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denoising algorithms using in silico and
physical phantom studies
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ABSTRACT. Purpose: Recent research suggests that image quality degradation with reduced
radiation exposure in mammography can be mitigated by postprocessing mammo-
grams with denoising algorithms based on convolutional neural networks. Breast
microcalcifications, along with extended soft-tissue lesions, are the primary breast
cancer biomarkers in a clinical x-ray examination, with the former being more sen-
sitive to quantum noise. We test one such publicly available denoising method to
observe if an improvement in detection of small microcalcifications can be achieved
when deep learning-based denoising is applied to half-dose phantom scans.

Approach: An existing denoiser model (that was previously trained on clinical data)
was applied to mammograms of an anthropomorphic physical phantomwith hydroxy-
apatite microcalcifications. In addition, another model trained and tested using all
synthetic (Monte Carlo) data was applied to a similar digital compressed breast
phantom. Human reader studies were conducted to assess and compare image
quality in a set of binary signal detection 4-AFC experiments, with proportion of
correct responses used as a performance metric.

Results: In both physical phantom/clinical system and simulation studies, we saw
no apparent improvement in small microcalcification signal detection in denoised
half-dose mammograms. However, in a Monte Carlo study, we observed a notice-
able jump in 4-AFC scores, when readers analyzed denoised half-dose images
processed by the neural network trained on a dataset composed of 50% signal-
present (SP) and 50% signal-absent regions of interest (ROIs).

Conclusions: Our findings conjecture that deep-learning denoising algorithms may
benefit from enriching training datasets with SP ROIs, at least in cases with clusters
of 5 to 10 microcalcifications, each of size ≲240 μm.
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1 Introduction
One of the most effective means for reducing breast cancer mortality is the screening of asymp-
tomatic women using digital mammography (DM).1 Two of the most important clinical signs
of breast cancer observed on a mammogram are: (1) the characteristics of a tumor soft-tissue
mass and (2) presentations of mineral deposits as specks referred to as microcalcifications.2

Mammography is one of the most challenging radiological imaging techniques because it
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requires both good conspicuity of low-contrast tumor masses, as well as of fine, high-resolution
details associated with microcalcifications. Since the breast is radiosensitive, it is also important
that mammography systems are designed to maximize image quality while also limiting the mean
glandular dose.

Detection of breast microcalcifications in mammograms is particularly important because
they often are an early indication of in situ breast cancer that makes up to 34% of all newly
diagnosed breast cancers detected in mammography.3 It has been previously shown through
phantom studies that detection of microcalcifications is largely limited by the radiation dose
to the breast.4,5 One recent study by Chan et al.6 conducted a microcalcification phantom study
showing that with a decrease of dose from 2.07 to 1.34 mGy, radiologists recorded decreased
sensitivity and increased false positives.

Thus any effort to reduce the radiation dose to the breast with mammography must carefully
consider whether microcalcification detection accuracy would be penalized. Several recent
research efforts have focused on the development of image processing methods to reduce noise
in mammographic images, some with the goal of reducing radiation dose to the breast. Lately,
studies using deep-learning convolutional neural network (DL-CNN)-based techniques have
focused on the potential of reducing radiation dose to the breast by restoring mammography
images acquired using a lower-dose protocol to obtain image quality similar to that achieved
with a conventional dose protocol.

Shan et al.7 explored the use of DL-CNNs for restoring low-dose digital mammograms and
investigated various network loss functions, including mean-square error (MSE), mean-absolute
error (MAE), structural similarity index (SSIM),8 and perceptual loss (PL).9 For training the
DL-CNN, they used a large number of image patches extracted from retrospective DM exams
acquired on a clinical system, using a procedure to add quantum noise to full-dose scans to
simulate varying radiation dose levels. To evaluate the denoising algorithm, an anthropomorphic
breast phantom was used to acquire images at different dose levels, and performance was
assessed using signal-to-noise ratio (SNR) and mean-normalized-square error (MNSE). Results
suggested that one PL loss function (PL4) was able to achieve similar noise levels of the full-dose
image when applied to reduced dose images, while achieving smaller bias than the other loss
functions tested. In a follow up study, Vimieiro et al.10 enhanced the loss function to impose
fidelity of the image noise correlation between full-dose and low-dose mammograms. In another
study, Gao et al.11 trained a DL-CNN using a loss function consisting of a weighted combination
of MSE and adversarial loss to improve microcalcification conspicuity in breast tomosynthesis
images. Although this study did not evaluate whether the method could be used on low-dose
images to recover image quality to be similar to full-dose images, the algorithm showed improve-
ments by training the network with simulated data acquired from a digital anthropomorphic
breast phantom.

Training of these new DL-based denoising algorithms to restore low-dose images is a chal-
lenging endeavor. One approach is to acquire full-dose and low-dose mammograms from a large
ensemble of patients for use in training the denoising algorithm. Unfortunately, this approach
raises ethical issues in that patients would have to receive increased radiation dose over a conven-
tional dose protocol. Another approach for procuring training data used by Shan et al.7 is to
implement a simulation procedure to add quantum noise to full-dose clinical images. Adding
simulated noise to images is difficult in that it requires accurate modeling of the imaging system,
as well as the postacquisition image processing implemented by the vendor. Another potential
challenge with using clinical data to train the network is that the training data should include
representations of different clinical diagnostic features, e.g., image patches containing microcal-
cification clusters. To obviate these difficulties, Gao et al. trained a DL-CNN using realistic
anthropomorphic digital breast phantoms and in silico modeling of the breast imaging system,
and they concluded that the DL-CNN trained using this data was applicable to clinical human
subjects.

Assessing performance of new DL-CNN algorithms in improving the accuracy of micro-
calcification detection in low-dose images represents an additional challenge. Common figure-of-
merits used to analyze performance are visual assessment, SNR, contrast-to-noise ratio (CNR),
MNSE, and SSIM. Visual assessment of denoised images is subjective and not necessarily pre-
dictive of clinical performance. The SNR and CNR do not account for the effect of noise
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correlations in the image that could affect microcalcification detection, and the MNSE and SSIM
are global image metrics that do not relate specifically to microcalcification detection
accuracy. A recent work aimed to objectively evaluate performance of DL-based denoising
methods by use of numerical observers.12

Since microcalcification detection accuracy is especially sensitive to quantum noise, while
the detectability of masses is only lightly dependent on radiation dose,13 we focus here on the
evaluation of microcalcification detection with denoising algorithms. Two approaches for the
objective assessment of microcalcification detection performance with DL-CNN denoising algo-
rithms are proposed. The first approach used a previously described physical anthropomorphic
breast phantom with inserted microcalcification clusters of small size.14 Although it is unclear if
physical breast phantoms can be used to collect enough training data to train the denoising net-
work, the approach could be used to evaluate networks previously trained on clinical data. The
second approach used in silico computational methods with a previously developed anthropo-
morphic digital breast phantom15 and GPU accelerated Monte-Carlo software16 for simulating
the imaging acquisition process. With this latter approach, a large ensemble of image data with
small microcalcification clusters can be generated for training and testing of DL-CNN breast
imaging denoising algorithms. We demonstrate the use of these testing approaches by evaluating
performance of a recently developed DL-CNN-based algorithm7,10 for denoising low-dose
mammography images. The latest implementation of this algorithm uses a weighted loss function
comprised of two components; a PL and another term that calculates the difference in the power
spectra of the input and output images. The goal of this second term is to constrain the processed
image to have similar noise correlation (i.e., power spectrum) as the original image.

2 Methods
This study consists of two separate experiments. In both, we used an existing PyTorch deep-
learning denoising model provided to us by its developers.7,10 In the first set of experiments,
the denoising model was trained (by the algorithm creators) using clinical data and applied
to images of a physical breast phantom with embedded microcalcifications acquired on the
Hologic Selenia Dimensions DM system. In the second set of experiments, a cohort of digital
anthropomorphic breast phantoms was generated with embedded microcalcification clusters,
and mammograms were simulated with Monte Carlo x-ray transport software. These synthetic
images were then used for training and testing of the deep-learning denoising algorithm. The
following sections explain the denoising software we tested and details of data preparation.

2.1 Existing DL-Denoising Model Applied to Experimental Phantom Data
To restore low-dose phantom images collected on our Hologic Selenia Dimensions DM system,
we used an existing pretrained deep-learning model. Details of its implementation and training
are given by Shan et al.,7 and the source code is available from USP-LAVI GitHub repository.17,18

To briefly summarize the authors developments, a HResNet network (modification of a ResNet
architecture19 optimized for better modeling of the noise distribution in low-dose DM) has been
investigated with seven different loss functions. Specifically, the authors experimented with
MSE, MAE, SSIM,8 and PL [compares similarity between two images in a high-level feature
space of the VGG-16 network20] loss functions PL1 through PL4, with a numerical index indi-
cating whether the PL was computed on early or later layers in the VGG-16 for four different
feature spaces. The algorithm was trained on image data extracted from 400 clinical mammo-
grams (CC/MLO/left/right breasts) of 100 patients from the Barretos Cancer Hospital in Brazil,
all collected using the Hologic Selenia Dimensions DM system. In order to have a matching
dataset of low-dose mammograms the authors injected quantum and electronic noise into the
full-dose images, taking into account detector crosstalk. Two new image sets with dose reduction
factors of 50% and 75% were produced. After this image restoration, models were trained using
256,000 64 × 64 px2 randomly selected breast background patches [matched pairs of full-dose
and low-dose regions of interest (ROIs)]. It was concluded that, among others, the PL4 loss
function-based model preserved most image details without excessive smoothness. Therefore,
we chose this model for denoising low-dose phantom data.
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2.2 Physical Phantom Imaging for a Testing Set
For testing the above denoising model in the human observer studies, we imaged our previously
described21 anthropomorphic 2D-printed paper breast phantom, which mimics ∼30%-glandular
tissue composition and a 40-mm-thick compressed breast. Signals used in the observer detection
task were defined as clusters of microcalcifications. Several “inserts,” with many hydroxyapatite
microcalcification cluster patterns arranged in each, allowed us to produce sufficient number of
nonrepeated random cluster configurations. Such an “insert” was placed in the paper phantom
to produce signal-present (SP) ROIs in x-ray images. A typical cluster is localized in a 5 mm2

area and contains on average 5 to 7 calcifications of random shapes with individual specks
sizes varying from ∼150 to 180 μm. Phantom mammograms were acquired on a Hologic
Selenia Dimension mammography unit. Figure 1(a) shows a sample acquisition. Automatic
exposure control (AEC) was used for full-dose scans of the phantom, and manual exposure
corresponding to a ×0.5 of AEC dose was used for low-dose acquisitions. All together two
datasets with N ¼ 250 unique SP ROIs and 750 signal-absent (SA) ROIs were acquired with
the full-dose and low-dose settings. The HResNetþ PL4 denoising model, as described above,
was used to process low-dose mammograms. Since the original deep-learning model was
trained using “for processing” (e.g., raw) clinical mammograms, we used the same kind of
output in a test dataset. Table 1 lists the machine exposure parameters used for collecting exper-
imental data.

Fig. 1 Examples of physical and simulated phantom mammograms and microcalcification
clusters. (a) Experimental phantom mammogram, where bright circles around the breast are
fiducial markers used for ROI extraction. (b) Physical cluster of HA calcifications. (c) Monte
Carlo simulation. (d) Synthetic cluster. Arrows indicate individual speck locations in (b) and (d).

Table 1 Techniques used for collecting phantom mammograms for denoising algorithm testing.

Modality Spectrum kVp
Full dose (AEC)

(mAs)
Half dose
(mAs)

Presentation
intent type

DM W-Rh 31 125 60 Raw
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2.3 Simulated Mammography Data
For the in silico study, a large number of synthetic mammograms were generated using MC-GPU
x-ray transport and simulation software.16 An ensemble of VICTRE22 compressed breast phan-
toms of scattered density type was used. Voxelized phantoms are based on Graff’s model15 and
were of the size 121 × 87 × 57 mm3.

SP mammograms (with microcalcification clusters present) were modeled by inserting
spherical specks of sizes 100 μm ≲ d ≲ 240 μm, five per random cluster/multiple clusters per
phantom, into a central slice of the phantom. A single cluster occupies approximately a
4 × 4 mm2 area. Microcalcifications were modeled as hydroxyapatite with voxels making up the
specks assigned varying density values ranging from 1.1 to 1.4 g∕cm3. These density values were
determined by trial and error from pilot 4-AFC reader studies with a human observer to obtain
desired signal contrast and resulting PC score in the microcalcification detection task. We aimed
to approximately match the reader’s PC performance achieved in the study with experimental
mammograms of the anthropomorphic breast phantom, e.g., PC ≳80% for a full-dose exposure.
Figure 1 shows physical and simulated phantom x-ray images, as well as corresponding SP regions.

2.4 Deep-Learning Denoising Model with Combined PL + PS Loss Function
Training

For the study with Monte Carlo generated data, we employed an improved version of the denois-
ing algorithm by the same group (Laboratory of Computer Vision, University of São Paulo,
Brazil), presented at the IWBI 2022 conference.10 Similar to the original work, our implemen-
tation used a combination of two loss functions: one to impose fidelity in the noise correlations
(2D power spectrum or PS-2D) and one that optimizes visual perception (perception loss or PL)
in VGG-16 network. The PS-2D component was defined as the mean-normalized-absolute erro
between the 2D power spectrum of the prediction (e.g., model output image) and the target
(ground-truth high-dose image); whereas the PL component compares similarity between two
images in a high-level feature space in the early or later layers of the VGG-16 (thus dubbed PL1
through PL4) and is equivalent to the MSE but defined in a feature space instead of a pixel space.
Specifically, the combined loss function was expressed as

EQ-TARGET;temp:intralink-;e001;117;386LPLþPS ¼ LPL4 þ λ · LPS-2D; (1)

where the PS-2D component’s weight was set to λ ¼ 0.037, as was determined optimal in the
algorithm’s developers experiments, and that appeared to produce good results with our own
data. Following the original approach, we first pretrained the denoising model using an L1-norm
loss function and then used a saved model as an input to train the final model with the PS-2Dþ
PL4 loss function. Convergence criteria in both cases were satisfied when the loss value achieved
a stable plateau, as shown in Fig. 2. Pretraining with a simple L1-norm loss function was done to
obtain a solution reasonably close to the input image, before fine-tuning the algorithm with a
more complex combined loss function, to avoid possible divergence in the optimization process.

Fig. 2 Pretraining and training of the denoising algorithm: (a) pretraining with L1-norm loss
function and (b) fine-tuning with combined PS-2Dþ PL4 loss function.
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Learning rates and other neural network hyperparameters were the same as in the original work.
Figure 2 shows the learning progression for both steps.

Model training was done patchwise using a large number (∼248;000) of matched full-dose
and half-dose 64 × 64 px2 image pairs. We explored two approaches for the algorithm training:
(1) all ROIs used in the training set were extracted from breast background regions in mammo-
grams without microcalcifications (e.g., SA images only) and (2) half of ROIs used in the training
set (∼124;000) were SA, while the other half contained microcalcifications. The idea was to see
if enriching the training set with ROIs containing microcalcifications would have an effect on the
observer performance. Finally, the resulting PyTorch models were used for denoising of (whole)
low-dose mammograms for the reader studies.

2.5 4-AFC Visual Experiment with Human Observers
The observer study, using phantom images acquired on the Hologic Selenia Dimensions system,
consisted of the three reading sessions with full-dose, low-dose, and DL-denoised low-dose
ROIs. The image patches were 16-bit grayscale 100 × 100 px2 (∼7 × 7 mm2) DICOM crops.
The same ROIs (locations within the image) were used in all sessions, with their order random-
ized between each session and each participant. Default window level and window width were
set to maximize the contrast of each crop (e.g., using full range for window width and having
widow level at the midpoint) with readers being able to adjust magnification, brightness, and
contrast for individual “windows” in the 4-AFC interface. We employed the University of
Leuven, Belgium, 4-AFC GUI display software23 to conduct the readings. A room with con-
trolled light environment and a medical-grade DICOM-calibrated display BARCO MDCC-
6130 were used for all human observer experiments. Four readers with biomedical engineering
degrees and medical imaging background were recruited from our laboratory to do the readings.
The resulting data were analyzed to produce a proportion of correct (PC) responses score for
each reader, and data bootstrapping was implemented to estimate confidence intervals on PC.

Similar reading sessions were carried out with ROIs extracted from simulated mammograms
of the digital breast phantom and DL-denoised data processed by the HResNet∕PS-2Dþ PL4

model, which we trained ourselves. Each reader conducted four studies with full-dose, low-dose,
and DL-denoised data processed with the model trained only using SA patches, as well as
DL-denoised data processed with the model trained using 50% SA and 50% SP ROIs.

3 Results

3.1 DL-Denoising Performance Evaluation Using Existing Model Applied to
Phantom Data Acquired on a Clinical Mammography Machine

Figure 3 summarizes microcalcification detection performance in the 4-AFC study using an
experimental breast phantom for four human readers. PC responses with 95% confidence inter-
vals obtained from bootstrapping data and determining 2.5% and 97.5% percentiles, is compared
for full-dose, half-dose, and DL-denoised half-dose images. From the plot, it can be noted that
(1) there is a statistically significant difference between observers performance with full-dose and
half-dose ROIs, and (2) denoising of low-dose data did not improve calcification detectability
(PC values are provided in Table 2). For all readers, analyzing ROIs from denoised mammo-
grams resulted in performance close to that obtained with original low-dose data, within meas-
urement error bars.

Figure 4 shows a typical SP ROI at full-dose, half-dose, and a half-dose image after denois-
ing. Loss of finer details, including some microcalcifications, and higher pixel variance are ap-
parent in the half-dose image. The restored image, on the other hand, although providing visually
better resemblance of a full-dose image texture, still misses high-frequency detalization of full-
dose data. MSE and SSIM comparison shows that denoising improves both quantities—MSE is
reduced by 37% and SSIM is increased by 24% when comparing half-dose versus full-dose and
restored versus full-dose image pairs. We speculate that “smoothing out” of the local fine struc-
tures, despite improved “global” image quality metrics, such as MSE and SSIM, is what causes
human readers not to perform better with microcalcification detection in denoised ROIs.
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3.2 DL-Denoising Performance Evaluation Using Model Trained and Tested on
Monte Carlo Mammograms

Human observer results for the study using Monte Carlo generated mammograms processed with
the denoising algorithm that used the PSþ PL4 loss function trained using only SA ROIs, as well
as trained using both signal-absent and signal-present (SAþ SP) ROIsare summarized in Fig. 5.

Two interesting observations can be made from these data. First, there was no significant
difference in detection performance observed between reading half-dose images and half-dose
images processed with DL-denoising, when the model was trained using only SA data. This
repeats our finding in the experiment with physical phantom. Second, when low-dose images
are restored with the model trained on a combined SAþ SP set, it is observed (red color bars)
that the 4-AFC PC score increased for all readers compared to PC obtained with the original
low-dose images. P-value calculation shows that the likelihood of this improvement being a

Table 2 Results of the 4-AFC human observer experiment with physical breast phantom imaged
on the Hologic DM system.

Reader # 1 2 3 4

PCfulldose
a 87.6 [83.6, 91.6] 84.8 [80.0, 88.8] 81.6 [76.8, 86.0] 78.4 [73.2, 83.6]

PChalfdose 70.4 [64.8, 75.6] 69.6 [64.0, 75.2] 68.4 [62.8, 74.0] 62.4 [56.4, 68.4]

PCrestored 70.4 [64.8, 76.0] 68.8 [63.2, 74.4] 62.4 [56.4, 68.4] 63.6 [57.6, 69.6]

aPC values and their 95% confidence intervals.

(a) (b) (c)

Fig. 4 Same SP ROI: (a) full-dose, (b) half-dose, and (c) restored half-dose images. Denoised
mammogram has 37% better MSE and 24% better SSIM, compared to the half-dose one, when
similarity is measured with respect to the full-dose image.

Fig. 3 4-AFC human reader study with physical breast phantom imaged on the Hologic DM
system.
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random chance is rather small (≲5% for 3 out of 4 readers, 10% for the remaining reader), e.g.,
denoising in this case provided statistically significant gain in readers performance. Although the
processing algorithm did not produce images in which humans would achieve detection scores
obtained with full-dose mammograms, the improving effect is nonnegligible and noteworthy.
Human observer performance for simulated mammograms is detailed in Table 3

It is instructive to look at a few ROIs from restored mammograms, processed by the
denoiser model trained with background images only versus processed by the model trained
with both signal and background images (Fig. 6). Subjective visual inspection reveals very subtle
differences in the way microcalcifications are rendered with one observation: crops from mam-
mograms denoised using SAþ SP model exhibit slightly better signal contrast and definition,
likely sufficient to make a difference in the PC score. This appears feasible, keeping in mind that
in a 4-AFC trial there are three SA ROIs (possibly containing false-positive noise spikes), the
reader has to analyze along with an SP ROI.

4 Discussion
Denoising algorithms that use convolutional neural networks have been previously developed for
reducing noise in DM and DBT images. Noise reduction in screening mammography could
potentially be used to reduce radiation dose or to improve image quality. Radiation dose in
mammography is currently low, and further dose reduction might not be needed. Nevertheless,
it is important from a regulatory aspect to understand how dose reduction combined with

Table 3 Results of the 4-AFC human observer experiment with Monte Carlo mammograms of
digital breast phantoms.

Reader # 1 2 3 4

PCfulldose
a 83.94 [79.52, 88.35] 83.94 [79.12, 88.35] 74.70 [69.08, 79.92] 75.90 [70.28, 81.12]

PChalfdose 67.07 [61.45, 72.69] 67.07 [61.04, 72.69] 65.06 [59.04, 70.68] 65.06 [59.04, 70.69]

PCSAonly
restored 67.47 [61.85, 73.09] 65.46 [59.44, 71.08] 63.86 [57.83, 69.48] 66.27 [60.64, 71.89]

PCSAþSP
restored 76.31 [71.08, 81.53] 72.29 [66.67, 77.91] 72.29 [66.67, 77.91] 71.89 [66.27, 77.11]

ΔPC (%)b 13.78 7.78 11.11 10.50

p-valuec 0.011 0.103 0.041 0.051

aPC values and their 95% confidence intervals.
bPC increase from PChalfdose to PCSAþSP

restored.
cProbability that there is no difference between PChalfdose and PCSAþSP

restored.

Fig. 5 4-AFC human reader study with digital breast phantom MC-GPU mammograms.
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deep-learning denoising algorithms might affect the accuracy of microcalcification detection.
That is the focus of this study; further studies will investigate whether image quality (without
dose reduction) can be improved with denoising algorithms. There have been previous reports
that suggested DL denoising networks have promise for potentially reducing the dose to the
breast; however, the proper training and accurate evaluation of such algorithms is challenging.
A recent study by Shan et al. discussed an analysis of seven trained denoising networks with
different loss functions that were applied to phantom acquisitions acquired at full-dose and
half-dose using a Hologic Selenia Dimensions DM system. The testing phantom consisted
of slabs of breast equivalent material with calcium oxalate specks placed between the slabs
to emulate microcalcifications. The denoised phantom images were analyzed using a number
of figures-of-merit, including visual analysis, SNR, and normalized mean-square-error
(NMSE). Using these metrics, it was concluded that one particular [perceptual] loss function
(PL4) was optimal and was able to achieve virtually the same noise levels for half-dose and
full-dose DM acquisitions. The objective assessment of image quality with DM is nontrivial
because mammography requires good fidelity of both low-frequency structures, such as extended
mass lesions, as well as of high-frequency objects, such as microcalcifications. Having said that,
it is also a common wisdom that conspicuity of small, speck-like particles is more susceptible to
quantum noise (e.g., reduce x-ray dose) than larger round lesions. We believe that denoising
algorithms should be evaluated using task-based performance, such as the accuracy in detecting
microcalcifications. Metrics, such as normalized-mean-squared error, provide a global measure
of noise reduction, however, they do not necessarily assess the diagnostic tasks of interests, such
as detection of smaller, high-frequency microcalcification clusters.

In this study, we describe two possible approaches for assessing deep-learning denoising
algorithms applied to mammography. One approach uses in silico methods involving Monte
Carlo simulation of a large cohort of anthropomorphic breast phantoms embedded with micro-
calcification clusters, and the other approach uses a previously published anthropomorphic physi-
cal phantom embedded with calcium hydroxyapatite microcalcification clusters. In both cases,
acquisitions at both full-dose and half-dose settings are generated and DL denoising is applied to
the half-dose images. Human observer performance was then evaluated using 4-AFC studies.

For the physical phantom study, the (existing) DL-denoising network was trained using
400 clinical mammograms acquired on a Hologic Selenia Dimensions. To avoid giving these
patients extra radiation dose, half-dose images were computed by injecting quantum and elec-
tronic noise into the dataset. Although procedures for adding noise to mammography images
have been reported on in the literature,24–27 these approaches involve approximations, and the

Fig. 6 (a) Three SP crops from half-dose restored mammogram using denoiser model trained on
SA only data. (b) Same crops using denoiser model trained on SAþ SP data. Same window
level/window width is used in paired ROIs.
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effect of these approximations on the training of the network is not fully understood. Thus from
these 400 clinical mammograms, 256,000 patches were obtained for training the DL denoising
network. It was not stated how many of these 256,000 patches contained microcalcification clus-
ters, however, given the relative rarity of microcalcifications in clinical data, it is likely that only a
very small proportion of training data contained microcalcification clusters. This pretrained DL
denoising network was then applied to the half-dose images of our physical anthropomorphic
breast phantom with embedded microcalcifications acquired on our Hologic Selenia Dimensions
DM system. As observed in Fig. 3, there was no significant difference in observer performance
between the restored half-dose images and the nonrestored half-dose images. Although the
restored half-dose images looked visually appealing with reduced noise and showed better
MSE and SSIM values, microcalcification detection accuracy did not improve, and the perfor-
mance of the full-dose images were significantly better than the processed half-dose images.

For the in silico study reported here, the DL denoising network was trained with 248,000
Monte Carlo simulated full-dose and half-dose ROI pairs. In one case, the network was trained
with only SA ROI images (SA only), and in another case, the network was trained with half SA
and half SP ROI images (SAþ SP). The results in Fig. 5 showed that performance obtained when
denoising the half-dose images using the network trained with SA only was not significantly
different than half-dose images without processing with DL denoising. Thus similar to the results
from the physical phantom study, the DL denoiser produces images that visually appear to have
less noise but does not improve microcalcification detection performance. However, when the
DL denoiser was trained with SAþ SP images, microcalcification detection accuracy improved
somewhat over the unprocessed half-dose images. From these data, one can infer that DL denois-
ing networks can learn that microcalcifications are important diagnostic features in the image and
that visualization should not be penalized by the noise reduction process. It should be pointed out
that enriching the training dataset with more microcalcification clusters is straightforward when
the training data are simulated; however, this would be more challenging if clinical patient data
were used for training the denoising network. One practical approach that was not considered
here would be to augment patient training data with simulated full-dose and half-dose images of
microcalcification clusters.

It should be emphasized that the microcalcifications modeled in this report were purposely
small in size, ranging from 150 to 180 μm for the physical phantom study and from 100 to
240 μm for the in silico study. In addition, the clusters modeled herein contained approximately
five microcalcifications, whereas clusters found clinically contain ∼5 to 15 or more microcalci-
fications on average. Because of these modeling choices, this study focused on studying the
detection of more challenging clinical microcalcification cases. For bigger microcalcifications,
there might be different trade-offs associated with use of DL denoising networks.

5 Conclusions
In this work, we investigated an advanced deep-learning based algorithm (actually two algo-
rithms, with one being an improved version of the original) for image denoising in low-dose
mammography, using human reader studies. In the first part, we applied an existing denoiser
model trained on clinical images to mammograms of a physical phantom, whereas in the second
part, we trained and tested the denoiser model (using developer’s code) using all synthetic data
from Monte Carlo simulated mammography system. In this second set of experiments, the DL
model used a combined loss function, that in a addition to a PL term had another term enforcing
preservation of the breast background power spectrum between the original full-dose image and
the restored one. In both studies, the detection task was finding (present or not present) clusters of
small microcalcifications in ROI images by means of 4-AFC observer studies.

Our preliminary results suggest that for these challenging tasks deep-learning denoising
software was not helpful in assisting humans readers, if it was trained using either clinical exam
data (perhaps with some, but not many, images of microcalcifications present in a training set) or
using modeled data without SP samples in a training dataset. However, when the training set was
compiled using half data containing microcalcifications, i.e., 124k out of 248k ROIs were SP,
we saw noticeable improvements in PC scores among all four human observers. Although “full”
image restoration (when PC obtained on restored mammograms would have matched PC
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obtained on full-dose mammograms) was not achieved, the improvement effect is real, and we
can conclude that enriching training data with ROIs containing microcalcifications may be worth
of further investigation.
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