Abstract
Cells of Dunaliella tertiolecta from the log phase of growth were broken by rapid extrusion at low pressure through a Yeda press and the chloroplasts were isolated by centrifugation through a Percoll gradient. Osmolarity of the growth media, the suspending media, and the Percoll gradient was kept identical to minimize change in chloroplast volume and mitochondrial entrapment. The isolated intact chloroplasts were obtained in a 30 to 50% yield based on chlorophyll and were stable to washing with buffered medium. Isolated chloroplast yield and purity was dependent on cell culture condition; a cycle of 16 hours light and 8 hours dark with continuous high CO2 was optimum. Isolated chloroplasts were about 90% intact by microscopic examination, ferricyanide-dependent O2 evolution, and the distribution of four stromal enzymes. Enzymes associated with glycolate metabolism were not in the chloroplast fraction. The isolated chloroplasts with 10 millimolar bicarbonate evolved 24 micromoles of O2 and fixed 21 micromoles of CO2 per hour per milligram of chlorophyll, which rates were about one-third of those by whole cells. The inhibition of oxygen evolution by 10 millimolar phosphate was reversed by P-glycerate. Whole chloroplasts were also isolated from cells adapted to low CO2 in air for 24 hours. On low CO2 the cells excreted more gelatinous material, which had to be removed with additional washing of the cells, before it was possible to obtain good chloroplast preparations.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belknap W. R. Partial Purification of Intact Chloroplasts from Chlamydomonas reinhardtii. Plant Physiol. 1983 Aug;72(4):1130–1132. doi: 10.1104/pp.72.4.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borowitzka L. J., Brown A. D. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch Mikrobiol. 1974 Mar 1;96(1):37–52. doi: 10.1007/BF00590161. [DOI] [PubMed] [Google Scholar]
- Edwards G. E., Robinson S. P., Tyler N. J., Walker D. A. Photosynthesis by isolated protoplasts, protoplast extracts, and chloroplasts of wheat: influence of orthophosphate, pyrophosphate, and adenylates. Plant Physiol. 1978 Aug;62(2):313–319. doi: 10.1104/pp.62.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gee R. W., Byerrum R. U., Gerber D. W., Tolbert N. E. Dihydroxyacetone phosphate reductase in plants. Plant Physiol. 1988 Jan;86(1):98–103. doi: 10.1104/pp.86.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husic H. D., Tolbert N. E. Effect of Osmotic Stress on Carbon Metabolism in Chlamydomonas reinhardtii: Accumulation of Glycerol as an Osmoregulatory Solute. Plant Physiol. 1986 Oct;82(2):594–596. doi: 10.1104/pp.82.2.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson M. K., Johnson E. J., MacElroy R. D., Speer H. L., Bruff B. S. Effects of salts on the halophilic alga Dunaliella viridis. J Bacteriol. 1968 Apr;95(4):1461–1468. doi: 10.1128/jb.95.4.1461-1468.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein U., Chen C., Gibbs M., Platt-Aloia K. A. Cellular Fractionation of Chlamydomonas reinhardii with Emphasis on the Isolation of the Chloroplast. Plant Physiol. 1983 Jun;72(2):481–487. doi: 10.1104/pp.72.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moroney J. V., Kitayama M., Togasaki R. K., Tolbert N. E. Evidence for Inorganic Carbon Transport by Intact Chloroplasts of Chlamydomonas reinhardtii. Plant Physiol. 1987 Mar;83(3):460–463. doi: 10.1104/pp.83.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierce J. W., McCurry S. D., Mulligan R. M., Tolbert N. E. Activation and assay of ribulose-1,5-bisphosphate carboxylase/oxygenase. Methods Enzymol. 1982;89(Pt 500):47–55. doi: 10.1016/s0076-6879(82)89011-3. [DOI] [PubMed] [Google Scholar]

