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Purpose: High-dose radiotherapy (RT) for localized prostate cancer requires careful consideration of 
target position changes and adjacent organs-at-risk (OARs), such as the rectum and bladder. There-
fore, daily monitoring of target position and OAR changes is crucial in minimizing interfractional do-
simetric uncertainties. For efficient monitoring of the internal condition of patients, we assessed the 
feasibility of an auto-segmentation of OARs on the daily acquired images, such as megavoltage com-
puted tomography (MVCT), via a commercial artificial intelligence (AI)-based solution in this study. 
Materials and Methods: We collected MVCT images weekly during the entire course of RT for 100 
prostate cancer patients treated with the helical TomoTherapy system. Based on the manually con-
toured body outline, the bladder including prostate area, and rectal balloon regions for the 100 MVCT 
images, we trained the commercially available fully convolutional (FC)-DenseNet model and tested its 
auto-contouring performance. 
Results: Based on the optimally determined hyperparameters, the FC-DenseNet model successfully 
auto-contoured all regions of interest showing high dice similarity coefficient (DSC) over 0.8 and a 
small mean surface distance (MSD) within 1.43 mm in reference to the manually contoured data. 
With this well-trained AI model, we have efficiently monitored the patient’s internal condition 
through six MVCT scans, analyzing DSC, MSD, centroid, and volume differences. 
Conclusion: We have verified the feasibility of utilizing a commercial AI-based model for auto-seg-
mentation with low-quality daily MVCT images. In the future, we will establish a fast and accurate 
auto-segmentation and internal organ monitoring system for efficiently determining the time for 
adaptive replanning. 
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Introduction 

High-dose (>70 Gy) radiotherapy (RT) for localized prostate cancer 
requires careful consideration of target position changes and the 
state of adjacent organs-at-risk (OARs), such as the rectum and 

bladder. Previous studies have shown that interfractional displace-
ment of the prostate gland can vary from 0 to 20 mm due to the 
changes in the rectum and bladder filling [1-8]. Changes in rectal 
volume can increase the risk of biochemical and local failure [1,9-
14]. An increase in rectal volume receiving ≥60 Gy can elevate the 
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risk of grade ≥2 rectal toxicity, including rectal bleeding, pain or 
discomfort during bowel movements, diarrhea, and incontinence 
[15-20]. The occurrence of acute and late gastrointestinal and gen-
itourinary complications can limit prescription dose escalation. 

Image-guided radiotherapy (IGRT) is crucial in minimizing daily 
uncertainties in delivering the dose to the target and protecting 
adjacent OARs by matching patient setup with reference images 
[21-24]. In addition, the daily in-room imaging enables daily evalu-
ation of delivered doses to the target three-dimensionally [25]. 
However, radiation-based in-room imaging techniques such as 
megavoltage (MV) or kilovoltage (kV) cone beam computed tomog-
raphy (CBCT) or MV fan beam CT have limited image quality due to 
the physical principles of image acquisition and the need for re-
al-time fast imaging or minimization of additional radiation dose 
associated with imaging [26]. Therefore, evaluating the patient's 
dose, considering their daily internal condition, is mainly carried 
out by utilizing the high-quality simulation kVCT image that has 
been adjusted to align with the organ structure of the daily CT im-
age [27]. In the last 10 years, three adaptive radiation therapy (ART) 
platforms—Ethos (Varian Medical Systems, Palo Alto, CA, USA), 
MRIdian (ViewRay Inc., Mountain View, CA, USA), and Unity (Elekta 
AB, Stockholm, Sweden)—have been introduced for clinical appli-
cation. These platforms utilize onboard imaging-based deformable 
auto-segmentation of structure sets [28]. However, the accuracy of 
deformable image registration (DIR) depends on factors like the in-
terface areas of deformation, the transformation framework (asym-
metric or symmetric), the registration algorithm, and the mapping 
direction (forward or backward) [29]. Furthermore, auto-contouring 
based on DIR can lead to incorrect results in specific situations, 
such as image artifacts and substantial positional or volumetric 
changes in regions-of-interest (ROIs) [30]. As a result, manual ad-
justments might be necessary for these outcomes, potentially con-
suming a significant amount of time. Additionally, the implemen-
tation of online ART carries the risk of unintended modifications to 
the treatment plan, thereby increasing the demand for radiation 
oncologists to evaluate and approve plans in real-time [28]. 

Therefore, in practical terms, monitoring interfractional organ 
variations for individual patients by contouring ROIs directly on the 
low-quality daily CT images and notifying the medical staff if the 
degree of variation exceeds a certain tolerance can be an addition-
al option for efficiently implementing ART within conventional RT 
platforms. However, manual delineation of the target and OARs on 
low-quality images can be prone to observer variability and too 
time-consuming to be repeated on each daily image in clinical 
practice, especially for institutions with limited manpower. 

Recent studies have shown that artificial intelligence (AI)-driven 
technology can effectively reduce the workload in time-consuming, 

repetitive tasks [31-35]. In the clinical practice of RT planning, AI-
based accurate OAR auto-contouring is crucial to establish an effi-
cient workflow by standardizing contouring criteria while reducing 
workload. Several commercial solutions, such as Therapanacea An-
notate (TheraPanacea, Paris, France), AccuContour (Manteia Tech-
nology, Xiamen, China), AI-Rad Companion (Siemens Healthineers, 
Erlangen, Germany), Contour ProtégéAI (MIM Software Inc., Cleve-
land, OH, USA), and OncoStudio (OncoSoft Inc., Seoul, South Ko-
rea), have been developed and globally distributed for AI-based au-
to-segmentation using planning CT (kV fan beam CT) without user 
interaction. Consequently, these advancements have brought about 
significant changes in the clinical workflow within the field of ra-
diation therapy practice. In a recent study by Chung et al. [36], the 
clinical performance of AI-based auto-segmentation was evaluated 
using 180 abdominopelvic kVCT images. The dataset comprised a 
training set of 91.7% and a validation set of 8.3%, and the study 
involved the participation of ten radiation oncologists specializing 
in gynecologic cancer from six different institutions [36]. The find-
ings indicated that medical staffs who were part of this project 
were predominantly content (7 out of 10) with the AI-based au-
to-segmentation, which led to a reduction of 30 minutes in con-
touring time and an enhancement in consistency across institu-
tions [36]. Nonetheless, the current commercial software options 
lack AI models for auto-segmentation on low-quality daily CT im-
ages. Among the various software available, the OncoStudio soft-
ware has a feature that allows its user to train and test the AI 
model integrated into OncoStudio, utilizing user-defined datasets 
for research purposes. 

We anticipate that an autonomous AI-driven system designed 
for the automated tracking and alerting of interfractional patient 
conditions will enhance treatment quality in institutions with lim-
ited manpower resources. If this AI-driven solution can (1) auto-
matically segment low-quality daily CT images, (2) analyze the pa-
tient's internal condition structurally based on the state depicted in 
the simulation kVCT image, and (3) notify the medical staff through 
messaging if the degree of variation exceeds the pre-defined toler-
ance, it may help to establish an efficient workflow to provide in-
structions for adaptive treatment planning. This study aimed to 
evaluate the feasibility of using a commercial AI-based solution to 
auto-segment MVCT images for interfractional monitoring of organ 
changes in RT for prostate cancer. 

Materials and Methods 

1. Preparation of MVCT dataset 
We selected 100 prostate cancer patients who received RT using 
TomoTherapy system (Accuray Inc., Madison, WI, USA). During the 
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IGRT process, the MVCT images were acquired in a supine position. 
Patients were instructed to urinate for 1–1.5 hours before treat-
ment. However, strict adherence to this protocol was not enforced. 
Additionally, no other bladder-filling training was provided. To en-
sure patient setup alignment with the reference kVCT image used 
for treatment planning, MVCT imaging was performed by aligning 
with the three-dimensional (3D) bony structure and subsequently 
adjusting the couch to the optimal position. The MVCT scan range 
was set from the sacral promontory level to the lower margin of 
the ischium and was partially adjusted based on the bladder vol-
ume. This scan range was maintained consistently for MVCT imag-
ing six times during each patient's RT course. The MVCT images 
were collected with a slice resolution of 6 mm in the scan direc-
tion, and 22–34 slices were obtained for each patient treatment, 
focusing on the bladder volume and its dose distribution, regardless 
of the total prescription dose. Two radiation oncologists manually 
contoured the body outline, the bladder including prostate area 
(Blad+Pros), and the rectal balloon on the MVCT images using the 
OncoStudio software. The prostate and bladder are quite challeng-
ing to distinguish, even in high-quality kVCT images, as they are 
closely adjacent and exhibit similar densities. Therefore, it is advan-
tageous to delineate the prostate volume using magnetic reso-
nance images fused with the simulation kVCT images during con-

ventional RT planning. Consequently, the differentiation between 
the prostate and bladder in low-quality MVCT images becomes 
even more demanding. Our study aims to monitor relative changes 
in ROIs by reviewing daily CT images based on the patient's internal 
condition as depicted in the kVCT images. Therefore, we opted to 
review the combined prostate and bladder volumes for segmenta-
tion on the MVCT images to assess whether there are simultaneous 
meaningful relative changes in both volumes. When contouring the 
body outline, the segmentation by the image intensity (Hounsfield 
unit [HU]) threshold might be an option in the autonomous seg-
mentation system. However, it sometimes encounters limitations 
unexpectedly due to image artifacts, increased noise levels, or the 
presence of a treatment table, immobilization devices, implants, 
etc. Therefore, we included the body outline as a target segmenta-
tion ROI. To train the AI model with appropriate hyperparameters 
(i.e., empirically determined settings through multiple trials), we 
analyzed and compared the image intensity distribution in each 
ROI on the MVCT image with that of the kVCT image using MIM 
Maestro version 7.1.4 software. Compared to kVCT images, using 
MVCT images for contouring ROIs can produce uncertain results 
among different observers [37]. To ensure consistency in contour-
ing, the initial contouring was performed by one radiation oncolo-
gist without prior patient information, followed by a subsequent 

Fig. 1. Illustration of image fusion between the simulation kVCT and MVCT and comparison of the segmented regions of interest, namely, body 
outlines (blue line for kVCT and light blue line for MVCT), rectal balloon (yellow line for kVCT and brown line for MVCT), and Blad+Pros (pink 
line for kVCT and light pink line for MVCT). kVCT, kilovoltage computed tomography; MVCT, megavoltage computed tomography; Blad+Pros, 
bladder including prostate area.
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review by another oncologist. Fig. 1 illustrates the image fusion 
process between the simulation kVCT image and MVCT images and 
a comparison of ROIs in the MIM software. 

2. Training condition of a commercial AI model 
The OncoStudio software is a commercially available AI-based au-
to-segmentation tool that enables automatic detection and seg-
mentation of CT images without human intervention. The software 
employs a convolutional neural network (CNN) based on a U-Net 
structure combined with a 3D version of fully convolutional 
DenseNet (FC-DenseNet) as the backbone (Fig. 2) [38]. To input 
into the CNN, all cases were resampled to a voxel spacing of 2 mm 
in the x- and y-directions and randomly resampled in the z-direc-
tion to a voxel spacing between 1 mm and 5 mm, and the image 
intensity values (HU) were linearly normalized into the range of [0, 
1], with a truncated range of [-200, 350]. Due to GPU memory lim-
itations, the CNN was trained on a patch level with a 3D patch size 
of 256 ×  256 ×  16 from the volumetric CT images and output the 
3D patch of multi-label segmentation. The CNN was trained using 
the sum of cross-entropy and dice loss, with an Adam optimizer 
[39] and an initial learning rate of 2 ×  10–4. Data augmentation 
techniques, such as randomized crop, random intensity shift by 70 
HU, random zoom scaling by 0.2, and random blurring by 0.3, were 
employed during training to reduce overfitting and improve gener-
alization. The AI model was trained on two 24 GB Quadro RTX 
A5000 GPUs (NVIDIA, Santa Clara, CA, USA). Out of a total of 100 
MVCT and contoured datasets, 80 MVCT datasets were utilized for 
training, 10 datasets were allocated for validation, and another 10 
datasets were reserved for independent testing. The above training 
condition was set empirically, showing the successful performance 
in MVCT segmentation. 

3. Performance evaluation metrics 
The dice similarity coefficient (DSC), which is the most commonly 
used metric for evaluating image segmentation, was used to com-
pare the results of automatic segmentation using an AI model with 
manual segmentation during the training process. The DSC was 
calculated based on the overlap area between the predicted and 
ground truth regions, and a well-trained model would achieve a 
higher DSC score (i.e., Dice score), which is defined as follows:  

Dice score =       =         .

The overlap area between the predicted region A and the ground 
truth region B is multiplied by 2 and divided by the sum of regions 
A and B, which can also be defined using the true positive (TP), 
false positive (FP), true negative (TN), and false negative (FN) com-
ponents of the confusion matrix. In general, in AI training, the loss 
is trained to decrease. Since a higher Dice score indicates better 
performance, the loss function is usually implemented using the 
formula below by taking the negative value of the Dice score. As 
the two regions become more similar, the Dice score approaches 1, 
and the Dice loss approaches 0, which can be interpreted as a well-
trained model. 

Dice   loss   =    1   −   Dice   score . 

We utilized not only the Dice loss but also a dual cross-entropy 
loss [40] to expedite the optimization of the AI model during the 
training process in OncoStudio. As a result, the overall loss values 
shown in the AI model did not converge to 0 and exhibited nega-
tive values. When evaluating the precision of segmentation, the 
Hausdorff distance, which indicates the maximum distance differ-

Fig. 2. Block diagram of the modified fully convolutional DenseNet (FC-DenseNet) model.
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ence between two contour surfaces, is commonly used as an as-
sessment metric. However, for this study, which aims to detect 
anomalies through tracking overall relative errors rather than local 
errors within the ROI, the mean surface distance (MSD), capable of 
showing how much, on average, the surface varies between two 
contour surfaces, was employed as the evaluation metric. The for-
mula for calculating MSD is as follows:  

MSD =       ( ∑ d(p,S’) + ∑ d(p’,S)),
where, S and S' represent the outer surfaces of two segmentations, 
d(p,S') denotes the distance between a point p on surface S and the 
surface S', which is calculated as the minimum of the Euclidean 
norm: min, ||p – p’||2. Here, nS and nS' denote the number of  
points on the surface S and the surface S’, respectively.  

This study used the rigid registration function of MIM Maestro 
version 7.1.4 software to fuse kVCT and MVCT images based on 
bony structures rather than utilizing the real image alignment in-
formation used in each treatment session, as illustrated in Fig. 1. 
The ROIs, namely, body outline (blue lines), rectal balloon (brown 
lines), and Blad+Pros (pink lines) of the kVCT images, segmented 
during the RT planning process, served as a reference for analyzing 
changes in the centroid positions (x, y, and z in mm) and volumes 
(mL) of the ROIs within each MVCT image. Additionally, to evaluate 
the consistency of MVCT image quality, changes in the mean and 
median image intensities (HU) of each ROI were analyzed with ref-

ns + ns

1

p'∈S'

ns nS'

p = 1 p = 1

erence to those assessed in the first MVCT image. During the com-
parative analysis of the body outline region, only the contours 
within the fused area with the MVCT images from the entire region 
of the kVCT image were used. 

Results 

1. Analysis of MVCT and kVCT images 
The image intensity of a CT image refers to the level of brightness 
or darkness of a pixel in a CT image, which is determined by the 
amount of X-ray absorption by the tissues within the body. The ar-
eas of the body that absorb more X-rays appear brighter on the CT 
image, while areas that absorb fewer X-rays appear darker. The im-
age intensity can be adjusted by changing the window width and 
window level, which are settings that control the range of pixel 
values displayed on the image. By adjusting these settings, specific 
tissues or structures of interest can be highlighted, and the visibili-
ty of subtle abnormalities can be improved. 

The MVCT images were acquired using high-energy X-rays up to 
3.5 MV [41,42], which penetrate deeper into the body and are pri-
marily used for imaging bony structures and implanted devices, 
while the kVCT images were acquired using kilovoltage X-rays up 
to 120 kVp, which are better suited for imaging soft tissue. Com-
pared to kVCT images, MVCT images exhibit higher noise levels and 
lower contrast and spatial resolution. Fig. 3 illustrates the clear dif-
ferentiation of bone, soft tissue, and cavity regions in kVCT images, 

Fig. 3. Comparison of the image intensity histograms, plotted using Hounsfield unit (HU) value on the x-axis and the percentage of voxel 
counts on the y-axis, between body outline (blue line for kVCT and light blue line for MVCT) and rectal balloon (yellow line for kVCT and brown 
line for MVCT) volumes in kVCT and MVCT images for ten patients. kVCT, kilovoltage computed tomography; MVCT, megavoltage computed to-
mography.
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leading to a sharp distribution of image intensity values (HU) with-
in the contoured body outline and rectal balloon volumes. However, 
the distributions in MVCT images were relatively blunt. The HU dis-
tributions in the kVCT and MVCT images were analyzed using the 
“contour histogram” and “statistics for contour” functions imple-
mented in MIM Maestro version 7.1.4 software. For the body out-
line volume, the HU distribution in the kVCT image showed two 
sharp peaks near -100 HU and 60 HU, respectively, within the 
range of -135 HU to 120 HU. In the MVCT image, however, two 
blunt peaks were formed near -70 HU and 50 HU, respectively, 
within the range of -200 HU to 350 HU. For the rectal balloon vol-
ume, the HU distribution in the kVCT image showed a sharp peak 
mostly centered at -995 HU, while the peak distribution was rela-
tively wider and centered at -930 HU in the MVCT image. The 
mean HU ±  standard deviation of the body outline volume for 
kVCT and MVCT images for 10 patients was 14.4 ±  176.8 and 10.7 
±  151.7, respectively, while the mean HU ±  standard deviation for 
the rectal balloon volume was -825.5 ±  298.4 and -711.3 ±  291.3, 
respectively. 

2. Training result of FC-DenseNet model 
Fig. 4 shows the training result of the FC-DenseNet model imple-
mented in the OncoStudio software, using 80 MVCT image sets of 
80 patients and manually segmented datasets. As the Dice score 
approached 1, the loss value (the gold line) decreased exponential-
ly. The loss gradually decreased and stabilized over time. By epoch 
100, the validation set's loss value had been reduced from the ini-
tial -4.55 to the final -4.80, confirming the effectiveness of the 
training. DSC and MSD metrics were employed to compare AI-gen-
erated auto-contours against manual contours for 10 test datasets 
to evaluate the AI model's auto-segmentation performance in MIM 

Maestro version 7.1.4 software. As depicted in Fig. 5, the DSC and 
MSD scores for the body outline, rectal balloon, and Blad+Pros re-
gions were all over 0.88 and within 1.43 mm, respectively. Specifi-
cally, for the body outline, the mean DSC value was measured at 
0.992 ± 0.001 (min–max, 0.991–0.994), alongside the MSD value 
of 0.117 ± 0.022 mm (min–max, 0.088–0.171). Regarding the rectal 
balloon, the mean DSC value was observed at 0.967±0.011 (min–
max, 0.939–0.974), and, while the MSD value was recorded as 0.245 
± 0.176 mm (min–max, 0.150–0.737). For the Blad+Pros, the corre-
sponding DSC values was 0.915 ± 0.021 (min–max, 0.887–0.961), 
while the associated MSD value was 0.932 ± 0.418 mm (min–max, 
0.200–1.426). 

When training FC-DenseNet without applying data augmenta-
tion techniques and using the same dataset, DSC and MSD metrics 
were evaluated on the same ten MVCT datasets for testing. As de-
picted in Fig. 6, in the absence of data augmentation, the minimum 
DSC values for body outline, rectal balloon, and Blad+Pros de-
creased to 0.83, while the maximum MSD increased to 6.31 mm. In 
detail, evaluating the AI-generated auto-contours against manual 
contours, the mean DSC values for the body outline was 0.994 ±  
0.001 (min–max, 0.992–0.995), with the MSD value of 0.097 ±  
0.023 mm (min–max, 0.069–0.149). The mean DSC value for the 
rectal balloon was 0.951 ±  0.044 (min–max, 0.828–0.971), with 
the MSD value of 0.871 ±  1.917 mm (min–max, 0.180–6.313). For 
Blad+Pros, the mean DSC value was 0.907 ±  0.023 (min–max, 
0.877– 0.940), with the MSD values of 1.173 ±  0.346 mm (min–
max, 0.512–1.664). 

3. Analysis of interfractional MVCT images 
Fig. 7 compares six MVCT images acquired for IGRT of a randomly 
selected prostate cancer patient. In the simulation kVCT image of 

Fig. 4. The training outcome of the fully convolutional DenseNet (FC-DenseNet) model for MVCT auto-segmentation, depicting the fluctuating 
patterns of dice similarity coefficient for individual regions-of-interest and the overall loss value during 100 epochs of training. MVCT, mega-
voltage computed tomography.
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Fig. 5. Distributions of dice similarity coefficient (DSC) and mean surface distance (MSD) scores of the automatically segmented body outline 
(blue), rectal balloon (orange), and Blad+Pros (grey) regions in reference to the manually segmented reference regions-of-interest across ten 
test datasets. Blad+Pros, bladder including prostate area. 

Fig. 6. Distributions of dice similarity coefficient (DSC) and mean surface distance (MSD) scores of the automatically segmented ROIs by AI 
model trained with and without dataset augmentation, namely, body outline (blue for AI model with augmentation, orange for AI model with-
out augmentation), rectal balloon (grey for AI model with augmentation, yellow for AI model without augmentation), and Blad+Pros (royal blue 
for AI model with augmentation, green for AI model without augmentation), in reference to the manually segmented reference ROIs across 10 
test datasets. Examples of the segmentation results on the MVCT image are shown above. AI, artificial intelligence; ROI, region-of-interest, 
MVCT, megavoltage computed tomography; Blad+Pros, bladder including prostate area. 
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Fig. 7. Comparison of MVCT images acquired at different time points during treatment sessions and the simulation kVCT image overlaid with 
contours segmented on six MVCT images. kVCT, kilovoltage computed tomography; MVCT, megavoltage computed tomography.
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Fig. 7, all ROIs segmented from six MVCT images are overlaid, al-
lowing for a rough observation of the patient's internal structural 
changes. To quantitatively compare and analyze these changes, as 
shown in Figs. 8–10, the DSC, MSD, centroid differences, and vol-
ume differences were analyzed in the six MVCT images based on 
the ROIs in the kVCT image. For the body outline, the DSC was 
above 0.97, MSD was within a maximum of 2.48 mm, and the cen-
troid differences were all within 1.20 mm along the x, y, and z axes, 
indicating good agreement. However, in terms of volume, differ-
ences of up to 460 mL were observed in the last MVCT image. For 

the rectal balloon, the mean DSC was 0.81 ±  0.06 (min–max, 
0.75–0.89), the mean MSD was 2.83 ±  1.09 mm (min–max, 1.40–
4.05), and centroid differences were within 2.10 mm along the 
x-axis (with a mean of 1.03 ±  0.56 mm), 7.60 mm along the y-axis 
(with a mean of 4.72 ±  2.31 mm), and 8.60 mm along the z-axis 
(with a mean of 1.13 ±  3.98 mm). Volume differences of up to 48 
mL (with a mean of 17.96 ±  16.61 mL) were observed for the rec-
tal balloon. For the Blad+Pros region, the mean DSC was 0.75 ±  
0.11 (min–max, 0.55–0.87), the mean MSD was 4.56 ±  2.93 mm 
(min–max, 2.02–10.04), and centroid differences were within 1.30 

Fig. 8. Distribution of dice similarity coefficient (DSC) and mean surface distance (MSD) scores for the body outline (blue), rectal balloon (or-
ange), and Blad+Pros (grey) regions segmented on the six MVCT images, assessed in reference to the regions-of-interest segmented on the 
simulation kVCT image. kVCT, kilovoltage computed tomography; MVCT, megavoltage computed tomography; Blad+Pros, bladder including 
prostate area. 

Fig. 9. Distribution of centroid differences—x (blue), y (orange), and z 
(grey) in mm—for the body outline, rectal balloon, and Blad+Pros re-
gions segmented on the six MVCT images, assessed in reference to 
the regions-of-interest segmented on the simulation kVCT image. 
kVCT, kilovoltage computed tomography; MVCT, megavoltage com-
puted tomography; Blad+Pros, bladder including prostate area. 

Fig. 10. Distribution of volume (mL) differences for the body outline 
(blue), rectal balloon (orange), and Blad+Pros (grey) regions segment-
ed on the six MVCT images, assessed in reference to the re-
gions-of-interest segmented on the simulation kVCT image. kVCT, ki-
lovoltage computed tomography; MVCT, megavoltage computed to-
mography; Blad+Pros, bladder including prostate area. 
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mm along the x-axis (with a mean of 0.08 ±  0.80 mm), 3.30 mm 
along the y-axis (with a mean of 0.30 ±  1.76 mm), and 14.80 mm 
along the z-axis (with a mean of 6.63 ±  5.49 mm). Volume differ-
ences of up to 208 mL (with a mean of 74.01 ±  76.14 mL) were 
observed for the Blad+Pros region. The intensity (HU) of MVCT im-
ages was quantitatively analyzed for variations in the remaining 
five MVCT images based on the initial MVCT image, as depicted in 
Fig. 11. For the body outline and Blad+Pros regions, the mean HU 
differences were within 8.04 ±  5.26 HU and 9.51 ±  6.17 HU, re-
spectively, and the median HU differences were within 8.00 ±  5.35 
HU and 6.00 ±  4.18 HU, respectively, indicating no significant ob-
served changes. However, the average and median HU differences 
were relatively largely fluctuated for the rectal balloon, within 
90.36 ±  34.92 HU and 110.00 ±  42.82 HU, respectively. 

Discussion and Conclusion 

This study aimed to assess the feasibility of commercial software in 
establishing a system that can track interfractional patient organ 
changes using low-quality MVCT images, possibly enabling ART ef-
ficiently. This is particularly important in terms of cost-effective-
ness. This research evaluated the feasibility of utilizing the AI mod-
el in OncoStudio for the automated segmentation of ROIs in 
low-quality MVCT images.  

To ensure stable auto-segmentation performance during the 
training of the FC-DenseNet model in OncoStudio, we established 
a successful training condition through trial and error. These in-
cluded factors such as dataset composition and quantity, voxel 

spacing, 3D patch size, data augmentation conditions, image in-
tensity (HU) range, and learning rate. DenseNet, which connects all 
layers densely using dense connectivity patterns, has been known 
for its remarkable performance and low computational require-
ments compared to other architectures. In the training process of 
this model, growth rate and model depth were set to 16 and 5, re-
spectively, corresponding to the settings used for training the au-
to-segmentation model on the kVCT image in the OncoStudio. 
While we initially trained the model on 259 datasets from 23 pa-
tients, we found that increasing the number of patients signifi-
cantly impacted model performance. To achieve stable results, we 
determined that a minimum of 100 patients was required. Howev-
er, due to data limitations, 80 patients were used for training, 10 
for validation, and 10 for testing, and it was ensured that the im-
ages used for training and validation were not utilized in testing. 
For the voxel spacing in the training process, while the initial train-
ing was performed with a fixed z-axis spacing of 3 mm, 1 mm-in-
terval random sampling of 1–5 mm spacing was determined for 
more precise training considering variations in MVCT scan slice 
thickness (2–6 mm) and the complex 3D volume structure. In this 
case, when the 3D patch size was set to 384 ×  384 ×  16 under 
the condition of a 2 ×  2 ×  3 mm3 resolution, the training speed 
decreased and memory usage increased, but there was not a sig-
nificant impact on segmentation performance. Therefore, the train-
ing process was conducted with a 3D patch size of 256 ×  256 ×  
16, which allowed it to encompass the entire body region. To aug-
ment the dataset, factors such as variations in image quality such 
as image intensity (HU) distribution and noise level that affect im-
age sharpness and blurring, and organ size due to patient anatomy 
were taken into account to determine the contrast range (HU), the 
random intensity (HU) shift, the random zoom scaling, and the ran-
dom blurring. The learning rate should be set to a suitable value to 
ensure stable training with increased epochs. Through trial and er-
ror, it was found that a learning rate of around 2 ×  10-4 was ap-
propriate to prevent sudden increases in loss and convergence to 
zero DSC values during training. By optimizing the training condi-
tions through these processes, the AI model produced outcomes 
that closely matched those obtained through manual segmenta-
tion, as depicted in Fig. 5. Data augmentation is crucial to ensure 
the stability of the model performance due to the lower image 
quality of MVCT images compared to kVCT images. A larger dataset 
comprising more than 100 patients is necessary to achieve further 
improvements beyond the developed model. This expansion is an-
ticipated to potentially raise overall DSC above 0.9 and maintain 
MSD within 1 mm. 

We observed slight changes (up to 9.51 HU) in the image inten-
sities (HU) of the six MVCT images, as depicted in Fig. 11, with the 

Fig. 11. Distribution of image intensity (HU) differences—mean HU 
(blue) and median HU (orange)—for the body outline, rectal balloon, 
and Blad+Pros regions segmented on the six MVCT images, assessed 
in reference to the regions-of-interest segmented on the simulation 
kVCT image. HU, Hounsfield unit; kVCT, kilovoltage computed tomog-
raphy; MVCT, megavoltage computed tomography; Blad+Pros, blad-
der including prostate area. 
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exception of the rectal balloon. These changes are expected to 
have a minimal impact on auto-segmentation performance due to 
the application of random HU shifts (within a range of 70 HU) 
during data augmentation. However, in the case of the rectal bal-
loon, the blurred image quality at the boundary between the rectal 
wall area and the air layer can result in variations in the proportion 
of tissue invasion within the segmented ROI. As previously reported 
in the literature [37], determining the ROI boundaries is highly un-
certain due to the poor image quality of MVCT images. The uncer-
tainty can be further pronounced when the rectum is filled with 
gas due to physiological phenomena. This is a limitation inherent in 
the auto-segmentation of low-quality MVCT images. 

In a previous study by Shelley et al. [43], an auto-segmentation 
model for the rectum in MVCT images of prostate cancer patients 
was developed. This model was based on the Chan-Vese algorithm 
and implemented in MATLAB. They trained the model using 26 
MVCT images from 10 prostate cancer patients and validated it 
with 30 additional MVCT images. The performance of this model 
resulted in a DSC of approximately 0.78 when comparing au-
to-contours against manual contours. Although the rectum's struc-
ture is more intricate than the ROIs utilized in this study, making 
direct comparison challenging, our results demonstrated the supe-
rior performance of the auto-segmentation model (FC-DenseNet) 
regarding the DSC score, achieving a DSC score above 0.88 for the 
Blad+Pros region.  

While monitoring the patient's internal condition through six 
MVCT scans, the DSC values for both the rectal balloon and Blad+-
Pros regions scored below 0.9. The MSD values were up to 4 mm 
and 10 mm, respectively, indicating significant variations in the 
shape and volume of the ROIs. Additionally, disparities in centroid 
positions were noted, with the rectal balloon and Blad+Pros areas 
showing differences of up to 8.6 mm and 14.8 mm along the z-axis, 
respectively. The presence of gas in the patient's rectum due to phys-
iological factors could contribute to an increased segmentation vol-
ume in the superior direction of the rectal balloon. Similarly, varia-
tions in bladder filling could lead to notable changes in the superior 
direction of the Blad+Pros region. In clinical practice, online image 
registration for IGRT primarily focuses on aligning with the positions 
of the prostate and rectal balloon, particularly in regions receiving 
the highest radiation doses. This approach contrasts with the rigid 
registration outcomes between MVCT and kVCT based on bony struc-
tures, as employed in this study using MIM software. Given these 
considerations, the variations observed in the y- and z-axes direction 
of the rectal balloon in this study could be relatively reduced during 
actual treatment scenarios. However, even if rectal balloon position 
variations were minimized, whole-body centroid shifts would still 
occur, which might necessitate the conventional DIR-based approach 

for patient dose estimation if we are concerned. 
The changes in bladder volume and abdominal body volume vary 

from patient to patient due to individual conditions. Factors like 
meals, fluid intake, and timing of urination are quite challenging to 
control, especially in elderly patients. This study observed trends 
where the body outline and Blad+Pros volumes changed by up to 
460 mL and 208 mL, respectively. However, at present, determining 
the threshold for adaptive planning based on these changes re-
mains difficult. Therefore, accumulating patient tracking data for a 
larger patient population and statistically analyzing the impact of 
varying degrees of changes in each ROI on the patient's internal 
dose distribution is required further. This will help determine levels 
of risk for significant changes, requiring the medical staff's confir-
mation, in MSD, centroid position, and volume. 

In conclusion, we have verified the feasibility of utilizing a com-
mercial AI-based model for auto-segmentation with low-quality 
daily MVCT images. Additionally, this approach facilitates effective 
interfractional tracking of organ changes during RT. Our future ob-
jective is to establish an automatic system capable of swiftly and 
accurately segmenting all ROIs within the daily MVCT images. 
Moreover, if any segmentation errors are identified, we aim to rec-
tify them within a 5-minute. 
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