
identifies the onset and offset of a blink based on a veloc-
ity threshold; that is, a blink is assumed to start when pupil 
size rapidly decreases (due to closing of the eyelid, thus 
rapidly obscuring the pupil), and to end when pupil size 
stabilizes again after a period of rapid pupil-size increase 
(due to opening of the eyelid). A blink is generally pre-
ceded and followed by several milliseconds of unreliable 
data; therefore, a margin (by default 10 ms) around the 
blink is also marked as missing. A blink cannot be longer 
than a certain duration (by default 500 ms); longer blink-
like periods are not reconstructed, based on the intuition 
that interpolation only makes sense for brief periods dur-
ing which pupil size is predictable.

Once the onset and offset of a blink have been deter-
mined, the algorithm first tries to perform cubic-spline inter-
polation; this requires two additional points, equally spaced 
before the onset of the blink and after the offset of the blink. 
If these points can be determined, missing data during the 
blink is interpolated with a smooth curve (Fig. 4a). If these 
points cannot be determined, for example because one of 
the points falls outside the time series or inside another 
blink, the blink is interpolated linearly with a straight line 
(Fig. 4b).

Once a blink has been identified and reconstructed, the 
algorithm starts again from scratch (i.e., it is a recursive 
procedure) until blinks are no longer identified. At this point, 
any remaining invalid data is marked as missing. This is 
done by removing all pupil-size data points that deviate more 
than a threshold from the mean pupil size of the series (by 
default ±3 SD) or where pupil size (very) rapidly increases 
or decreases. Finally, margins (by default 20 ms) around all 
periods of missing data are similarly marked as missing.

If necessary: Downsampling

The latency of the pupil light response is around 200 ms, and 
the earliest cognitive effects on pupil size emerge around 500 
ms after the triggering stimulus (see Trials should ideally be 
slow-paced). This means that a sampling rate of 20 Hz, such 
that pupil size is measured once every 50 ms, is sufficient 
when, as in most cognitive-pupillometry experiments, you 
are interested in how pupil size differs between experimental 
conditions. (A higher sampling rate is desirable when you 
are interested in measures such as maximum constriction 
velocity, which requires many measurements during the fast 
initial constriction of the pupil light response.) For visualiza-
tion purposes, a higher sampling rate is desirable to be able 
to generate smooth figures of pupil size over time; however, 
even for visualization, a sampling rate of more than 100 Hz 
is rarely useful.

Fig. 4   Two individual trials during which a blink occurred. Blinks are 
often characterized by a sharp drop in pupil size (due to closing of the 
eyelid) followed by a period of missing data (due to the eyelid being 
fully closed), followed in turn by sharp increase in pupil size (due to 

the eyelid reopening). a An example of cubic-spline interpolation, 
based on four points around the blink. This results in a smooth curve. 
b An example of linear interpolation, based on two points around the 
blink. This results in a straight line
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Therefore, if you are using an eye tracker that records 
at a higher sampling rate, it is convenient to downsample 
the signal to 100 Hz. The main reason for doing so is to 
reduce memory consumption, which without downsampling 
can easily become prohibitive for large datasets. In the case 
of our example experiment, we downsampled the original 
1000 Hz recording by a factor of 10 to 100 Hz. Importantly, 
downsampling should be performed after preprocessing 
steps that benefit from a high sampling rate, such as blink 
reconstruction.

If necessary: Converting pupil size from arbitrary 
units to millimeters of diameter

For most cognitive-pupillometry experiments, the meas-
ure of interest is not the size of the pupil in absolute terms, 
but rather the change in pupil size between conditions. As 
such, the unit in which pupil size is reported is not crucially 
important. Nevertheless, many researchers prefer to express 
pupil size in millimeters of diameter. Doing so makes it pos-
sible to verify that pupil size does not approach physiologi-
cal limits (see Ambient lighting should ideally be intermedi-
ate and matched to display brightness), and makes it possible 
to compare effect sizes in natural units: a pupil constric-
tion of 4 mm in response to a flash of light is in an entirely 

different class of effect sizes than a pupil dilation of 0.1 mm 
in response to a challenging calculation, even though both 
may be highly significant when tested statistically.

Some eye trackers, such as the Tobii series of eye track-
ers, automatically report pupil size in millimeters; they are 
able to do so because the eye tracker contains a depth sen-
sor that estimates the distance between the eye tracker and 
the participant’s face, which in turn allows the eye-tracking 
software to transform pupil size from camera-image-specific 
units (e.g., pixel count, or the size of the longest axis of the 
best fitting ellipse in pixels) to millimeters. However, many 
eye trackers, such as the EyeLink, do not offer this function-
ality and simply express pupil size in arbitrary units. In that 
case, it may be possible to determine a conversion formula 
yourself.

In the case of our example experiment (Fig. 5), our group 
had previously determined a conversion formula for our lab-
oratory setup, allowing us to convert the EyeLink’s arbitrary 
units to millimeters (Wilschut & Mathôt, 2022). To do so, 
we printed fifteen black circles of various known sizes on a 
white sheet of paper and held this in front of the eye tracker 
just above the chinrest. The EyeLink accepts these circles 
as pupils, and reports a size for them. This provided us with 
ground-truth pupil sizes (i.e., the size of the circles as meas-
ured with a ruler) and recorded pupil sizes in arbitrary units, 

Fig. 5   Pupil size during a single trial from our example experiment. 
The left y-axis shows pupil size in arbitrary units as recorded by the 
EyeLink eye tracker. The right y-axis shows pupil size in millimeters 

of diameter based on a conversion formula. The lines do not overlap 
perfectly because the conversion is not linear
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from which we derived a conversion formula with the help 
of an online application (such as https://​mycur​vefit.​com) that 
automatically determines the best-fitting function given a set 
of predictors and observations.

Baseline correction

Pupil size fluctuates in waves of several seconds that reflect 
the waxing and waning of arousal (Mathôt, Siebold, et al., 
2015b; Reimer et al., 2014), and in slower waves that reflect 
more prolonged states of fatigue and wakefulness (Geacin-
tov & Peavler, 1974; Lowenstein et al., 1963). In cognitive-
pupillometry experiments that are not primarily concerned 
with general states of arousal and wakefulness, such fluctua-
tions are a source of noise that reduce statistical power to 
detect differences in task-evoked pupil responses between 
conditions.

Baseline correction is a technique to remove the impact of 
trial-to-trial fluctuations in pupil size (Mathôt et al., 2018). 
This is done for each trial separately, usually by subtract-
ing the mean pupil size during a “baseline period” from all 
subsequent pupil-size measurements (subtractive baseline 
correction; recommended), or sometimes by dividing all 
subsequent pupil-size measurements by the mean baseline 
pupil size (divisive baseline correction; not recommended, 

see Mathôt et al., 2018). As a result, pupil size starts from 0 
(for subtractive correction) or 1 (for divisive correction) dur-
ing the baseline period on every trial, and only the change in 
pupil size—the task-evoked pupil response—remains.

Crucially, a baseline period should itself not be affected 
by the experimental manipulations. In practice, this means 
that the baseline period should come before the stimulus that 
triggers the task-evoked pupil response; alternatively, the 
baseline period can coincide with the onset of the triggering 
stimulus, as long as the duration of the baseline period is 
below the minimum latency of the pupil response (i.e., less 
than 200 ms). Also, the baseline period should not contain 
too many blinks or other artifacts that could affect baseline 
pupil size (see Excluding trials based on baseline pupil size); 
therefore, we prefer to use a short baseline period, since this 
reduces the chance of artifacts. In our example experiment, 
we used the first 50 ms after the onset of the cue as the 
baseline period, because the cue is the stimulus that triggers 
the shift in attentional breadth that we hypothesized would 
affect pupil size (Fig. 6).

A subtle point related to baseline correction that is often 
overlooked (including by us, and we thank an anonymous 
reviewer for bringing this to our attention) is that it intro-
duces counterintuitive contingencies between pupil size dur-
ing the baseline period and baseline-corrected task-evoked 

Fig. 6   Pupil size during a selection of individual trials from our example experiment. a Before baseline correction. b After baseline correction

https://mycurvefit.com
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pupil responses after the baseline period; these contingen-
cies at least, but not necessarily exclusively, take the form of 
regression to the mean. Specifically, when pupils are large 
during the baseline period, they are likely to decrease in 
size afterwards, simply because by chance large pupils are 
more likely to become smaller than they are to become even 
larger. Conversely and for the same reason, when pupils are 
small during the baseline period, they are likely to increase 
in size afterwards. This means that, simply as a result of 
regression to the mean, there is likely to be a negative cor-
relation between pupil size during the baseline and the 
strength of the subsequent baseline-corrected task-evoked 
pupil response, as has in fact been reported in several studies 
(e.g., de Gee et al., 2014; Gilzenrat et al., 2010). Because 
of such contingencies, researchers should be careful when 
interpreting correlations between baseline pupil size and 
baseline-corrected task-evoked pupil responses, and ensure 
that such correlations—which may be theoretically impor-
tant—are not statistical artifacts (see Mridha et al., 2021 for 
an example of correcting for regression to the mean).

Verifying and visualizing data quality

In an ideal world, pupil-size data consists of smooth traces 
that are unaffected by blinks, eye movements, or recording 
artifacts. In addition, in this ideal world, gaze position is 
perfectly constant while pupil size is being recorded. How-
ever, in the real world, the quality of pupil-size data never 

attains this ideal. Therefore, it is important to get a sense of 
the quality of your dataset by visualizing relevant aspects 
of the data.

A useful visualization is to plot all pupil-size traces as 
semitransparent lines in a single figure (Fig. 7a); good-
quality data will look like a tangle of lines. Another useful 
visualization is a histogram of baseline pupil sizes (Fig. 7b); 
good-quality data will be roughly normally distributed, and 
often has a slight skew that can be either to the left (as in 
Fig. 7b; less common) or to the right (more common). These 
figures are best created separately for each participant to 
avoid clutter, and collapsed across experimental conditions 
so that you avoid being biased by whether the data show the 
desired effect when assessing data quality.

A key sign of poor data quality is the presence of spikes 
that shoot downwards (but rarely upwards) from this tangle 
of lines: these spikes correspond to blinks or other recording 
artifacts that were not successfully interpolated or removed. 
A handful of such spikes can occur even in high-quality data 
(such as the downwards spike around 1000 ms in Fig. 7a), 
and this is not necessarily a cause for concern; however, if 
there are too many spikes, this adds substantial variability 
to the data, thus decreasing statistical power. What consti-
tutes “too many” is largely a matter of experience and tol-
erance, but as a rule of thumb, no more than 5% of trials 
should show such spikes. If there are more spikes, then it is 
worthwhile to reconsider the procedure for interpolating and 
removing invalid data (see Interpolating or removing invalid 

Fig. 7   Visualization of data quality for a single participant from our 
example experiment. a A plot with pupil size during all trials plot-
ted as semitransparent lines allows you to check visually for distor-

tions, such as downward spikes. b A histogram of baseline pupil sizes 
allows you to check visually for clusters of outliers
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data); for example, you could try out different parameters for 
the blink-reconstruction function to see whether the number 
of spikes is reduced with certain parameter combinations. 
Unfortunately, the quality of blink reconstruction strongly 
depends on choosing the right parameters, and whereas 
the default parameters of DataMatrix blinkrecon-
struct() work well on 1000 Hz data as recorded by the 
EyeLink 1000 eye tracker, different eye trackers may require 
manual adjustment through trial and error.

Another sign of poor data quality is the presence of lines 
that are far above (but rarely below) the others, or that start 
from zero but then quickly (< 200 ms) shoot upwards: these 
lines correspond to trials on which there were artifacts dur-
ing the baseline period, resulting in extremely small baseline 
pupil sizes (which should also be evident in the histogram 
of baseline pupil sizes) and thus extremely large baseline-
corrected pupil sizes (Mathôt et al., 2018). Such trials add 
substantial variability to the data, thus decreasing statisti-
cal power. Fortunately, it is straightforward to identify and 
exclude such trials (see Trial exclusion based on baseline 
pupil size).

A third useful visualization is to plot the average number 
of blinks per trial, separately for each experimental condition 
and participant (Fig. 8). Participants differ considerably in 
how often they blink; in our example experiment, some par-
ticipants rarely blink at all, while others blink several times 
on each trial. This is not in itself a problem; however, the 
blink rate should not systematically differ between experi-
mental conditions. If it does, then this is inherently prob-
lematic when interpreting differences in pupil size between 

experimental conditions, because pupil size is affected by 
blinks (Yoo et al., 2021). If you find differences in blink rate, 
then you may want to reconsider the experimental design in 
order to avoid this. If changing the design is not possible, 
then differences in blink rate should at least be transpar-
ently reported, such that readers and reviewers can assess for 
themselves whether these differences are likely to confound 
the results.

Some eye trackers, such as the EyeLink that we used for 
our example experiment, automatically detect blinks during 
recording, in which case it is easy to create a plot like Fig. 8. 
For eye trackers that do not automatically detect blinks, you 
can use a custom blink-detection algorithm (e.g., Hershman 
et al., 2018). Alternatively, you can count the number of 
missing data points on each trial as an easy proxy for the 
number and duration of blinks (although of course missing 
data can also result from other factors, such as recording 
errors).

In our example experiment, there was no notable differ-
ence in blink rate between experimental conditions (Fig. 8), 
although there were substantial differences in blink rate 
between participants.

A fourth and final useful visualization is to show gaze 
position over time. In our example experiment, participants 
were instructed to keep their eyes fixated on a central fixa-
tion dot; therefore, the most relevant measure of eye position 
is a deviation from the display center in any direction. To 
visualize this, we plotted the absolute difference between the 
x coordinate and the horizontal display center, over time and 
averaged across trials but separately for each experimental 

Fig. 8   A plot with the mean number of blinks per trial as a function 
of experimental condition and participant allows you to check visu-
ally for systematic differences in blink rate between conditions. Error 

bars indicate 95% between-subject bootstrapped confidence intervals. 
Based on complete data from our example experiment
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condition, in one panel (Fig. 9a), and the absolute difference 
between the y coordinate and the vertical display center in 
another panel (Fig. 9b).

When assessing differences in gaze position between 
experimental conditions, the situation is much the same as 
for blink rate: ideally, there should not be any systematic dif-
ferences between experimental conditions in either horizon-
tal or vertical gaze position; if there are, this may require a 
change to the experimental design, and if this is not possible, 
then these differences should be reported.

In our example experiment, there was no notable differ-
ence between conditions in absolute gaze deviation from the 
center (Fig. 9). Gaze deviation briefly increased around 500 
ms after the onset of the cue, reaching a maximum deviation 
of about 0.5° for horizontal and 0.8° for vertical eye posi-
tion, but again this occurred in all conditions. There was 
a hint of a slight increase in horizontal gaze deviation for 
the medium-cue-eccentricity condition relative to the other 
conditions, arising after about 1500 ms; this could have been 
a cause for concern if this difference in gaze deviation, how-
ever subtle, would have correlated with our predicted differ-
ence in pupil size, that is, if we had predicted pupil size to be 
smallest or largest in the medium-cue-eccentricity condition 
relative to the other conditions. However, this is not the case: 
we predict pupil size to increase as a function of increasing 
cue eccentricity, and therefore we can be fairly confident 
that, should we confirm our prediction, this result will not 
be confounded by gaze deviation.

Excluding trials based on baseline pupil size

As described above, blinks and recording artifacts during the 
baseline period may result in very small baseline pupil sizes 
(see Baseline correction); in turn, this results in very large 
baseline-corrected pupil sizes, which add variability to the 
data and may substantially reduce statistical power (Mathôt 
et al., 2018). Therefore, trials with extreme baseline pupil 
sizes should be excluded from analysis.

To do so, you can first convert baseline pupil sizes to 
z-scores. This should be done separately for each participant, 
because what is an extremely small pupil size for one par-
ticipant may be a fairly normal pupil size for another partici-
pant. Next, all trials where the z-scored baseline pupil size 
is larger than 2 or smaller than −2 are excluded (indicated 
by the vertical lines in Fig. 7b). This simple, predetermined 
criterion tends to effectively remove problematic trials. In 
the data from our example experiment, we excluded 402 
trials (5.58%) based on this criterion.

If necessary: Excluding participants based on data 
quality

Data quality can differ substantially between participants, 
for example because of contact lenses, glasses, eye makeup, 
or other factors that reduce the ability of the eye tracker 
to record the pupil. In rare cases, this may be a reason to 
exclude a participant’s data from analysis altogether. Ideally, 

Fig. 9   A plot with the deviation of horizontal (a) and vertical (b) eye 
position from the display center as a function of experimental con-
dition allows you to visually check whether there are systematic dif-

ferences in gaze deviation between conditions. Error shadings indi-
cate grand standard error. Based on complete data from our example 
experiment
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exclusion criteria should be specified in advance; however, 
because of the many hard-to-predict ways in which the qual-
ity of pupil-size data can be poor, you may still encounter 
participants that warrant exclusion for reasons that you did 
not foresee. Therefore, it is crucial to transparently report 
how many participants were excluded and why.

Fortunately, a few precautionary steps often prevent hav-
ing to exclude any participants. First, make sure to properly 
set up the participant before the experiment. For example, 
make sure that the participant is well positioned in front of 
the eye tracker, that the chin rest is comfortable, that the 
focus of the eye-tracking camera is adjusted (if applicable), 
that the eye tracker is well calibrated, etc.

Second, decide in advance what to do with an experimen-
tal session if you suspect that the data will be unusable, for 
example because the eye tracker regularly fails to track the 
eye. One possibility is to abort such sessions altogether, so 
that you avoid having to decide post hoc—and thus biased 
by whether you like the results—whether to include the data 
(assuming, of course, that incomplete data is never included, 
which is a general rule that most researchers, including our-
selves, follow unless there is a good reason to do otherwise). 
When aborting a session, consider that participants may 
take this as a sign of failure on their part, and it is therefore 
courteous to explain to them that eye tracking is prone to 
technical issues even if participants perform well. Another 
possibility is to make a note in a laboratory logbook that eye-
movement and pupil data for particular participants should 
be discarded; this has the advantage that other data, such as 
behavioral responses, can still be analyzed. However, the 
decision to include or exclude a participant's data, which is 
often a subjective decision, should ideally be made before 
the data have been analyzed further, again in order to avoid 
this decision being biased by whether you like the partici-
pant’s results.

Third, use a statistical technique that is able to deal with 
large differences in observations between participants; that 
way, you do not have to exclude participants if a substantial 
number of trials is excluded due to, for example, extremely 
small baseline values (see Excluding trials based on baseline 
pupil size).

In our example experiment, we did not exclude any par-
ticipants from analysis.

Visualization and statistical analysis

From a statistical perspective, most cognitive-pupillometry 
experiments are interested in the following question: do any 
of my experimental manipulations affect pupil size at some 
moment during an interval of interest? This is also the case 
for our example experiment, in which we were interested in 

whether cue eccentricity affects pupil size at some moment 
between the presentation of the cue and the target.

More complex measures can also be derived from pupil-
size data. For example, Reilly et al. (2021) discuss how a 
pupil-dilation response can be quantified as a time-to-peak 
(the time it takes for the pupil to reach its maximum size), 
base-to-peak (the maximum size that the pupil reaches), and 
several other measures; Fink et al. (2021) discuss how the 
synchronicity between pupil size and external events, such as 
rhythmic beats, can be quantified; and Wierda et al. (2012) 
introduced a “deconvolution” technique to quantify how the 
(sluggish) pupil response is affected by individual events 
that are part of a rapid sequence of events, such as stimuli 
in a rapid-serial-visual-presentation (RSVP) stream. All of 
these approaches warrant a full discussion in their own right, 
and we therefore refer to these respective articles for further 
reading. Here we will limit ourselves to the modest, yet often 
very useful, question of: does my manipulation affect pupil 
size at all?

Multiple comparisons in analysis of pupil‑size data

For our purpose, the main factor that complicates analysis 
of pupil-size data, as compared to response-time and most 
other behavioral data, is that pupil size is a continuous signal 
or “time series”; that is, the data does not contain a single 
dependent variable, but rather a series of dependent vari-
ables, one for each time sample, that reflect how pupil size 
changes over time.

In our example experiment, there were 300 such values, 
one for each 10 ms of our 3000 ms cue-target interval. This 
means that we could, in principle, conduct 300 statistical 
tests, one for each sample, and then see if one of these tests 
is “significant.” Specifically, we could test 300 separate lin-
ear mixed effects models with (baseline-corrected) pupil size 
for one specific 10 ms sample as dependent variable, cue 
eccentricity as fixed effect, and participant as random effect. 
Doing so reveals p < .05 for the effect of cue eccentricity 
at 125 samples.

However, this approach clearly raises the issue of multi-
ple comparisons: when conducting so many statistical tests, 
there is a high chance that some of these tests will give sig-
nificant but bogus effects; using statistical terminology, there 
will be a high chance of spurious effects or false alarms 
or type I errors, or the family-wise error rate exceeds the 
intended alpha level. To complicate matters further, pupil-
size data is “autocorrelated”: it changes very little from one 
10 ms sample to the next. Because of this autocorrelation, 
you should not correct p values with traditional techniques 
that assume that observations are uncorrelated, such as Bon-
ferroni correction. To mitigate the issue of multiple compari-
sons, some researchers, including ourselves, have used an 
additional criterion, such as that p < .05 should hold for at 
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least 200 contiguous milliseconds (e.g., Mathôt et al., 2017; 
see also Hershman et al., 2022 for a similar approach using 
Bayes factors). This improves the issue somewhat, but it is 
not a formal way to correct for multiple comparisons; there-
fore, we no longer recommend this.

Sophisticated techniques for analyzing autocorrelated 
time series have been developed for functional magnetic 
resonance imaging (fMRI), electroencephalography (EEG), 
and magnetoencephalography (MEG; Bowman et al., 2020; 
Bullmore et al., 1999; Kriegeskorte et al., 2009; Maris, 
2004; Maris & Oostenveld, 2007); and although the specif-
ics differ, the general principles that have been developed 
in these fields also apply to pupil-size data. Here we will 
focus on three techniques: using a predetermined time win-
dow, cluster-based permutation testing, and—our preferred 
technique—cross-validation.

Using a predetermined time window

If you have a strong prediction about when an effect should 
arise, you can conduct a single statistical test on the mean 
pupil size during the interval during which you predict the 
effect to emerge.

For our example experiment, we could derive a predic-
tion from previous experiments that found that a voluntary 
shift of covert visual attention towards a bright or dark sur-
face affects pupil size from about 750 ms after cue onset 
until the end of the trial (Mathôt et al., 2013). Based on 

this, we might predict that the effect of attentional breadth 
on pupil size similarly arises about 750 ms after the onset 
of the cue, and persists until the end of trial. We could then 
determine the mean (baseline-corrected) pupil size dur-
ing this interval for each trial, and conduct a linear mixed 
effects analysis with mean pupil size as the dependent vari-
able, cue eccentricity (−1: near, 0: medium, 1: far) as the 
fixed effect, and participant as the random effect. Using an 
alpha level of .05, this test shows an effect of cue eccen-
tricity (z = 2.28, p = .023) such that—as predicted—pupil 
size increases with increasing attentional breadth. A direct 
visualization of this test would be a line or bar plot that 
displays mean baseline-corrected pupil size as a function 
of cue eccentricity, with error bars that show the standard 
error across all trials (Fig. 10). However, even when ana-
lyzing predetermined time windows, it is still informative 
to also include a figure that shows how pupil size changes 
over time (Fig. 12), because this often provides important 
information that is lost in line or bar plots.

The advantage of analyzing a predetermined time win-
dow is that there is no need to compensate for multiple 
comparisons at all. The disadvantage is that, unless you are 
conducting a direct replication of a previous experiment, 
it is difficult to know in advance exactly at which point 
in time an effect, if it exists, will emerge: this depends 
on inter-individual variability, the stimulus display, task 
demands, and other factors (see also Bowman et al., 2020 
for a similar point for EEG experiments).

Fig. 10   Results from our example experiment. Mean baseline-cor-
rected pupil size during the 750–3000 ms window after cue onset as 
a function of cue eccentricity. Values are negative due to an overall 

pupil constriction relative to the baseline period (see also Fig.  12). 
Error bars indicate grand standard error
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Cluster‑based permutation testing

Let’s go back to the 300 separate tests that we conducted 
on the data from our example experiment. In this data, we 
found a cluster of 125 consecutive samples for which p < .05 
(i.e., all 125 samples for which p < .05 comprised a single 
cluster). The crucial question is then, given that we are likely 
to find some samples for which p < .05, how likely are we to 
find a cluster of the size that we observed or larger, assuming 
that the null hypothesis is true? Phrased differently, what is 
the p value of this cluster?

A cluster-based permutation test answers this question 
by randomly shuffling the condition labels on a trial basis 
and then running the same analysis again (Bullmore et al., 
1999; Maris & Oostenveld, 2007). Any cluster of samples 
for which p < .05 is then by necessity a false alarm. This 
procedure of shuffling and analyzing is repeated a large num-
ber of times (e.g., 1000 times), which results in a distribution 
of false-alarm clusters. The p value for the actual cluster 
(i.e., the cluster size based on the unshuffled data) is then the 
proportion of false-alarm cluster sizes that are larger than or 
equal to the actual cluster size.

Cluster-based permutation tests are elegant and effec-
tive. However, they are not feasible when using linear mixed 
effects models to determine p values for individual sam-
ples, because the time it would take to conduct the required 
number of tests is prohibitive. A single linear mixed effects 
model takes at least 2 s to run. To conduct a 1000-fold clus-
ter-based permutation test for a time series of 300 samples 
would take at least 1000 (permutations) × 300 (samples) × 
2 (s) = 600,000 s or one week (!) to compute.

The computational time required for a cluster-based 
permutation test can be vastly reduced by using a different 
underlying statistical technique, such as a repeated measures 
ANOVA, to determine p values for individual samples. How-
ever, this would also result in decreased statistical power due 
to the fact that a repeated measures ANOVA is conducted 
on aggregated data (i.e., mean pupil size per participant and 
condition), whereas a linear mixed effects analysis is con-
ducted on individual trials (Brysbaert & Stevens, 2018). For 
this reason, we prefer to preserve the statistical power of 
linear mixed effects models, and combine this with cross-
validation to control for multiple comparisons.

Cross‑validation testing

Let’s again go back to the 300 separate tests that we con-
ducted on the data from our example experiment. Now that 
we have seen the data, we have a better idea of where to 
look: the sample for which the p value was lowest (sample 
261, p = .002). However, if we would actually do this, we 
would perform a circular analysis, in the sense that we would 
use the same data to both identify and test our result, which 

results in a very high chance of a false alarm (Bowman et al., 
2020; Kriegeskorte et al., 2009).

Cross-validation is a general approach to avoid circularity 
in analyses by using one part of the data (the training set) 
to localize an effect, and another part of the data (the test 
set) to test the effect at the location that was identified in the 
training set. The Python library time_series_test3 
implements cross-validation with linear mixed effects mod-
eling in a way that is suitable for pupil-size data, and the 
general procedure is visualized in Fig. 11. Specifically, 75% 
of the data is used for the training set, and the remaining 
25% of the data is used for the test set (using four-fold cross-
validation, which is the default); the data is (by default) split 
in an interleaved fashion, such that three subsequent rows 
go into the training set, then the next row goes into the test 
set, the next three rows go into the training set, and so forth. 
Interleaved splitting is done across the entire dataset, without 
taking into account how conditions are distributed across 
trials. A linear mixed effects model is then conducted for 
each sample of the training set. The sample that yields the 
highest z value in the training set is used as the sample-to-
be-tested for the test set. This procedure is repeated four 
times, using a different training set each time, until all sam-
ples have been part of a test set, and a sample-to-be-tested 
has therefore been determined for the entire dataset. Finally, 
a single linear mixed effects model is conducted using the 
sample-to-be-tested for each trial as a dependent measure. 
This means that the dependent variable consists of a column 
of (baseline-corrected) pupil-size values that correspond to 
different samples for different trials.

For models with multiple fixed effects, the cross-valida-
tion procedure is repeated for each main effect and interac-
tion in the model. This is necessary because different effects 
may arise at different moments.

Using an alpha level of .05, we ran a cross-validation 
analysis on our predetermined time window of 750–3000 
ms, and found an effect of cue eccentricity (z = 2.92, p = 
.004, tested at samples 261 and 297) such that—as pre-
dicted—pupil size increases with increasing attentional 
breadth. An appropriate visualization of this test could be 
a “trace plot” that shows mean pupil size as a function of 
time, with cue eccentricities as separate lines (Fig. 12). 
The mean of the to-be-tested samples can then be shown 
as a vertical marker indicating when, approximately, the 
effect of cue eccentricity occurs most strongly, in this case 
at sample 279.

When visualizing the data like this, it also becomes appar-
ent that the onset of the noise stream is followed by a pro-
nounced pupil constriction. This constriction has a latency 
of around 250 ms, which is characteristic for constrictions 

3  https://​github.​com/​smath​ot/​time_​series_​test

https://github.com/smathot/time_series_test
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induced by visual stimulation. This effect is not of primary 
interest to us, but is far larger than the effect of our experi-
mental manipulations, which highlights the importance of 
keeping visual stimuli constant between conditions (see 
Stimuli should ideally be constant between conditions).

The main advantage of cross-validation, as compared to 
cluster-based permutation testing, is that it requires far fewer 
mixed effects models to run. For our example study, and 
again assuming at least 2 s of computational time for each 
linear mixed effects model, the test requires at least 4 (splits) 
× 300 (samples) × 2 (s) = 2400 s or 40 min to compute. 
The test can be sped up considerably by using a so-called 

random-intercept-only model for the localization phase (which 
is the default), and include by-participant random slopes, 
which is recommended by many statisticians (Barr et al., 
2013), only for the final model that gives the final z and p 
values. For our example data and our test system, this reduces 
the computational time to about 5 min. Another advantage of 
cross-validation is that the outcome is deterministic—unlike 
the outcome of cluster-based permutation testing—at least 
when using a deterministic “interleaved” method of splitting 
the data into test and training sets (which the default); that is, 
you always get the exact same outcome for the same data and 
analysis parameters.

Fig. 11   A schematic explanation of four-fold cross-validation. See main text for details
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Conclusion

Here we have provided a comprehensive, hands-on guide 
to cognitive pupillometry, which is the general approach 
of using pupil size as a measure for various cognitive 
processes. The guidelines are summarized in Fig 1. We 
have focused on (to us) “typical” cognitive-pupillometry 
experiments, which are trial-based experiments in which a 
task-evoked pupil response to a stimulus is the measure of 
interest. We have outlined six basic principles for design-
ing such experiments (see Experimental design):

•	 Stimuli should ideally be constant between conditions 
(“the Hillyard principle”)

•	 Eye position should ideally be constant between condi-
tions

•	 Trials should ideally be slow-paced (have stimuli of 
interest be followed by 2–3 s of recording period, and 
use an intertrial interval of at least 3 s)

•	 Pupil size should ideally be measured while partici-
pants do nothing

•	 Ambient lighting should ideally be intermediate (± 30 
lux) and matched to display brightness (background 
luminance around 30 cd/m2)

•	 All data should ideally be stored in a single data file per 
participant

We further provided crucial steps for preprocessing pupil-
size data, where “preprocessing” refers to all steps involved 
in transforming raw data, as recorded during the experiment, 
into a format that is suitable for statistical analysis and visu-
alization (see Preprocessing). We have also provided exam-
ple Python code that illustrates these steps. In order (and 
the order matters!), the preprocessing steps are as follows:

•	 Parsing raw data into an analysis-friendly data structure
•	 Interpolating or removing missing and invalid data (e.g., 

due to blinks)
•	 If necessary: downsampling
•	 If necessary: converting pupil size from arbitrary units 

to millimeters of diameter
•	 Baseline correction

Fig. 12   Results from our example experiment. The y-axis represents 
baseline-corrected pupil size. The lower x-axis represents time in mil-
liseconds since cue onset. The upper x-axis represents the order of the 
events in the experiment. Differently colored lines represent the three 

cue eccentricities (far, medium, near). Error bands indicate grand 
standard error. The vertical line indicates the mean of the samples at 
which the effect of cue eccentricity was tested
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•	 Verifying and visualizing data quality
•	 Excluding trials based on baseline pupil size
•	 If necessary: excluding participants based on data quality

Finally, we have discussed how to conduct statistical tests 
on pupil-size data (see Visualization and statistical analy-
sis), highlighting the issue of multiple comparisons, which 
arises because pupil size consists of multiple observations 
over time, and it is often not known in advance at which 
time point an effect is expected to emerge. We have sug-
gested three appropriate statistical approaches: conducting 
a single test on a predetermined time window, conducting 
a cluster-based permutation test, and conducting a cross-
validation test. We have suggested that cross-validation is 
in many cases the preferred approach, because it does not 
require a time window to be determined a priori, and (unlike 
a cluster-based permutation test) it can be combined with 
linear mixed effects modeling without becoming prohibi-
tively computationally intensive.

Finally, we have emphasized that our guidelines are illus-
trative rather than prescriptive: they are intended to provide 
researchers with a solid starting point for conducting cogni-
tive-pupillometry experiments.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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