Table 5.
The performance of each machine learning models.
| Model | AUC | Accuracy | Sensitivity | Specificity | Precision | F-value | Yuden Index |
|---|---|---|---|---|---|---|---|
| LR | 0.782 | 0.719 | 0.562 | 0.809 | 0.628 | 0.593 | 0.371 |
| SVM | 0.802 | 0.738 | 0.633 | 0.794 | 0.623 | 0.628 | 0.427 |
| RF | 0.798 | 0.746 | 0.632 | 0.802 | 0.615 | 0.623 | 0.434 |
| MLP | 0.794 | 0.728 | 0.605 | 0.793 | 0.610 | 0.608 | 0.398 |
| XGBoost | 0.808 | 0.749 | 0.724 | 0.762 | 0.632 | 0.675 | 0.486 |
| DT | 0.72 | 0.72 | 0.563 | 0.812 | 0.637 | 0.598 | 0.375 |
| KNN | 0.788 | 0.729 | 0.523 | 0.84 | 0.637 | 0.574 | 0.363 |
| NBM | 0.79 | 0.705 | 0.566 | 0.786 | 0.608 | 0.586 | 0.352 |