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Abstract

Although it is widely accepted that data quality for event-related potential (ERP) components 

varies considerably across studies and across participants within a study, ERP data quality has not 

received much systematic analysis. The present study used a recently developed metric of ERP 

data quality—the standardized measurement error (SME)—to examine how data quality varies 

across different ERP paradigms, across individual participants, and across different procedures 

for quantifying amplitude and latency values. The EEG recordings were taken from the ERP 

CORE, which includes data from 40 neurotypical college students for seven widely studied ERP 

components: P3b, N170, mismatch negativity, N400, error-related negativity, N2pc, and lateralized 

readiness potential. Large differences in data quality were observed across the different ERP 

components, and very large differences in data quality were observed across participants. Data 

quality also varied depending on the algorithm used to quantify the amplitude and especially 

the latency of a given ERP component. These results provide an initial set of benchmark values 

that can be used for comparison with previous and future ERP studies. They also provide useful 

information for predicting effect sizes and statistical power in future studies, even with different 

numbers of trials. More broadly, this study provides a general approach that could be used to 

determine which specific experimental designs, data collection procedures, and data processing 

algorithms lead to the best data quality.
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1. Introduction

Event-related potentials (ERPs) are typically quite small relative to the background noise. 

For example, the face-sensitive N170 component might have an amplitude of 4 μV but 

might be embedded in 40 μV of background EEG. Conventionally, researchers average 

multiple trials together to isolate the ERP and “average out” the noise. The amplitude 

and/or latency of a given component is then quantified or scored from the averaged 
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ERP waveforms. Finally, these scores are entered into a statistical analysis to compare 

experimental conditions or groups of participants. Other approaches are also common in 

ERP research, but this averaging-followed-by-scoring sequence is the dominant approach in 

many subfields 1.

Because ERPs are so small relative to the background noise, the averaged ERP waveforms 

often contain considerable noise that adds uncontrolled variability to the observed amplitude 

and latency scores. This uncontrolled variability carries forward to increase the variance 

across participants, reducing effect sizes and the statistical power for detecting differences 

among conditions or groups. Although it is widely appreciated that noisy ERPs are 

problematic, and that averaged ERP waveforms are much noisier in some paradigms and 

participants than in others, there is no widely used metric of data quality in ERP research for 

quantifying this noise 2.

1.1. The standardized measurement error as a metric of ERP data quality

Recently, we proposed a metric of data quality for averaged ERPs called standardized 
measurement error (SME) (Luck et al., 2021). The SME is a special case of the standard 

error of measurements, and it is designed to quantify the precision of measurements (e.g., 

the amplitude or latency scores) that are obtained from averaged ERP waveforms. As 

detailed by Brandmaier et al. (2018), a measure is precise to the extent that the same value 

is obtained upon repeated measurements3, assuming that the measurement process does 

not influence the system being measured. In theory, the precision of an ERP amplitude 

or latency score for a given participant could be quantified by repeating the experiment 

a large number of times with that participant, obtaining the score for each repetition of 

the experiment, and computing the standard deviation (SD) of these scores. However, this 

would be unrealistically time-consuming in practice, and the ERPs would likely change over 

repetitions of the experiment as a result of learning, boredom, etc.

Fortunately, it is possible to estimate the precision of an ERP score using the data from a 

single recording session. This is particularly straightforward when the score being obtained 

is the mean amplitude over some time range (e.g., the mean voltage from 350–550 ms 

for the P3b component, as illustrated in Figure 1). The mean amplitude score obtained 

from an averaged ERP waveform is identical to the average of the mean amplitude scores 

obtained from the single-trial EEG epochs, so the standard error of measurement for a mean 

amplitude score is simply the standard error of the mean or SEM of the score. A widely-used 

analytic solution is available for estimating the SEM:

SEM = SD/ N. (1)

1The conceptual framework described in this paper can easily be generalized to many other kinds of analyses that involve averaging 
and then scoring (such as when a time-frequency transform is applied prior to averaging and the data are scored as the mean power 
over some range of time points and frequencies).
2Some studies compute measures of psychometric reliability, but this approach has several shortcomings, such as an inability 
to quantify data quality for individual participants (see (Luck et al., 2021)). A new variant of this approach can be applied to 
single-participant data (Clayson et al., 2021), but it applies only to mean amplitude and depends on the amount of true score variance 
across the participants in a given sample.
3A measure can also be problematic if it is biased (i.e., produces a value that deviates consistently in a particular direction from the 
true value). Bias is a separate issue that will not be considered here but is discussed extensively in (Luck, 2014).
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In this equation, is the standard deviation of the single-trial mean amplitude scores and N is 

the number of trials being averaged together to create the averaged ERP waveform. This is 

illustrated in Figure 1, which shows single-trial EEG epochs and the corresponding averaged 

ERP waveform from a hypothetical oddball experiment in which the P3b component is 

scored as the mean voltage between 350 and 550 ms. The standard error of this score is 

estimated by measuring the mean voltage from 350–550 ms in the single-trial EEG epochs, 

taking the SD of these values, and dividing by the square root of N. In other words, although 

the ultimate amplitude score is obtained from the averaged ERP waveform, the standard 

error of this score is obtained by applying Equation 1 to measurements obtained from the 

single-trial EEG epochs. The resulting standard error is an estimate the precision of the 

mean amplitude score that is obtained from the averaged ERP waveform (see Luck et al. 

(2021) for a more detailed explanation and justification).

When other scoring methods are used, the score obtained from the averaged ERP waveform 

is not equal to the average of the single-trial scores, so Equation 1 cannot be used to 

estimate the standard error of measurement for these scores. For example, if you obtain 

the peak amplitude from the single-trial epochs in Figure 1a and then average these values 

together, the result will not be equal to the peak amplitude measured from the averaged ERP 

waveform in Figure 1b. Thus, Equation 1 cannot be used to estimate the standard error of the 

peak amplitude score obtained from an averaged ERP waveform. However, bootstrapping 

can be used to estimate the standard error of measurement for the peak amplitude or 

for virtually any other amplitude or latency score that is obtained from averaged ERP 

waveforms. In this approach, the set of individual trials that were actually collected for a 

given participant are used to provide a population of trials for simulating repetitions of the 

experiment for that participant. A single recording session is then simulated by randomly 

sampling from this set of trials. By simulating a large number of sessions, and measuring 

the amplitude or latency score of interest from each of these simulations, it is possible to 

quantify the variability of scores across simulated sessions and obtain an estimate of the 

standard error of measurement (for more details, see section 2.4.2 and Luck et al. (2021)). 

Another advantage of bootstrapping is that it can be used when the score is obtained from a 

transformation of the averaged ERP waveforms, such as a difference wave.

Whereas Equation 1 involves dividing by the square root of the number of trials 

( N), bootstrapping does not explicitly involve this division step. Nonetheless, because 

bootstrapping and Equation 1 are just two different ways of estimating the same value, 

standard errors vary with the number of trials in approximately the same way whether they 

are estimated using bootstrapping or using Equation 1.

When the standard error of measurement is used to quantify the precision of an ERP 

amplitude or latency score, we refer to it as the standardized measurement error (SME) 

of that score. It estimates how much variability would be present in the mean amplitude 

scores from a given participant if the experiment were repeated an infinite number of times 

(assuming no learning, fatigue, etc.) and the amplitude or latency score was obtained from 

the averaged ERP waveform on each repetition. Specifically, the SME is an estimate of the 

SD of the scores we would get across these hypothetical repetitions. When Equation 1 is 
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used to estimate the SME for mean amplitude scores, we call this the analytic SME (aSME); 

when bootstrapping is used, we call this the bootstrapped SME (bSME).

As detailed by Luck et al. (2021), the SME can be used to determine how much of the 

variability across participants in amplitude or latency scores is a result of measurement error 

versus true differences among participants. This makes it possible to determine the extent 

to which the effect size for a comparison between groups or conditions is impacted by 

measurement error. It can also be used to predict exactly how effect sizes and statistical 

power will change if the measurement error is increased or decreased (e.g., by changing the 

number of trials per participant). The SME can be computed using the ERPLAB Toolbox 

software package (Lopez-Calderon & Luck, 2014), beginning with Version 8.

1.2. Defining “data quality”

The SME is intended to be a metric of data quality. Luck et al. (2021) argued that the 

concept of data quality in ERP research must be defined with respect to the specific scores 

that will be obtained from the averaged ERP waveforms. This is because the impact of 

a given source of noise will depend on how the amplitude or latency of a component is 

being scored. For example, high-frequency noise has a large effect on peak amplitude scores 

but relatively little effect on mean amplitude scores (because the upward and downward 

deflections produced by high-frequency noise largely cancel out when the voltages are 

averaged over a broad measurement window). Similarly, low-frequency drifts have a large 

impact on data quality for the amplitude of late ERP components such as the P3b or N400 

(Kappenman & Luck, 2010; Tanner et al., 2015), but these drifts have less impact for earlier 

components (because the signal has not had much time to drift betewen the baseline period 

and the measurement period). Thus, there is no meaningful definition of ERP data quality 

that is independent of the scoring method.

When the SME is used to quantify data quality, any factors that produce uncontrolled 

variability in a given amplitude or latency score are considered to be noise with respect to 

that specific score. This definition of noise includes factors that might be of considerable 

theoretical or practical interest, such as oscillations that are not phase-locked to stimulus 

onset (Busch et al., 2009; Mathewson et al., 2009) or trial-to-trial variations in attentional 

state (Adrian & Matthews, 1934; Boudewyn et al., 2017). Indeed, a great deal of 

evidence indicates that trial-to-trial variations in neurocognitive processes are important 

for understanding both typical and atypical cognitive processing (Ratcliff & McKoon, 2008; 

Tamm et al., 2012). However, these factors are considered noise from the perspective of 

the data quality for a given amplitude or latency score because they decrease the precision 

of the score and therefore decrease effect sizes and statistical power. In addition, because 

SME values combine sources of variability that are functionally important (e.g., variations 

in attentional state) and sources of variability that play no functional role (e.g., induced 

electrical noise), the SME is not appropriate for use as a measure of trial-to-trial variability 

in neurocognitive processing.

It is also important to note that the SME is directly influenced by the number of trials (N), 

and differences in N across studies, conditions, or participants will lead to differences in 

SME. This is appropriate, because the SME is designed to quantify the precision of the 
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amplitude or latency scores that will be entered into the statistical analysis, and differences 

in N will impact the precision of these scores and the resulting statistical power. However, it 

may sometimes be useful to compare data quality values in a manner that is not dependent 

on the number of trials and instead purely reflects trial-to-trial variability in the EEG. This is 

trivial to accomplish when Equation 1 is used to compute aSME values for mean amplitude 

scores, because the SD of the single-trial scores can be used to estimate the trial-to-trial 

variability. We therefore provide these SD values along with SME values in the main 

analyses.

Unfortunately, this approach is not possible for bootstrapped SME values, because 

bootstrapping does not directly provide a measure of the trial-to-trial variability. We are 

currently developing a solution for this (Zhang & Luck, in preparation).

1.3. Potential uses of the SME

The SME has many potential uses. Within a given study, the SME could be used to 

determine which participants are so noisy that they should be excluded, which channels are 

so noisy that they should be interpolated, and how changing a given processing parameter 

(e.g., the artifact rejection threshold) will increase or decrease the data quality. When new 

laboratories are built or new personnel are trained, the SME makes it possible to determine 

whether the resulting data quality meets an objective standard. In methodology research, 

the SME could be used to determine which recording and analysis procedures lead to the 

highest data quality. If published papers regularly reported SME values, it would be possible 

to quantitively assess how data quality varies among different experimental paradigms, 

subject populations, and processing pipelines.

For many of these uses, it would be valuable to have a broad set of benchmark SME values 

against which new data could be compared. That is, it would be useful to have a reference 

point that can be used to make an informed guess about the range of SME values that should 

be expected in a given study. The primary goal of the present paper was therefore to provide 

an initial set of benchmark values. Specifically, we computed SME values for four different 

scoring procedures (peak amplitude, mean amplitude, peak latency, and 50% area latency) 

obtained from each of 40 participants for each of the seven ERP components contained 

in the ERP CORE (Compendium of Open Resources and Experiments; Kappenman et al. 

(2021)). The ERP CORE is a set of stimulus presentation scripts, data analysis scripts, and 

EEG recordings for six standard ERP paradigms that yield seven commonly studied ERP 

components. Each task requires approximately 10 minutes to run, and the resource contains 

data from 40 neurotypical college students who completed all six tasks in a single session.

Because the ERP CORE contains data from a broad range of paradigms and a reasonably 

large set of participants, it provided an excellent resource for developing an initial set 

of benchmark SME values. Well-controlled comparisons across ERP components were 

possible because the same participants completed all six paradigms, and a broad variety of 

experimental details were held constant across paradigms (e.g., lighting, viewing distance). 

Moreover, this resource made it possible to determine the extent to which data quality is 

correlated across components and scoring methods (e.g., whether an individual with poor 
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data quality for one component or scoring method also has poor data quality for other 

components or scoring methods).

Of course, data quality is likely to differ between the neurotypical college students who were 

tested for the ERP CORE and other populations (e.g., children, adults with neurological or 

psychiatric disorders). Thus, the SME values from the ERP CORE data provide a direct 

benchmark only for populations that are similar to the participants that are included in the 

ERP CORE. For other populations, the ERP CORE data are not a benchmark per se, but they 

are still useful for providing a point of comparison until benchmark values can be obtained 

for those populations.

1.4. Organization of the present paper

The SME analyses in the present paper are divided into three sections. The first section 

provides a detailed description of the SME values obtained from the ERP CORE data 

across paradigms, across participants, and across scoring procedures. These values are 

presented in multiple different formats to make it easy to compare them with SME values 

obtained in future studies. The second section asks why the SME values varied across the 

paradigms and participants, focusing on the number of trials being averaged together and 

trial-to-trial variability in the EEG. The final section of the present paper quantifies the 

extent to which SME values for a given individual are correlated across paradigms and 

across scoring procedures. In other words, this section asks whether a given individual has 

generally “good” or “bad” data quality across paradigms and scoring procedures. Together, 

these analyses provide a useful starting point for researchers who wish to examine the data 

quality in their own paradigms, participants, and scoring procedures.

2. Method

All the scripts and results for the present analyses have been added to a folder named 

SME in the online repository for the ERP CORE (https://doi.org/10.18115/D5JW4R). This 

includes spreadsheets with all the single-subject SME values. The participants, experimental 

paradigms, recording methods, and analysis methods are described in detail in Kappenman 

et al. (2021). Here, we provide a brief overview.

2.1. Participants

Data were obtained from 40 neurotypical college students (25 female) from University 

of California, Davis community. Although some participants failed to meet the inclusion 

criteria for some of the components in the original ERP CORE analysis (e.g., owing to poor 

behavioral performance), we provide SME data from all 40 participants here to represent the 

entire range of data quality across participants. The one exception was that Subject 7 was 

excluded from the N2pc analyses because the number of trials for one condition was zero, 

making it impossible to compute SME values for this participant in this paradigm.

2.2. Overview of the six paradigms and seven ERP components

Figure 2 provides an overview of the six paradigms, and Figure 3 shows the grand average 

parent waves (left panel) and difference waves (right panel) for the seven ERP components. 
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These grand average waveforms are identical to those provided by Kappenman et al. (2021), 

except that the waveforms here include all participants (except for Subject 7 in the N2pc 

paradigm, who had zero trials in one condition). By contrast, Kappenman et al. (2021) 

excluded participants who exceeded criteria for the percentage of trials rejected because 

of artifacts or behavioral errors. Because the goal of the present study was to assess the 

entire range of data quality, which is impacted by the number of rejected trials, the present 

analyses included all participants (except Subject 7, for whom data quality was undefined in 

the N2pc experiment).

The P3b paradigm is shown in Figure 2 a. In each block of this visual oddball task, five 

letters (A, B, C, D, and E) appeared in random order (p = .2 for each letter). One letter was 

designed to be target for a given block and the other four letters were non-targets (e.g., “A” 

was the target in one block and a nontarget in the other blocks). Participants were instructed 

to press one button if a given letter was the target and a different button if it was one of the 

four nontargets.

The N170 paradigm is shown in Figure 2 b. Each trial consisted of a face, a car, a scrambled 

face, or a scrambled car (p = .25 for each category). For each stimulus, participants pressed 

one of two buttons to indicate whether the stimulus was an “intact object” (regardless of 

whether it was a face or car) or a “texture” (scrambled face or scrambled car). For the sake 

of simplicity, we examined only the face and car trials. Face and car stimuli were modified 

from (Rossion & Caharel, 2011).

The mismatch negativity (MMN) paradigm is shown in Figure 2 c. In this passive auditory 

oddball paradigm, a task-irrelevant sequence of standard tones (80 dB, p = .8) and deviant 

tones (70 dB, p = .2) was presented to participants while they watched a silent video. No 

responses were made to the tones.

The N400 paradigm is shown in Figure 2 d. In this word pair judgment task, each trial 

consisted of a red prime word followed by a green target word. On each trial, participants 

were required to press one of two buttons to indicate whether the target word was related (p 

= .5) or unrelated (p = .5) to the preceding prime word.

The paradigm used to examine the lateralized readiness potential (LRP) and the error-related 

negativity (ERN) is shown in Figure 2 e. In this variant of the Eriksen flanker paradigm 

(Eriksen & Eriksen, 1974), each stimulus contained a central arrow surrounded by flanking 

arrows that pointed in the same direction or the opposite direction as the central arrow. One 

each trial, participants pressed one of two buttons to indicate whether the central arrow was 

pointing leftward (p = .5) or rightward (p = .5).

The N2pc paradigm is shown in Figure 2 f. In this simple visual search task, either pink 

or blue was designed the target color for a given block of trials. Each stimulus within a 

block contained a pink square, and blue square, and 22 black squares. For each stimulus, 

participants pressed one of two buttons to indicate the location (top or bottom) of a gap in 

the attended-color square.
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2.3. Overview of data collection and data processing pipeline

Continuous EEG data were collected using a Biosemi ActiveTwo recoding system with 

active electrodes (Biosemi B.V., Amsterdam, the Netherlands) an antialiasing filter (fifth 

order sinc filter with a half-power cutoff at 204.8 Hz) and a sampling rate of 1024 Hz. 

Data were analyzed from 30 scalp sites along with horizontal and vertical electrooculogram 

electrodes.

The present analyses were performed on the preprocessed data provided as part of the ERP 

CORE resource (https://doi.org/10.18115/D5JW4R). Our goal was to examine data quality 

in the context of the kind of preprocessing that would typically be performed in an ERP 

study (e.g., filtering, referencing, artifact rejection and correction), so we used the data 

files that were already preprocessed (see Luck (2022) for examples of how preprocessing 

influences the SME). The original preprocessing and our additional analyses were conducted 

in MATLAB 2020a environment using the EEGLAB 2021.1 (Delorme & Makeig, 2004) and 

ERPLAB 8.30 (Lopez-Calderon & Luck, 2014). All scripts are available in the ERP CORE 

resource.

The preprocessing steps are described in detail by Kappenman et al. (2021), and here we 

provide a brief summary. The event codes were shifted to reflect the intrinsic delay of the 

video monitor, and the data were resampled at 256 Hz. The data were referenced to the 

average of the P9 and P10 electrodes (close to the left and right mastoids) for all components 

except the N170, for which the average of all scalp sites was used as the reference. A 

noncausal Butterworth high-pass filter (half-amplitude cutoff 0.1 Hz, 12dB/oct roll-off) was 

applied. Independent component analysis (ICA) was used to correct the data for eyeblinks 

and eye movements.

The resulting EEG data were epoched and then baseline-corrected using the time windows 

shown in Table 1. Bad channels were interpolated using ERPLAB’s spherical interpolation 

algorithm. Trials with blinks or eye movements that could have impacted perception of the 

stimuli were rejected, as were trials with large EEG deflections in any channel and trials 

with incorrect behavioral responses. The remaining epochs were averaged across trials for 

each experimental condition.

Table 2 shows the mean number of epochs remaining for averaging in each condition for 

each ERP component, and the ERP CORE repository (https://doi.org/10.18115/D5JW4R) 

includes spreadsheets with the number of included and excluded trials for each participant. 

Table 2 also includes the mean and peak amplitudes for each ERP component.

2.4. Quantification of data quality

2.4.1. Measurement windows and electrode sites—The original ERP CORE paper 

(Kappenman et al., 2021) identified an optimal electrode site and an optimal time window 

for scoring each ERP component, which are shown in Table 1. We used these sites and 

windows for obtaining the amplitude and latency scores and for quantifying the SME and 

trial-to-trial variability of these scores.
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2.4.2. SME quantification—We focused on four scoring algorithms, as implemented 

by ERPLAB Toolbox (Lopez-Calderon & Luck, 2014). Mean amplitude was scored as the 

mean voltage across time points within the measurement window for a given component. 

Peak amplitude was scored as the voltage of the most positive point (for P3b) or most 

negative point (for the other components) within the measurement window. Peak latency 

was scored as the latency of peak amplitude point 4. The 50% area latency was scored by 

measuring the area of the region above the zero line (for P3b) or below the zero line (for 

the other components) within the measurement window, and then finding the time point that 

bisected this area into two equal-area regions. To increase precision, the waveforms were 

upsampled by a factor of 10 using spline interpolation before the latencies were scored (see 

Luck (2014) for the rationale).

According to Equation 1, the analytic SME (aSME) for mean amplitude can be estimated 

by measuring the mean amplitude on single trials and dividing the standard deviation of the 

single-trial amplitudes by the square root of the number of trials. However, this approach is 

not valid for peak amplitude, peak latency and 50% area latency, and it cannot be directly 

applied to difference waves. We therefore computed the bootstrapped SME (bSME), even 

for mean amplitude scores. Note that aSME and bSME values are virtually identical for 

mean amplitude scores as long as the number of trials is reasonably large (more than eight).

These bSME values were obtained for each of the parent waves used to define a given 

component (e.g., the rare and frequent trials in the P3b paradigm) and also for the 

corresponding difference wave (e.g., the rare-minus-frequent difference wave in the P3b 

paradigm). As will be described in Section 3.2, the latency scores could not be validly 

obtained from the parent waveforms in many cases, so latencies were obtained only from the 

difference waves.

Bootstrapping is a common approach in many areas of statistics (Boos, 2003; Efron & 

Tibshirani, 1994). As described by Luck et al. (2021), we implemented bootstrapping by 

simulating 1000 repetitions of each experiment for each participant. In each simulated 

repetition of a given experiment, we selected N trials at random, with replacement, from all 

N trials that were used to create the standard averaged ERP waveforms for a given condition 

in that participant. Remarkably, sampling with replacement from the existing set of N trials 

accurately simulates conducting a replication experiment with N new trials as long as N is 

reasonably large (e.g., 8; Chernick (2011)). We then averaged that set of N trials together 

and obtained the mean and peak amplitude scores from the averaged ERP waveform. The 

SME was calculated as the SD across the 1000 simulated repetitions for that condition in 

that participant.

For each repetition, we also created a difference wave for the two conditions of a given 

experiment. We then obtained the mean amplitude, peak amplitude, peak latency, and 50% 

area latency scores from this difference wave. The SME for a given difference-wave score 

4For both peak amplitude and peak latency, the local peak approach (Luck, 2014) was used, in which a peak is defined as the most 
extreme amplitude that is also more extreme than the average of the amplitudes at the surrounding time points. This avoids detecting 
a false peak when the voltage trends upward or downward at the edges of the measurement window, leading to a voltage that is more 
extreme than any other voltage in the window without being a peak in the waveform as a whole.
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was then computed as the SD of the scores from the 1000 simulated repetitions of the 

experiment.

One limitation of this bootstrapping procedure is that, because it involves sampling 

randomly from the available trials, the SME value varies slightly each time the procedure is 

repeated. To make the results exactly reproducible (e.g., if another lab wishes to reproduce 

the results), a random number generator seed can be generated for each iteration and then 

used across repetitions of the procedure.

2.4.3. Quantification of trial-to-trial variability—For mean amplitude scores, 

Equation 1 indicates that trial-to-trial variability—quantified as the SD of the single-trial 

mean amplitudes—is a key factor in determining measurement error. We therefore computed 

the SD of the single-trial mean amplitudes for the parent waves in each experimental 

condition for each ERP component for each participant. This was straightforward for the 

P3b, N170, MMN, N400, and ERN components, but it was slightly more complicated 

for the N2pc and LRP because the parent waves were defined as contralateral (the left 

hemisphere signal for trials with a right-side stimulus or response averaged with the right 

hemisphere signal for trials with a left-side stimulus or response) or ipsilateral (the left 

hemisphere signal for trials with a left-side stimulus or response averaged with the right 

hemisphere signal for trials with a right-side stimulus or response). To obtain the SD for the 

contralateral and ipsilateral parent waveform, we took advantage of the fact that the variance 

of a sum of two random variables is equal to the sum of the two variances. Specifically, we 

computed the variance for each of the two waveforms that were combined (e.g., the variance 

of the left hemisphere mean amplitudes for trials with a left-side stimulus or response and 

the variance of the right hemisphere mean amplitudes for trials with a right-side stimulus or 

response), took the average of these two variances, and then took the square root to yield an 

SD value.

We also computed SD values for the single-trial peak amplitude scores. Single-trial latency 

scores could not be validly computed for several components, so we did not examine trial-

to-trial variability in latency. That issue will be addressed via simulations in a subsequent 

paper (Zhang & Luck, in preparation).

2.4.4. Quantification of trial-to-trial variability—We used F and t tests to compare 

SME and SD values across scoring methods and experimental paradigms. We used 

Spearman rho rank-order correlation coefficients to examine how SME or SD values 

covaried across participants for different scoring methods or experimental paradigms. Slope 

values, however, were obtained from standard linear regressions. For each set of statistical 

analyses, we performed a familywise correction for multiple comparisons using the false 

discovery rate correction (Benjamini & Hochberg, 1995). An alpha of .05 was used in all 

statistical tests.
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3. Results

3.1. Basic characterization of data quality across paradigms, participants, and scoring 
procedures

We begin by providing basic information about how SME values varied across the seven 

ERP components, the two main conditions used to isolate each component, the four different 

amplitude and latency scoring procedures, and the 40 different participants. A large number 

of SME values are presented. To keep things manageable, the key values are summarized 

in the tables and figures of the main manuscript, and additional values are provided in 

supplementary tables and figures. In addition, spreadsheets containing the single-participant 

values are available online at https://doi.org/10.18115/D5JW4R, along with all the codes 

used to compute the SME values.

3.1.1. Variations in data quality across paradigms, conditions, and scoring 
procedures (parent waves)—Figure 4 a shows the SME for the mean amplitude 

scores, averaged across participants, for each of the parent waves used to define the seven 

components. Figure 4 b shows the corresponding SME values for the peak amplitude 

scores. The exact values are presented in supplementary Table S1. The root mean square 

(RMS) of the SME values across participants is sometimes more useful than mean SME 

across participants 5, and the RMS values are provided in supplementary Figure S1 and 

supplementary Table S2. Figures 4 c -f show the variability (SD) across trials and the square 

root of these number of trials; these will be discussed in Section 3.2. Note that it is difficult 

to obtain valid latency measures from parent waveforms in many cases. For example, there 

is no negative-going voltage deflection on semantically related trials in the N400 paradigm 

(see Figure 3), so N400 latency cannot be validly measured for this experimental condition. 

Thus, this subsection focuses on the SME for the amplitude scores obtained from parent 

waveforms.

The first thing to note in Figure 4 is that the mean SME values were worse (higher) for 

the peak amplitude scores than for the mean amplitude scores in every case. To test this 

statistically, we used paired t tests to compare the SME values for mean amplitude and 

peak amplitude, separately for each combination of experimental paradigm and condition 

(correcting for multiple comparisons). In all 14 cases, the SME was significantly worse 

(higher) for peak amplitude than mean amplitude (see Table S3). This finding is consistent 

with the claim that peak amplitude is more sensitive to noise than mean amplitude (Clayson 

et al., 2013; Luck, 2014).

The next thing to note is that the SME values varied considerably across the seven ERP 

components, with some components having much worse (higher) SME values than other 

components. For example, the SME for mean amplitude (measured from the difference 

waves) was approximately four times greater for P3b and N400 than for N2pc. The 

variations in SME across components were even more extreme for the peak amplitude 

5The RMS value is more useful than the mean across participants when the goal is to determine how the statistical power of a given 
experiment is influenced by the data quality. Specifically, high SME values have an outsized effect on statistical power, and this is 
captured by the RMS of the SME values. However, the goal of the present study is to provide a point of comparison with other studies, 
and for that purpose the mean is more convenient. We also provide histograms showing the entire distribution of SME scores.
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scores. In addition, the SME values varied considerably between the two conditions used 

to define some of the components (e.g., much higher for the rare category than for the 

frequent category in the P3b paradigm). The reasons for these differences will be examined 

in Sections 3.2 and 3.3.

To analyze these differences statistically, we used paired t tests to compare each pair of 

conditions (correcting for multiple comparisons). As shown in Table 3, conditions with 

fewer trials yielded significantly higher SME values than conditions with more trials 

(i.e., for the P3b, MMN, and ERN scores). In addition, the SME in the N400 paradigm 

was significantly greater for the semantically related condition than for the semantically 

unrelated condition. A possible explanation for this difference will be described in Section 

4.2.

Because there were two conditions in each paradigm, there was no straightforward way to 

statistically compare SME values across paradigms in a condition-independent manner for 

the SME values shown in Figure 4. However, the next section provides a comparison across 

paradigms for amplitude and latency scores obtained from difference waves.

3.1.2. Variations in data quality across paradigms and scoring procedures 
for experimental effects (difference waves)—In many cases, it is useful to score the 

amplitude or latency of a component from a difference wave (Luck, 2014). The SME for 

such scores can be obtained using bootstrapping (Luck et al., 2021). For mean amplitude 

scores, the resulting SME quantifies the measurement error of the experimental effect. 

Difference waves are also necessary for obtaining valid latency scores for some components 

(e.g., N2pc and LRP). Thus, this subsection focuses on scores obtained from difference 

waves, which made it possible to characterize the SME for both amplitude measures (mean 

amplitude and peak amplitude) and latency measures (peak latency and 50% area latency).

Figure 5 shows the resulting SME values, averaged across participants, for each combination 

of scoring method and ERP component. Exact values are provided in supplemental Table S1, 

and RMS values are provided in supplemental Figure S1 and Table S1.

As was observed for the parent waves, the SME values for the difference waves were worse 

(larger) for peak amplitude than for mean amplitude. More precisely, the SME values were 

1.20 times as large (i.e., 20% larger) for peak amplitude than for mean amplitude when 

averaged across the seven ERP components. Similarly, the SME values were worse for 

the peak latency measure than for the 50% area latency measure. Indeed, averaged across 

components, the SME values were 2.68 times larger for peak latency than for 50% area 

latency. This finding is consistent with the claim that 50% area latency is substantially more 

robust against noise than is peak latency (Clayson et al., 2013; Luck, 2014). In addition, the 

SME values varied widely across the seven ERP components, approximately paralleling the 

differences in SME values observed for the parent waveforms (Figure 4 a and b).

To provide statistical support for these observations, we conducted two repeated-measures 

analyses of variance (ANOVAs) on the SME values, one for the amplitude values and 

one for the latency values. Each ANOVA had two factors: scoring method and ERP 
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component. For amplitude scores, the SME values were significantly worse (higher) for 

the peak amplitude method than for the mean amplitude method, F(1, 38) = 247.67, p < 

.001. For latency scores, the SME values were significantly worse (higher) for the peak 

latency method than for the 50% area latency method, F(1, 38) = 293.38, p < .001. For 

both amplitude and latency scores, SME values varied significantly across ERP components 

(amplitude: F(6, 33) = 69.49, p < .001; latency: F(6, 33) = 84.41, p < .001). The interaction 

between scoring method and ERP component was also significant for both amplitude scores 

(F(6, 33) = 28.98, p < .001) and latency scores (F(6, 33) = 43.69, p < .001).

3.1.3. Variations in data quality across participants for each component and 
scoring procedure—Unlike psychometric reliability metrics, which typically provide a 

single value for a group of participants and are strongly influenced by the range of values 

across the group, a group-independent SME value is obtained for each individual participant 

(see also Clayson et al. (2021)). Figure 6 shows the single-participant SME values for each 

component (assessed from the difference waves) for four scoring methods, and the range of 

SME values across participants are summarized as histograms in Figure 7. Exact values are 

provided in the online repository for this paper (https://doi.org/10.18115/D5JW4R). Figures 

6 and 7 make it clear that the SME values varied greatly across individual participants, with 

SME values being 3–5 times greater for some participants than for others. Section 3.3.1 will 

examine whether these individual differences in SME are consistent across the different ERP 

components.

Analogous single-participant plots and histograms are provided for the parent waveforms in 

supplementary Figures S2 and S3. The SME values for the parent waveforms also differed 

substantially across participants.

The SME values shown in Figures 4 – 7 and the associated supplementary materials provide 

an initial benchmark against which data quality from other data sets can be compared. That 

is, these values can be used as a comparison point to determine whether other recording 

environments or other variations on these paradigms lead to better or worse data quality. 

They also provide an initial benchmark for the variability in data quality across participants. 

To our knowledge, this is the first such set of data quality benchmark values across multiple 

ERP components and a reasonably large sample of participants. As noted in Section 1.3, 

however, these results may not generalize to other populations.

3.2. Variations in the number of trials and trial-to-trial EEG variability

Now that we have established that data quality varies substantially across paradigms, 

conditions, and participants, this section will examine two of the factors that are responsible 

for these differences, namely trial-to-trial EEG variability (quantified as the SD of the 

single-trial amplitudes) and the square root of the number of trials. For mean amplitude, 

Equation 1 states that the standard error of measurement for the mean amplitude score 

(which is the SME for mean amplitude) can be calculated for a given participant by 

simply dividing the SD by the square root of the number of trials. However, the extent 

to which the SD varies across paradigms, experimental conditions, and participants is an 

empirical question. In addition, the number of trials that remain after artifact rejection and 
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the exclusion of trials with incorrect behavioral responses may vary across individuals. 

Thus, empirical data are needed to determine the extent to which SME values are actually 

influenced by the SD and the number of trials.

Figure 4 displays the mean across participants of the SME, the SD, and the square root 

of the number of trials for the parent waves corresponding to each of the seven ERP 

components. These values are shown for the mean amplitude scores on the left and for 

peak amplitude scores on the right. Equation 1 does not apply for peak amplitude, because 

the peak amplitude of an averaged ERP waveform is not equal to the average of the 

single-trial peak amplitudes, so empirical data are needed to determine how the SME for 

peak amplitude varies with the SD and the number of trials.

We focus on mean and peak amplitude scores in the following analyses because it is 

impossible to obtain meaningful single-trial latency scores and thereby estimate trial-to-trial 

variability for many of the components (e.g., the N2pc and LRP components, where the 

component is defined by a contralateral-minus-ipsilateral difference wave). In addition, we 

focus on the parent waves rather than the difference waves, because the number of trials 

varied across conditions for some of the components (e.g., the rare and frequent conditions 

in the P3b paradigm), and it is not clear how the number of trials for each condition should 

be combined when considering the SME for the difference between the conditions.

3.2.1. The role of the number of trials in data quality for specific paradigms 
and conditions—We begin by considering the role of the number of trials per condition. 

As shown in Figure 4, when two conditions of a given paradigm differed in the number 

of trials, the SME for both mean amplitude and peak amplitude was worse (higher) in the 

condition with fewer trials. These differences were approximately linear with respect to the 

square root of the number of trials. For example, in the P3b and MMN paradigms, there 

were four times as many trials in the frequent category as in the rare category, and therefore 

the square root of the number of trials was twice as great in the frequent category as in 

the rare category. Correspondingly, the SME was approximately twice as great for the rare 

stimulus category as for the frequent stimulus category in these paradigms. The SME was 

also much greater for the error trials than for the correct trials in the ERN analysis, in which 

error trials were 10–25% as frequent as correct trials. The differences in SME between the 

conditions were statistically significant for the P3b, MMN, N400, and ERN analyses (for 

both mean and peak amplitude), but not for any of the other analyses (see Table 3).

Differences in the number of trials also partially explained differences in data quality 

between the different ERP components. For example, the data quality was considerably 

better (lower) for LRP (200 trials per condition) and N2pc (160 trials per condition) 

components than for the N170 component (80 trials per condition). However, differences 

in the number of trials did not explain all of the differences in data quality. For example, the 

SME for faces in the N170 paradigm was nearly identical to the SME for deviant stimuli 

in the MMN paradigm (see Figure 4 a), but there were approximately 2.5 times as many 

deviant trials in the MMN paradigm as face trials in the N170 paradigm. As shown in the 

next section, differences among ERP components in trial-to-trial EEG variability were also 

responsible for this and some of the other differences in data quality.
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3.2.2. The role of trial-to-trial EEG variability in data quality for specific 
paradigms and conditions—The trial-to-trial EEG variability (quantified as the SD 

of the single-trial scores) is shown in Figure 4c for mean amplitude scores and Figure 4d 

for peak amplitude scores. Just like the SME, the SD was significantly worse (larger) for 

peak amplitude than for mean amplitude for each of the 14 combinations of condition and 

ERP component (see Table S3). In addition, the SD varied widely across the seven different 

ERP components. The SD was lowest for the N170 and N2pc components, and substantially 

higher for the P3b, MMN, N400, ERN, and LRP.

Whereas the SME was worse (larger) for conditions with fewer trials than for conditions 

with more trials, the SD for a given component did not differ significantly across these 

conditions after correction for multiple comparisons (see Table 3). Even if significant 

differences had been seen, they could have been the result of the fact that the standard 

equation for estimating the SD is slightly biased by the number of observations. That is, the 

SD tends to be slightly underestimated when the number of observations is lower even when 

the appropriate degrees of freedom are used (Gurland & Tripathi, 1971). By contrast, the 

standard approach for estimating the variance across trials is unbiased, so the variance rather 

than the SD can be compared across conditions when the number of trials varies across 

conditions (see Figure S4).

In the N400 experiment, the trial-to-trial variability (SD) was greater for trials in which the 

target word was semantically related to the prime word than when the target and prime were 

semantically unrelated (which was statistically significant for mean amplitude; see Table 3). 

A potential explanation is provided in Section 4.2.

3.2.3. The role of the number of trials in data quality for individual 
participants—The previous sections considered how the number of trials and the SD of 

the single-trial scores are related to differences in SME values across the seven components 

and across the pairs of experimental conditions used to define these components. We now 

turn to the role of these factors in explaining differences in data quality among individual 

participants.

The number of trials that were averaged together varied across participants as a result of 

artifact rejection and as a result of behavioral errors (in those analyses in which trials with 

errors were excluded: P3b, N170, N400, N2pc, LRP, and ERN). The number of trials varied 

greatly across participant for some components (e.g., P3b and ERN) but was relatively 

consistent across participants for other components (MMN, N170). These differences across 

components largely reflect the fact that some paradigms led to quite a bit of subject-to-

subject variability in behavioral accuracy. Spreadsheets with the number of included and 

excluded trials for each participant for each component are provided in the online repository 

for this paper (https://doi.org/10.18115/D5JW4R).

Figure 8 shows scatterplots of the relationship between SME and the square root of the 

number of trials for each participant in each paradigm, separately for mean amplitude and 

peak amplitude. In many cases, the SME declined linearly as the square root of the number 

of trials increased. After correction for multiple comparisons, however, this effect was 
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statistically significant only for the ERN error trials, in which there was an especially broad 

spread across individuals in the number of trials (see statistics embedded in Figure 8). Thus, 

individual differences in the number of trials remaining after artifact rejection and exclusion 

of errors had a substantial impact on data quality only when the number of trials varied 

considerably across participants.

3.2.4. The role of trial-to-trial EEG variability in data quality for individual 
participants—Differences between participants in EEG amplitude variability across trials 

played an important role in individual differences in SME. Figure 9 shows scatterplots of 

the relationship between SME and the single-trial SD obtained from parent waves for the 

mean amplitude and peak amplitude scores for each of the seven ERP components. All the 

cases showed a strong linear relationship, with correlations ranging from 0.79 to 0.99 for 

all cases except the error trials for the ERN component. In addition, with the exception of 

the ERN error trials, the correlations were substantially stronger for the SD (Figure 9) than 

for the square root of the number of trials (Figure 8). Thus, in the present data, individual 

differences in trial-to-trial EEG variability were the main driver of individual differences in 

data quality for the amplitude measures, although less so for the ERN (in which the number 

of trials varied considerably across participants). Note that the number of trials may be a 

more significant source of variation in SME in other paradigms or in other populations of 

research participants where the number of trials varies considerably across participants.

Because of Equation 1, the SME for mean amplitude scores inevitably varies as a function 

of the SD. However, Equation 1 does not apply to peak amplitude scores, so the relationship 

between SD and SME for peak amplitude is an empirical question. Interestingly, we found 

that the SME for peak amplitude was strongly and approximately linearly related to the 

SD of the single-trial peak amplitudes in Figure 9. However, the correlations between SD 

and SME were slightly lower for peak amplitude than for mean amplitude. Also, given 

the lack of an analytic method for estimating the SME for peak amplitude scores, the 

strong and linear relationship between SD and SME for peak amplitude observed here 

may not hold for all experiments. Further, this relationship may not hold for other scoring 

methods. However, the fact that a strong linear relationship was observed for all seven ERP 

components examined here suggests that the variability in peak amplitude across trials is 

likely to be strongly associated with the SME for peak amplitude across a broad range of 

paradigms.

3.3. Are differences in data quality between participants consistent across paradigms 
and scoring procedures?

This section focuses on whether individual differences in data quality were consistent across 

the seven ERP components and the four scoring methods. That is, we asked whether the 

SME value for one participant in one paradigm (or one scoring method) predicts that 

individual’s SME in the other paradigms (or other scoring methods). Such a finding would 

indicate that some participants simply have poorer data quality than others. Alternatively, 

it is possible that the factors that determine data quality for one paradigm or scoring 

method are quite different from the relevant factors for other paradigms or scoring methods. 

For example, some scoring methods might be highly sensitive to high-frequency noise 
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whereas other scoring methods might not. To distinguish between these possibilities, we 

examined the correlation between SME values across different paradigms and different 

scoring methods. We focused primarily on the bootstrapped SME values obtained from 

the difference waves, which could be validly assessed for all four scoring methods. We 

also examined how trial-to-trial variability (i.e., SD) correlated across the seven ERP 

components. Note that the SD was obtained only for amplitude measures, and only from 

the parent waves, because single-trial values are not defined for difference waves and are 

often impossible to obtain validly for latency scores.

3.3.1. Consistency of SME across components (difference waves)—We first 

examined correlations in SME values across the seven ERP components. Figure 10 provides 

scatterplots and Spearman rank-order correlation values showing the relationship between 

the SME values for each pair of components, using the SME for the mean amplitude score 

(measured from difference waves). Analogous information is provided for the other scoring 

methods in Supplementary Figures S5, S6, and S7.

Significant positive correlations between SME values were observed for almost all pairs of 

components, indicating that a participant with poor data quality for one component tends 

to have poor data quality for other components as well. However, the correlations were 

far from perfect, and a few were not significant, suggesting that data quality is partially 

component-dependent. Similar results were obtained for the SME for peak amplitude scores 

(supplementary Figure S5). For the peak latency and 50% area latency scores, the SME 

values showed much weaker correlations across components (supplementary Figures S6 

and S7). For these scoring methods, data quality appears to depend on different factors 

for different components. Supplementary Figures S8 and S9 show that similar results were 

obtained when we examined SD values rather than SME values.

To obtain an overall quantification of associations across components in SME values, as 

shown in Figure 11, we computed the intraclass correlation coefficient (ICC) for each 

scoring method. That is, we treated each component like a different rater of data quality 

for each participant and asked how consistently the different components “rated” the data 

quality. The SME values were first z-scored across participants for each component to put 

them into a consistent range of values. The ICC was 0.8 for the SME for mean amplitude 

score and 0.79 for the SME for peak amplitude score, indicating a reasonably high level of 

concordance of SME values across components for the amplitude measures. However, the 

ICC was only 0.35 for the SME for peak latency and 0.28 for the SME for 50% area latency, 

indicating a low level of concordance of SME values across components for the latency 

measures. These results confirm the observation that data quality was quite consistent across 

components for the amplitude scores but was much less consistent across components for 

the latency scores.

3.3.2. Consistency of SME across scoring methods (difference waves))—We 

next examined whether the SME was consistent across scoring methods for each component 

by asking whether the SME for a given scoring method was correlated with the SME for 

the other scoring methods, separately for each component. This was performed using scores 

obtained from the difference waves so that both amplitude and latency could be validly 
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scored for every component. Figure 12 provides the resulting scatterplots and Spearman 

rank-order correlation values.

The SME values between mean and peak amplitude scoring methods were strongly 

correlated with each other for all seven components (Figure 12, top row). The SME values 

for 50% area latency and peak latency scores were also correlated with each other for all 

seven components (Figure 12, second row), but these correlations were not as strong as 

those between the SME values for the two amplitude measures. With a few exceptions, the 

SME for a given amplitude score and the SME for a given latency score were typically 

poorly correlated (Figure 12, rows 3–6). These results suggest that the factors that determine 

an individual participant’s data quality for an amplitude measure are often quite different 

from the factors that determine that individual’s data quality for a latency measure. In other 

words, “data quality” is not a single factor that is the same across amplitude and latency 

measures.

4. Discussion

In this study, we used the standardized measurement error (SME) to quantify the data 

quality across seven commonly studied ERP components, 40 individual participants, and 

four different scoring procedures (mean amplitude, peak amplitude, peak latency, and 50% 

area latency). We provided the SME values in multiple formats (Section 3.1) to allow other 

investigators to easily compare the SME values obtained here to their own SME values 

(which can be calculated using version 8 or later of ERPLAB Toolbox; Lopez-Calderon & 

Luck (2014)). All the scripts and results from the present study are available a folder named 

SME in the online repository for the ERP CORE (https://doi.org/10.18115/D5JW4R).

The present SME values can serve as a reference point for comparing data quality with 

different laboratories, different versions of the experimental paradigms, different participant 

populations, different recording systems, and different processing and analysis procedures. 

For example, a new laboratory could run one or more of these paradigms to determine 

whether they are obtaining comparable levels of data quality. Similarly, an established 

laboratory could determine whether their version of a given paradigm leads to better data 

quality (in which case the field could consider moving toward their methods) or worse data 

quality (in which case the laboratory could consider modifying their methods).

It is important to note that SME values could vary from those reported here solely as a result 

of differences in the number of trials and not because of differences in single-trial noise. 

The single-trial SD values provided here can be used to compare noise levels independent of 

trials. Alternatively, the trials a given dataset can be subsampled before computing the SME 

to provide a comparison with another dataset containing fewer trials.

4.1. Variations in data quality across paradigms, participants, and scoring procedures

The present study also found several interesting patterns of variation across paradigms, 

participants, and scoring procedures. First, data quality was somewhat better for mean 

amplitude scores than for peak amplitude scores, and much better for 50% area latency 

scores than for peak latency scores. These findings are consistent with previous studies 

Zhang and Luck Page 18

Psychophysiology. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using other approaches to assessing data quality. For example, Clayson et al. (2013) created 

a simulated noise-free ERP waveform and added simulated noise to examine the noise 

sensitivity of different scoring methods. Performance was quantified as the RMS error of 

the measurements across simulations relative to the noise-free data. Mean amplitude was 

less sensitive to noise than peak amplitude, and 50% area latency was less sensitive to 

noise than peak latency. Luck (2005) also found reduced variability for 50% area latency 

scores relative to peak latency scores using simulated data. The present results demonstrate 

that these patterns are also found in real data and across a broad range of experimental 

paradigms. Thus, researchers who currently use peak amplitude and/or peak latency should 

consider using mean amplitude and 50% area latency instead. Note, however, that 50% area 

latency is valid only when a component has been isolated via a difference wave or when the 

component is very large (e.g., P3b and N400; see Luck (2014)).

Second, data quality was much better for some components/paradigms than for others. For 

example, the SME for mean amplitude was approximately four times greater for the P3b 

component than for the N2pc component, and the SME for peak latency was more than ten 

times greater for the P3b component than for the N170 component (see Figures 4 and 5 and 

supplementary Table S1). However, the differences in amplitude between conditions tended 

to be larger in the paradigms with poorer data quality, and these factors may balance each 

other. Indeed, the effect size (Cohen’s d) for the difference between conditions was quite 

large for all seven components (see Table 3 in Kappenman et al. (2021)).

Third, the range of SME values across participants was quite large. Specifically, the SME 

was typically 5–10 times larger for the worst participant than for the best participant in a 

given paradigm (see Figures 6 and 7, and also the spreadsheets available at https://doi.org/

10.18115/D5JW4R). This is a surprisingly wide range given that the participants were all 

neurotypical young adults attending a highly selective university and therefore relatively 

homogeneous in factors such as age, cognitive ability, self-control, and ability to understand 

and follow instructions. An even broader range of SME values would be expected for more 

diverse populations.

Effect sizes and statistical power are related to squared SME values (see Luck et al. (2021), 

especially Equations 3 and 5), which means that the participants with high SME values 

have an exponential impact on the likelihood of obtaining statistical significance. It would 

therefore be worthwhile for methodology researchers to focus on approaches to improving 

data quality for the most extreme cases.

4.2. Causes of variations in data quality

For mean amplitude scores, Equation 1 entails that the SME increases linearly as a function 

of the SD of the single-trial amplitudes and decreases linearly as a function of the square 

root of the number of trials, with no other contributing factors. In the present study, some 

of the differences in data quality across paradigms and across conditions within a paradigm 

were mainly a result of differences in the square root of the number of trials. For example, 

the SME values for peak amplitude and mean amplitude scores were approximately twice as 

great for the rare conditions as for the frequent conditions in the P3b and MMN paradigms, 

reflecting the fact that there were approximately four times as many trials in the frequent 
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conditions as in the rare conditions. Similarly, SME values tended to be lower for paradigms 

with more trials (e.g., the LRP paradigm, with 200 trials per condition) than for paradigms 

with fewer trials (e.g., the N170 component, with 80 trials per condition).

However, the number of trials did not fully explain differences in SME across conditions and 

paradigms. For example, there were approximately 2.5 times as many deviant trials in the 

MMN paradigm as face trials in the N170 paradigm, but the SME values for mean amplitude 

were nearly identical (see Figure 4a). In these cases, the differences were necessarily due 

to differences in trial-to-trial amplitude variability, because that is the only other factor that 

impacts the SME for mean amplitude in Equation 1.

Interestingly, the SME for mean amplitude in the N400 paradigm was greater for 

semantically related trials than for semantically unrelated trials, even though the number 

of trials was the same, because the SD of the single-trial amplitudes was greater for the 

related trials than for the unrelated trials. This was unexpected, because the variability of a 

signal ordinarily increases with the magnitude of the signal (Brandmaier et al., 2018), and 

the N400 was much larger for the unrelated trials. This difference may reflect the fact that 

the association strength between the preceding prime word and the target word was much 

more variable for the related target words (association strength = 0.73 to 0.94) than for the 

unrelated target words (association strength = 0.00 to 0.01) (see Kappenman et al. (2021) for 

details). This may have led to greater variability N400 amplitude variability for the unrelated 

trials, creating a larger SD and SME.

One might also expect that trial-to-trial variability would be greater for the rare category 

than for the frequent category in an oddball paradigm, but this was not observed for either 

the P3b or the MMN (but see supplementary Figure S4 for an important caveat about 

comparing SD values for conditions that differ in the number of trials). These findings 

indicate the value of actually quantifying the trial-to-trial variability.

Note that trial-to-trial variability in cognitive processing can be theoretically important 

(Tamm et al., 2012; Ratcliff & McKoon, 2008). The SME would not be a good way 

to quantify neural variability, because it depends on the number of trials as well as the 

trial-to-trial variability. The SD is better because it is less dependent on the number of 

trials. However, the SD is influenced by nonneural sources of variability as well as neural 

sources. For example, differences in movement artifacts and skin potentials between groups 

or conditions could cause differences in SD between groups or conditions. The SD would 

be a useful way of comparing neural variability only if it was clear that nonneural sources 

of variability were unlikely to differ across groups or conditions. In addition, the true SD is 

underestimated by the sample SD when the number of trials becomes small (but there is a 

correction for this; see Gurland & Tripathi (1971)).

We also examined how the number of trials and the trial-to-trial EEG variability were 

related to the differences in SME across participants. The number of error trials varied 

considerably across participants for the ERN paradigm, and the SME for error trials was 

strongly and linearly related to the square root of the number of trials (Figure 8). Weaker 

and nonsignificant effects were seen for other components, in which the number of trials did 
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not vary as much across participants. For all seven ERP components, however, differences 

among participants in SME were strongly predicted by individual differences in trial-to-trial 

EEG variability (Figure 9).

Unfortunately, these analyses were limited to amplitude measures obtained from the parent 

waves, because it was not straightforward to assess trial-to-trial variability for difference 

waves, and it was impossible to obtain valid latency measures from the parent waves for 

several of the components. In addition, Equation 1 is valid only for mean amplitude scores, 

so the factors that impact data quality for other scoring procedures cannot be determined 

analytically. The present analyses suggest that the effects of trial-to-trial variability and the 

number of trials are similar for peak amplitude and mean amplitude (compare the left and 

right halves of Figures 8 and 9). However, other factors may also play a role, especially 

for latency scores. For example, Luck (2014) speculated that peak latency will be difficult 

to measure precisely from a broad, low-amplitude waveform. Additional research will be 

needed to determine the factors that contribute to the SME for scoring methods such as peak 

latency and 50% area latency.

The question of why the SME varies across paradigms and participants can also be asked in 

terms of the types of signals and noise that are present in the EEG. For example, what is the 

relative impact of alpha-band EEG oscillations, low-frequency skin potentials, or line noise 

for a given amplitude or latency score? This will be an important topic for future research.

4.3. Consistency of data quality across paradigms and scoring procedures for individual 
participants

When EEG data are viewed in real time during a recording session, it sometimes seems 

obvious that the data from the current session are “clean” or “noisy”. This assumes that the 

data quality for a given participant will be “good” or “bad” on the basis of the raw EEG 

alone, independent of how the data are scored. As discussed in Section 1.2, however, the 

concept of data quality in ERP research must be defined with respect to the specific scores 

that will be obtained from the averaged ERP waveforms. Consequently, it is quite possible 

that a given participant could have “good” data quality for one component or scoring method 

but have “bad” data quality for another component or scoring method. However, it is also 

theoretically possible that individual differences in the raw EEG signal are the main driver 

of individual differences in data quality, with relatively little effect of the experimental 

paradigm or scoring method.

We addressed this issue by determining how the SME values were correlated across 

components. For the amplitude scores, we found significant correlations between the SME 

values for many pairs of components (see Figure 10 and supplementary Figure S5), and the 

intraclass correlation coefficients were fairly high (0.80 for mean amplitude and 0.79 for 

peak amplitude). However, the correlations in SME between pairs of components were quite 

weak for the two latency measures, with low intraclass correlation coefficients (0.35 for peak 

latency and 0.28 for 50% area latency).

We also asked whether the data quality for a given scoring procedure was correlated with the 

data quality for the other scoring procedures (see Figure 12). The SME values for the two 
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amplitude scores were nearly perfectly correlated with each other for all seven components, 

but the SME values for the two latency scores were only modestly correlated with each other 

for most components. In addition, the correlations were quite low between the amplitude and 

latency SME values for most components.

Together, this pattern of correlations suggests that an individual’s ERP data quality is 

not purely a function of how “noisy” the EEG waveforms are. Instead, data quality 

is strongly impacted by whether the data are scored for amplitude or for latency and 

by which latency scoring procedure is used. Moreover, when latencies were scored, the 

data quality for one component was not a good predictor of data quality for most other 

components. However, when amplitudes were scored, data quality was highly consistent 

across components (although this may not be true when the different components are 

recorded in different sessions). These results reinforce the idea that ERP data quality depend 

on both the properties of a participant’s EEG signal and the scoring method.

4.4. Concluding comments

Although data quality is obviously important in ERP research, we know of no prior efforts to 

systematically quantify ERP data quality across a large number of paradigms, participants, 

and scoring procedures. The present results indicate that data quality varies quite widely 

across these variables. We hope that this study inspires other researchers to quantify their 

data quality, which is an important first step toward increasing the quality of the data and 

therefore the statistical power of their experiments. Toward that end, we have made it trivial 

to compute the SME for mean amplitude in ERPLAB Toolbox (version 8 and later), and 

we have provided example scripts for using bootstrapping to compute the SME for peak 

amplitude, peak latency, and 50% area latency (https://doi.org/10.18115/D5JW4R).

SME values can be very helpful in performing power analyses. In particular, because the 

SME varies linearly with the square root of the number of trials, it is possible to predict 

how the SME will change if the number of trials is increased or decreased for a given 

experiment. Our original SME paper (Luck et al., 2021; Baker et al., 2021) provides a 

detailed description of how SME scores can be used to estimate effect sizes, which can 

then be used in power analyses. In addition, it describes how to convert SME values into 

measurement error variance, which can in turn be plugged into a power calculator that 

predicts how power will vary according to any combination of number of participants and 

number of trials (Baker et al., 2021).

It would be very helpful for researchers to provide SME benchmarks for other paradigms, 

participant populations, and scoring procedures. For example, a recent study by Isbell & 

Grammer (2022) examined the SME for the ERN in children between the ages of 5 and 

7 using a child-friendly version of the Go/NoGo task. They found that the SME values 

were substantially larger than those found for the ERN in the present study, which is not 

surprising given the challenges involved in recording the EEG from children.

Another useful direction for future research would be to assess the impact of different data 

processing pipelines. For example, when a strict artifact rejection threshold is imposed, this 

may reduce trial-to-trial variability and thereby improve the data quality, but it will also 
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reduce the number of trials which may degrade the data quality. The SME can provide an 

objective criterion for determining which parameters or algorithms are optimal (see Luck 

(2022)). However, it will be important for such research to determine whether a given set 

of parameters or algorithms leads to a bias in the amplitude or latency scores, which would 

not be evident in the SME values but could lead to incorrect conclusions. Ideally, researchers 

should strive to obtain scores that are both accurate (have minimal bias) and precise (have 

low SME values).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Example of how Equation 1 is used to estimate the standard error of measurement when the 

amplitude of the P3b wave is scored from an averaged ERP waveform as the mean voltage 

across a measurement window of 350–550 ms. To compute this standard error, the mean 

amplitude score is obtained from the single-trial EEG epochs, and these single-trial scores 

are used to compute SD/ N. SD is the standard deviation of the single-trial mean amplitude 

scores, and N is the number of trials. The result is the standard error of measurement for the 

score obtained from the averaged ERP. Separate standard error values can be obtained for 

each experimental condition (e.g., rare trials versus frequent trials in an oddball paradigm). 

This approach is possible because the mean amplitude score obtained from the averaged 

ERP waveform is equal to the average of the single-trial mean amplitude scores. This 

approach does not work with other scoring methods, such as peak amplitude and peak 

latency. Note that only a subset of the single-trial epochs used to create the averaged ERP 

waveform are shown here.
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Figure 2: 
Examples of multiple trials for each of the six paradigms. (a) Active visual oddball paradigm 

used to elicit the P3b component. The letters A, B, C, D, and E were presented in random 

order (p = .2 for each letter). In each block, one letter was designated the target, and the 

other four letters were nontargets. Participants were required to classify each stimulus as 

target (20% of stimuli) or non-target (80% of stimuli). (b) Face perception paradigm used 

to elicit the N170 component. On each trial, a stimulus from one of four equiprobable 

categories was displayed (face, scrambled face, car, scrambled car), and participants were 

required to classify the image as an intact object (face or car) or a texture (scrambled face 

or scrambled car). The present paper focuses only on the face and car trials. (c) Passive 

auditory oddball task used to elicit the mismatch negativity (MMN). On each trial, either a 

standard tone (80 dB, p = .8) or a deviant tone (70 dB, p = .2) was presented. The tones 

were task-irrelevant; participants watched a silent video during this paradigm. (d) Word pair 
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judgment paradigm used to elicit the N400 component. On each trial, a red prime word 

was followed by a green target word, and participants indicated whether the green word 

was related (p = .5) or unrelated (p = .5) to the preceding red prime word. (e) Flankers 

task used to elicit the lateralized readiness potential (LRP) and the error-related negativity 

(ERN). Participants were required to indicate whether the central arrow pointed leftward or 

rightward, ignoring the flanking arrows. (f) Simple visual search task used to elicit the N2pc 

component. One color (pink or blue) was designated the target color at the beginning of each 

trial block. On each trial, participants indicated whether the gap was on the top or the bottom 

of the attended-color square.
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Figure 3: 
Grand average parent waves (left panel) and difference waves (right panel) for the 

seven ERP components examined in the ERP CORE]. The shaded area accompanying 

the difference waves is the standard error of the mean across participants at each time 

point. This is largely identical to Figure 2 in Kappenman et al. (2021), except that all 

40 participants were included here (except that Subject 7 was excluded from the N2pc 

waveforms because the number of trials for one condition was zero after artifact rejection). 

The original figure was released under a CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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Figure 4: 
Mean across participants of the standardized measurement error (SME; panels a and b), the 

standard deviation across trials (SD; panels c and d), and the square root of the number of 

trials (panels e and f). Separate values are provided for the SME values corresponding to 

mean amplitude scores (left column) and peak amplitude scores (right column). The mean 

and peak amplitude scores and corresponding SME and SD values were computed using the 

time windows and electrode sites shown in Table 1. Note that the number of trials varied 

across individuals because of artifact rejection and exclusion of trials with errors. However, 

panels e and f are identical because the same trials were used for the averages used for 

scoring mean amplitude and peak amplitude. Error bars show the standard error of the mean 

of the single-participant values.
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Figure 5: 
Standardized measurement error (SME) values, averaged across participants, for scores 

obtained from the difference waves used to isolate each of the seven ERP components. SME 

values are shown for the mean amplitude and peak amplitude scores (a) and for the peak 

latency score and 50% area latency score (b). Values were obtained using the time windows 

and electrode sites shown in Table 1. Error bars show the standard error of the mean across 

participants.
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Figure 6: 
Single-participant SME values for four different scoring methods (mean amplitude, peak 

amplitude, peak latency, and 50% area latency), measured from difference waves for each 

of the seven ERP components. Each bar represents the SME value for one of the 40 

participants.
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Figure 7: 
Histograms of single-participant standardized measurement error (SME) values for mean 

amplitude, peak amplitude, peak latency, and 50% area latency scores obtained from 

difference waves. For each component and each scoring method, the X axis was evenly 

divided into seven bins to reflect the different ranges of values for each plot.
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Figure 8: 
Scatterplots of the relationship between the standardized measurement error (SME, obtained 

from the parent waves) and the square root of the number of trials after rejection of 

trials with artifacts and behavioral errors. Scatterplots are shown for each of the seven 

components, separately for each of the two experimental conditions and for mean amplitude 

and peak amplitude scores. Each circle represents a single participant. The p values were 

corrected for multiple comparisons across the family of tests for each scoring method.
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Figure 9: 
Scatterplots of the relationship between the standardized measurement error (SME, obtained 

from the parent waves) and the standard deviation (SD) of the single-trial scores for 

mean amplitude and peak amplitude scores. Scatterplots are shown for each of the seven 

components, separately for each of the two experimental conditions. Each circle represents a 

single participant. The p values were corrected for multiple comparisons across the family of 

tests for each scoring method.
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Figure 10: 
Scatterplots of the relationship between standardized measurement error (SME) values 

for each pair of ERP components (for mean amplitude scores obtained from difference 

waves). Each circle represents a single participant. The p values were corrected for multiple 

comparisons across this entire family of tests. To allow comparisons among the different 

components, Subject 7 was excluded from all scatterplots because the number of trials was 

zero after artifact rejection for one of the conditions of the N2pc experiment. Corresponding 

plots for peaks amplitude, peak latency, and 50% area latency are provided in supplementary 

Figures S5, S6, and S7.
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Figure 11: 
Variations in z-scored SME across participants for each component (obtained from 

difference waves).
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Figure 12: 
Scatterplots of the relationship between standardized measurement error (SME) values 

corresponding to each pair of the four scoring methods (mean amplitude, peak amplitude, 

peak latency, and 50% area latency), separately for each component. The SME values were 

obtained from the difference waves. The p values were corrected for multiple comparisons 

across this entire family of tests.
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Table 1:

Epoch window, baseline period, electrode site, and time window used for each ERP component.

Component P3b N170 MMN N400 ERN N2pc LRP

Epoch window (ms) −200 to 800 −200 to 800 −200 to 800 −200 to 800 −600 to 400 −200 to 800 −800 to 200

Baseline period (ms) −200 to 0 −200 to 0 −200 to 0 −200 to 0 −400 to −200 −200 to 0 −800 to −600

Electrode site Pz PO8 FCz CPz FCz PO7/PO8 C3/C4

Time window (ms) 300 to 600 110 to 150 125 to 225 300 to 500 0 to 100 200 to 275 −100 to 0
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Table 2:

Mean number of trials (±SEM) and mean of mean/peak amplitude (±SEM) across all 40 participants for each 

condition for the seven ERP components, after excluding trials with artifacts and behavioral errors.

P3b N170 MMN N400

Rare Frequent Faces Cars Deviants Standards Unrelated Related

#Trials 30.53 ± 1.36 139.90±3.29 69.00 
±2.04

68.13 ±1.44 183.18 ± 3.39 534.95± 9.51 52.60 ±1.08 51.20 
±1.18

Mean 
amplitude

11.39 ± 0.79 4.34±0.46 0.54 ±0.85 4.16 ±0.79 0.13 ± 0.23 1.99± 0.19 1.01 ±0.61 8.72 ±0.83

Peak 
amplitude

17.44 ± 1.03 8.62±0.58 −2.98 
±0.88

0.94 ±0.94 −2.50 ± 0.29 0.56± 0.34 −2.89 ±0.63 4.88 ±0.85

ERN N2pc LRP –

Incorrect Correct Left target Right target Left response Right response – –

#Trials 40.05 ±3.42 337.03± 7.39 118.73 
±4.33

118.23± 
4.61

166.75 ±3.94 167.13 ± 3.78 – –

Mean 
amplitude

−2.97 ±1.00 6.27± 0.84 3.62 ±0.52 4.79± 0.53 3.27 ±0.65 5.75 ± 0.64 – –

Peak 
amplitude

−9.17 ±1.20 3.87± 0.92 2.62 ±0.60 3.42± 0.56 0.49 ±0.65 3.04 ± 0.74 – –
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Table 3:

Paired t tests comparing either the standardized measurement error (SME) or the standard deviation across 

trials (SD) between the two experimental conditions for each ERP component, separately for mean amplitude 

and peak amplitude (corrected for multiple comparisons across the family of tests for each scoring method). 

Participant 7 was excluded from the N2pc analyses (but not for the other analyses) because the number of 

trials was zero in one of the N2pc conditions for this participant.

Parent wave
P3b N170 MMN N400 ERN N2pc LRP

t(39) p t(39) p t(39) p t(39) p t(39) p t(38) p t(39) p

SME for mean 
amplitude 7.79 <.001 0.36 0.723 10.19 <.001 −3.29 0.004 10.75 <.001 0.99 0.459 −0.71 0.560

SME for peak 
amplitude 10.23 <.001 −1.26 0.302 11.40 <.001 −3.41 0.004 9.21 <.001 −0.51 0.614 −0.95 0.405

SD for mean 
amplitude −1.76 0.301 −0.67 0.594 −1.17 0.487 −3.43 0.007 −0.41 0.686 0.95 0.487 −1.07 0.487

SD for peak 
amplitude −2.27 0.102 −1.94 0.103 −0.60 0.706 −1.97 0.103 2.34 0.102 0.38 0.706 −1.56 0.706
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