Skip to main content
. 2023 Oct 6;24:791. doi: 10.1186/s12891-023-06911-y

Table 3.

Results of the predictive modeling for the combined radiomics and clinical features. XGBoost: eXtreme Gradient Boosting; LSVM: Lagrangian Support Vector Machine; Quest: Random Trees, and Quick, Unbiased, Efficient Statistical Tree; MLP-NN: multiplayer layer perceptron neural network; RBF-NN: radial basis function neural network

Algorithm Accuracy
Random Trees Training 100
XGBoost Tree 100
LSVM 89.06
SVM 90.77
CHAID 93.75
MLP-NN 91.9
RBF-NN 87.7
Testing
Random Trees 88.63
XGBoost Tree 91.19
LSVM 84.27
SVM 89.08
CHAID 85.33
MLP-NN 88.0
RBF-NN 90.7