Skip to main content
. 2023 Oct 6;24:791. doi: 10.1186/s12891-023-06911-y

Table 4.

Results of the predictive modeling for the clinical features. XGBoost: eXtreme Gradient Boosting; LSVM: Lagrangian Support Vector Machine; Quest: Random Trees, and Quick, Unbiased, Efficient Statistical Tree; MLP-NN: multiplayer layer perceptron neural network; RBF-NN: radial basis function neural network

Algorithm Accuracy
Training
Random Trees 95.46
XGBoost Tree 100
LSVM 89.58
SVM 88.00
CHAID 89.79
MLP-NN 90.4
RBF-NN 87.4
Testing
Random Trees 89.74
XGBoost Tree 90.49
LSVM 83.84
SVM 90.17
CHAID 85.46
MLP-NN 82.6
RBF-NN 91.5