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The planula larvae of the sea anemone Aiptasia have so far not been reported to com-
plete their life cycle by undergoing metamorphosis into adult forms. This has been a 
major obstacle in their use as a model for coral–dinoflagellate endosymbiosis. Here, we 
show that Aiptasia larvae actively feed on crustacean nauplii, displaying a preference 
for live prey. This feeding behavior relies on functional stinging cells, indicative of com-
plex neuronal control. Regular feeding leads to significant size increase, morphological 
changes, and efficient settlement around 14 d postfertilization. Surprisingly, the presence 
of dinoflagellate endosymbionts does not affect larval growth or settlement dynamics 
but is crucial for sexual reproduction. Our findings finally close Aiptasia’s life cycle and 
highlight the functional nature of its larvae, as in Haeckel’s Gastrea postulate, yet reveal 
its active carnivory, thus contributing to our understanding of early metazoan evolution.

endosymbiosis | gastrulation | settlement | nutrition | basal metazoan evolution

Coral reefs are biodiversity hotspots threatened by global climate change, including by 
coral bleaching, a loss of the symbiotic relationship that corals form with algae during 
their larval/juvenile stage (1). Anthozoan larval growth and settlement as a prerequisite 
for symbiont uptake has so far been elusive due to the difficulty of establishing settlement 
under laboratory conditions. While triggers for cnidarian larval settlement are chemical 
or other environmental cues, we focused on the dual nutrition sources of diet and algal 
symbionts in the sea anemone Aiptasia (Exaiptasia diaphana), a model for cnidarian 
endosymbiosis (Fig. 1A) (2, 3). Similar to coral and sea anemone larvae (4), Aiptasia 
planulae readily ingest animal homogenates or symbiotic algal cells, but these have not 
resulted in growth or settlement (5). Here, we demonstrate that Aiptasia larvae actively 
feed on live nauplii of the copepod Tisbe, leading to substantial growth, settlement, and 
metamorphosis. Endosymbionts are not necessary for these processes, but crucial for 
gametogenesis. Our findings highlight the predatory nature of these late gastrulae/early 
planulae, shedding light on the early evolution of (eu)metazoans and providing a break-
through in the Aiptasia model system.

Results

We attempted feeding Aiptasia planulae with the copepod Tisbe (6). Surprisingly, we 
found that even planulae at the gastrula stage, 2 d postfertilization (dpf ) (Fig. 1B), were 
able to hunt Tisbe nauplii (Fig. 1 C, D, and F and Video S1), caught by the planulae’s 
nematocysts (Fig. 1 B and D–F) and ingested into the gastric cavity (Fig. 1 D and F and 
Video S2). Larvae fed with Tisbe nauplii grew continuously in size, followed by eventual 
metamorphosis and settlement (Fig. 2 A–E). In contrast, unfed larvae developed as 
described (5), i.e., size and endoderm thickness shrank over time (Fig. 2 B–D). Live prey 
were preferred to heat- killed nauplii (Fig. 2D), and after 8 d of daily feeding, planulae 
also hunted and ingested Artemia. Inhibition of nematocyst discharge by the [2.2] para-
cyclophane compound 1 (7) prevented prey capture and led to increased prey survival 
(Fig. 1E).

After ~14 d of daily feeding, planulae behavior began to markedly change as a precedent 
to settlement, exhibiting slower swimming, cycles of lengthening and contraction, and 
substrate exploration with the apical tuft (Fig. 2E and Video S3); concurrently, autoflu-
orescence appeared at the aboral end (Fig. 2F). Settlement and metamorphosis occurred 
between 13 and 20 dpf (Fig. 2A), when planulae attached to the substrate at the aboral 
end, flattened, and displayed eight tentacle primordia (Fig. 2E and Video S3). With feeding 
every third day, settlement onset was delayed, yet the kinetics and final settlement effi-
ciencies were strikingly similar, suggesting a size tipping point past which settlement was 
nearly always triggered (Fig. 2A).

We then investigated whether symbionts affected settlement dynamics. Because the 
parental lines harbor either Symbiodinium linuchae alone (male “CC7”) or in combination 
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with Breviolum minutum (female “F003”), we infected Aiptasia 
larvae at 2 dpf with either strain under the two feeding regimes 
(Fig. 2 A and C) (SI Appendix). All larvae displayed indistinguish-
able settlement dynamics: Only larvae fed with nauplii grew and 
eventually settled, regardless of symbiotic status (Fig. 2 A–C).

After settlement, Aiptasia primary polyps (F1 generations) 
developed to reproductive maturity (Fig. 2 E–H) and spawned, 

giving rise to F2 generations. Most primary polyps displayed radi-
ally symmetric tentacle primordia, then bilateral symmetry in the 
next tentacle wave, before eventual sixfold symmetry (Fig. 2 E and 
G). Growth patterns were identical in apo-  and symbiotic primary 
polyps when fed at least twice weekly with Artemia nauplii, includ-
ing asexual reproduction (Fig. 1A) starting 14 d postsettlement 
(dps). In contrast, sexual reproduction (6 mo postsettlement), 
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Fig. 1. Carnivorous larvae of Aiptasia. (A) Life cycle of Aiptasia. (B) Representative image of a late gastrula/early planula 2 dpf (also in F). Blue, Hoechst; red, 
phalloidin; green, autofluorescence of nematocysts. The blastopore corresponds to the mouth. (C and D) Scanning electron micrographs of planulae (3 dpf) 
with cilia (C); ingestion of a Tisbe nauplius (red) penetrated by nematocysts (purple) (D). (E) Impaired nematocyst activity by a small molecule inhibitor (fraction 
of killed prey is mean ± SD from three independent experiments, Student’s t- test). (F) Aiptasia larvae 2 dpf and prey under DIC (Upper row) and fluorescence 
(Lower row) microscopy. Blue, Hoechst; green, autofluorescence of chitin. Tisbe but not Artemia nauplii (i) can be ingested by young planulae (ii). Tisbe nauplii 
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Fig. 2. Aiptasia larval and polyp development. (A) Settlement of fed planulae hosting either Symbiodiniaceae symbiont strain (mean ± SD of four replicate 
experiments with 72 larvae per condition, Student’s t- test). No unfed larvae underwent metamorphosis or settlement in any tested condition. (B–D) Planula 
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Breviolum minutum. (D) Fed with live (Upper row) or heat- killed (Lower row) Tisbe after 10 dpf. (E) Planula settlement and metamorphosis. Note cycling between 
elongated and laterally flattened forms before settlement. Arrows, aboral apical tuft. (F) Autofluorescence in live planulae appears 5–8 dpf and gets brightest 
around settlement. (G) Tentacle formation in growing polyps 3–17 dps. Black asterisks, symmetric first; red asterisks, asymmetric second tentacle wave (H). 
Sexual reproduction (spawning) in grown primary polyps without symbionts (“aposymbiotic”), aposymbiotic polyps infected with the Symbiodiniaceae strains 
(“apo + symbionts”), or polyps from planulae with symbionts (“symbiotic” in A) [Scale bars, 50 µm (B), 100 μm (E and F), and 1,000 µm (G)].
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relied on symbiotic state: over half of symbiotic polyps hosting 
either algal strain spawned within two induction cycles (41 of 73), 
whereas no aposymbiotic polyps spawned (0 of 18). Critically, 
aposymbiotic polyps infected with symbionts recovered the ability 
to spawn (4 of 12) (Fig. 2H). Finally, crossing of primary polyps 
(F2 generation) and back- crossing with parental lines in both 
combinations produced viable larvae capable of settlement.

Discussion

Our data demonstrate that the predatory gastrula is a crucial step 
in the metamorphosis and settlement of Aiptasia planula larvae. 
This finding has significant implications for various fields, includ-
ing coral–algae symbiosis, embryology, and ecotoxicology. It opens 
the door to functional genetics and manipulation, allowing the 
establishment of stable transgenic lines.

Intriguingly, our results reveal that algal symbionts do not 
appear to affect the growth and settlement of Aiptasia planulae, 
neither through signaling nor nutritional contribution. The 
importance of diet outweighs the role of symbiosis during primary 
polyp growth, development, and early asexual reproduction. 
However, in adult polyps, the nutritional balance may shift toward 
the primacy of symbiosis. Our observations indicate a striking 
reliance on symbiosis for sexual reproduction in Aiptasia, similar 
to the Hydra/Chlorella symbiosis (2).

The carnivorous nature of Aiptasia larvae is remarkable, as they 
possess the ability to hunt live food as early as 2 dpf, during the 
late gastrula/early planula stage. This is in contrast to most scler-
actinian corals, which develop into planulae after 3 or 4 dpf and 
settle spontaneously or under the influence of environmental 
chemical cues (4). The quick development and voracious appetite 
of Aiptasia are consistent with its lack of lipid- rich yolk in com-
parison to other cnidarians. This predatory lifestyle likely provides 
an advantage in heavily human- impacted eutrophic environments 
where Aiptasia is commonly found.

While symbiosis eventually becomes critical in Aiptasia’s ontog-
eny, the observed autofluorescence in planulae is consistent with 
the “beacon” hypothesis of symbiont attraction in juvenile corals 
(8). However, it is possible that the predatory lifestyle was also an 
ancestral feature of cnidarian gastrulae. Ancestral anthozoans pri-
marily consisted of taxa with solitary and nonsymbiotic polyps (9), 
and the yolk- rich embryos of derived cnidarians like hydrozoans 

might be an adaptation to a benthic lifestyle (10). Thus, although 
sea anemones are not strictly basal cnidarians, Aiptasia’s predatory, 
yolk- poor planulae that result from gastrulation by invagination 
(the ancestral mode) may represent a maintenance of (or return 
to) deeply conserved traits shared by Anthozoa.

The predatory gastrula of Aiptasia, which is carnivorous rather 
than the hypothetical filter- feeding gastrula of Haeckel (11), carries 
significant implications for the evolution of early emerging meta-
zoans. The presence of specialized stinging cells used for prey cap-
ture in cnidarians, which is reflected by extrusive organelles in 
protist eukaryotes (12), ctenophores (13, 14), and planarians (15), 
suggests that predation played a crucial role in the early origin of 
metazoans from unicellular eukaryotes, although further analyses 
into cell types with more taxa are needed. The predatory lifestyle 
may have been a major driving force for early metazoan evolution 
and the development of organized nervous systems. Recent evidence 
points to ctenophores as the sister clade to all metazoans (16). A 
secondary loss of the predatory life style and extrusive organelles in 
sponges would support this hypothesis and suggest a shared origin 
of both toxin- producing cells with extrusive functions and nervous 
systems between ctenophores, cnidarians, and bilaterians.

Materials and Methods

Aiptasia and axenic Symbiodiniaceae (B. minutum strain SSB01, S. linuchae 
strain SSA01) were cultured as described (5). Aiptasia planulae were fed with 
Tisbe nauplii (6) and after sufficient growth also with Artemia. Metamorphosed 
F1 polyps were induced to spawn after 6 mo. Nematocyst discharge in starved 4 
dpf planulae was inhibited for 30 min with “compound 1” [2.2] paracyclophane 
in DMSO (7). Imaging with epifluorescence, confocal, and scanning electron 
microscopy followed standard methods. For details, see SI Appendix.

Data, Materials, and Software Availability. All study data are included in the 
article and/or supporting information.
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