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ABSTRACT: Bacteria are orders of magnitude smaller than mammalian cells, and while single cell proteomics (SCP) currently
detects and quantifies several thousands of proteins per mammalian cell, it is not clear whether conventional SCP methods will be
suitable for bacteria. Here we report on the first successful attempt to detect proteins from individual Escherichia coli bacteria, with
validation of our findings by comparison with two bacteria samples and bulk proteomics data. Data are available via
ProteomeXchange with the identifier PXD043473.

KEYWORDS: Escherichia coli, bacterial proteome, single cell proteomics

B INTRODUCTION commonly used in research are much smaller than human
Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS) cells, but they are easy to grow and easier to lyse than Gram-
by Budnik and Slavov' revolutionized in 2017—2018 the positive bacteria. The typical diameter of AS49 human cell is
nascent field of single cell proteomics (SCP), opening a venue 11-15 pm,"® with a volume of #1000 ym?, while E. coli cells
for innovative approaches in ultrasensitive sample preparation represent a cylinder of 1.0—2.0 ym long with a radius of about
and mass spectrometry analysis. The key innovation in SCoPE 0.5 um and a volume of &1 um?>."” Other sources give different
MS was the use of the carrier proteome (CP) composed of values for E. coli size ranges, e.g., 2—6 ym long and 1.1—1.5 ym
100—200 cells and multiplexed with single cell samples using wide.'® This discrepancy is due to the fact that the size and
isobaric tandem mass tag (TMT). With SCoPE-MS, it is volume of the bacterial cell depend upon the growth rate. In
habitually possible to analyze human cells to the depth of general, faster dividing cells are larger than slower growing
1500—2000 proteins.”* There are dozens of recent reports bacteria. The dry protein mass of E. coli cells varies from an

with similar or greater proteome analysis depths owing to

. . o4-8 Lo
continuous advances in sample preparation,” ~ data acquisition

expanding the choice of analytical approaches to label-free r>nsmf tlo d 8(16; fg per fn,? Il for those with a 24 min division time, a
technique and with data independent acquisition modes,””~"* mold ifference.
as well as providing optimal data analysis.">"*

The next challenge in single cell proteomics would be to
detect proteins from single bacteria. Bacteria come in a wide
range of sizes, from the smallest (Mycoplasma gallicepticum with
a size of 02—0.3 um) to the largest (a Gram-negative
proteobacterium Thiomargarita namibiensis, up to 750 pm)."

Gram-negative Escherichia coli bacteria that are most

average value of 148 fg per cell for bacteria dividing every 100
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The proteome of E. coli contains about 4200 proteins.”
Some of the most abundant proteins in the E. coli proteome are
ribosomal proteins. The number of ribosomes is steeply
dependent on the growth rate: as one would expect, the faster
the growth rate, the more ribosomes that are present.21 It is
believed that, under optimal growing conditions, a single E. coli
bacterium may have up to 60,000 ribosomes. Assuming such a
value, it should be possible to detect and quantify at least most
abundant ribosomal proteins (the L7/12 complex is present in
four copies per ribosome) by SCoPE-MS, although soluble
enzymes (>1000) are also potential target of such analyses. In
order to validate protein detection, we compared single
bacterium proteomics (SBP) results with the bulk proteome
analysis of bacteria, demonstrating that single cell analysis
identified proteins that are very abundant in bulk proteomics
data.

B MATERIALS AND METHODS

Culturing Bacterial Cells. Escherichia coli BL21(DE3)
strain was grown on plates containing LB agar (Sigma), and a
single colony was transferred to Terrific Broth (TB) medium.
Bacterial growth was monitored by measuring light diffraction
at 600 nm on a BioScreen C automated microbiology growth
curve analysis system (Bioscreen, Finland) at 37 °C. After 4 h,
the bacteria were washed with PBS twice and incubated in PBS
containing S mM SYTO 9 green fluorescent nucleic acid stain
(Thermo Fisher Scientific, $34854) at room temperature (RT)
for 15 min. The remaining SYTO 9 dye was removed by
centrifugation, and the bacteria were washed with PBS.

Sample Preparation. For bulk proteome analysis, the
harvested and washed cells were lysed with two different
methods following supplementation with either 100 uL of 25
mM triethylammonuim bicarbonate (TEAB) for probe
sonication method or 50 uL of water for the freeze-and-thaw
method and sonicated in water bath for 10 min. The cells
either were sonicated twice using an ultrasound probe
(Vibracell) for 1 min operated with a pulse of 2—2 s (on—
off) and amplitude to 20% after or underwent four freeze-and-
thaw cycles, being frozen in liquid N, and then heated on a
block heater at 70 °C for 2 min in each cycle. Supernatants
were used for determination of protein concentration by the
BCA method. Thereafter 25 pug of cell extract was
supplemented with S0 mM TEAB to reach a total volume of
100 uL, and proteins were digested without reduction and
alkylation by adding 10 uL of 0.1 ug/uL sequencing grade
trypsin (Promega) and incubating at 37 °C for ca. 16 h. The
resulting peptides were labeled with 500 ug of TMT-10plex
(Thermo Fisher Scientific) in 150 uL of dry acetonitrile
(ACN) by incubating at RT for 2 h with gentle shaking. The
reaction was quenched by adding 15 uL of 5% hydroxylamine
(Sigma). The peptides labeled with different TMT labels were
pooled together and dried in a vacuum concentrator
(Eppendorf).

For single cell proteomics, bacteria were stained with SYTO
9 to facilitate sorting to a 96-well plate in an BD FACSAria III
flow cytometer system (BD Biosciences) either one or two
cells into wells holding predispensed S uL of 100 mM TEAB.
In addition, 250 cells to be used as CP were sorted into some
wells. As described previously,” proteins were extracted by four
freeze-and-thaw cycles using liquid nitrogen and incubation at
70 °C for 2 min in each cycle with a 2 min interval at RT
between each cycle. Proteins were denatured by heating the
plates to 90 °C for 10 min. Then 1 or 2 uL of sequencing grade
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trypsin (Promega) in S0 mM TEAB was added to single/
double cells and CP, respectively, and incubated at 37 °C for
16 h. Labeling with TMT-10plex was performed with
dispensing in each well 1 uL of a 10 ng/uL reagent solution
using a MANTIS liquid handling robot (Formulatrix) and
incubating at RT for 1 h with gentle shaking and subsequent
quenching for 20 min at RT with 1 L of 5% hydrocylamine.
Labeled peptides from three single and three double cells were
pooled together with two CP digests labeled by two different
TMT labels and dried in vacuum prior to analysis. Two TMT
channels remained unutilized to determine the background
noise level.

RPLC-LC-MS/MS Analysis. LC-MS/MS analysis of the
bulk proteome sample was performed on an Ultimate 3000
UPLC coupled to a Q Exactive HF hybrid mass spectrometer
(Thermo Fisher Scientific). Peptides were loaded onto a trap
column (Acclaim PepMap 100 precolumn, 75 ym diameter, 2
cm long, 3 um C18 beads, 100 A pores, Thermo Scientific)
and separated on an EASY-Spray analytical column (50 cm
long, 75 pm i.d., PepMap RSLC C18 2 um beads, 100 A pores,
Thermo Scientific) using a 120 min long linear gradient from
4% to 26% solvent B (0.1% FA in 98% ACN and 2% water) at
a flow rate of 300 nL/min and a column temperature of 55 °C.
Mass spectrometry (MS) acquisition method was set as
follows: full MS spectra at m/z 375—1700 with a resolution of
120,000 (at 200 m/z), with an automated gain control (AGC)
target value of 1 X 10° and 80 ms injection time (IT), with
data dependent acquisition (DDA) selection for fragmentation
of 18 most abundant ions. MS/MS was performed with an
isolation window of 1.4 Th and fragmentation by higher-
energy collision dissociation (HCD) at a normalized collision
energy (NCE) of 34%, maximum IT of 54 ms, and AGC target
of 2 X 10°. Fragment ion detection was in the Orbitrap HD
analyzer at a resolution of 60,000 with fixed first mass at 110
m/z and with a dynamic exclusion of 45 s.

LC-MS/MS analysis of single cells was performed with a
nanoflow UltiMate 3000 UPLC coupled to an Orbitrap Fusion
Eclipse Tribrid mass spectrometer equipped with field
asymmetric ion mobility device FAIMS Pro (Thermo Fisher
Scientific). The peptides were separated on a 25 cm Easy-Spray
PepMap C-18 column (Thermo Fisher Scientific) using a
gradient from 1%B to 20%B in 75 min and from 1%B to 36%B
in 20 min at a 300 nL/min flow rate. FAIMS operated at a
compensation voltage cycling every 1.5 s between —50 and
—70 V. The mass spectrometer was used in the DDA mode.
The precursor ions were recorded at 120,000 resolution in the
m/z 250—1500 range, targeting 6 X 10° ions in maximum 100
ms, while MS/MS precursors were isolated with a AGC target
of 1 X 10° in maximum S0 ms with a narrow 0.7 Th window
and fragmented by HCD at 35% NCE. The fragment ions were
detected at 50,000 resolution with dynamic exclusion of 60 s.

Peptides and proteins were identified by searching MS/MS
data against the E. coli strain K12 protein database (SwissProt,
4465 entries) by MS Amanda® using Proteome Discoverer 2.5
software. The precursor and fragment ion mass tolerances were
10 ppm and 0.05 Da, respectively. Variable modifications were
set for deamidation of asparagine and glutamine, oxidation of
methionine, and “TMTé6plex” (+229.163 Da; same as
TMT10plex) of lysine and peptide N-termini. The protein
list was filtered with an estimated false discovery rate (FDR) of
5% and validation based on g-values using either the Percolator
or Target Decoy PSM validator node in Proteome Discoverer.
The protein group abundances were calculated as a sum of the
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Figure 1. Comparison of sample preparation methods in bulk proteomics. The freeze-and-thaw method extracted 53% more proteins than the
probe sonication method did, including a ribosomal protein (L34). The less effectively extracted proteins included mostly membrane proteins

(58%) as depicted in the pie chart.

peptide abundances determined in Proteome Discoverer
(Reporter Ion Quantifier node) based on the detected levels
of TMT reporter ions.

The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the
PRIDE™ partner repository with the data set identifier
PXD043473.

B RESULTS AND DISCUSSION

Bulk Proteomics. In total, 1132 and 1270 bacterial
proteins were detected and quantified in bulk analysis across
three replicates prepared with freeze-and-thaw and probe
sonication, respectively. As we were interested in the most
abundant proteins, there was no need to reach a deeper
proteome. Among the detected proteins, there were 34
molecules localized in the small subunit of the ribosome and
43 proteins from the large ribosome subunit; eight additional
ribosome related proteins were detected. Overall, ribosomal
proteins comprise 12.1% of the total protein abundance.

The comparison of the two preparation methods indicated
significant differences in extraction efficiency for some protein
groups (Figure 1). Probe sonication processed membrane
related proteins more effectively, as about 58% of proteins
significantly enriched in this approach fell in this category.
However, the freeze-and-thaw method provided a higher yield
of more than half of the detected proteins, and importantly,
one significantly enriched protein was ribosomal (POA7PS, 50S
ribosomal protein L34). Therefore, we decided that the freeze-
and-thaw approach is suitable for single bacterium proteomics
(SBP) analysis.

Single Bacterium Proteomics. The overall SBP workflow
is presented in Figure 2. Each TMT-10 multiplexed set
contained two TMT-channels with 250 bacterial cells each as
CP, as well as three single cell and three double cell channels in
alternating order. In total, 16 such TMT sets were analyzed.
Altogether, 388,641 MS/MS spectra were collected resulting in
over 20,000 peptide-spectrum matches (PSMs), among which
many mapped on common contaminant proteins (e.g.,
keratins) as well as trypsin. The TMT labeling efficiency was
determined to be 75%, which was somewhat lower than the
average labeling efficiency of 85% in our previous work with
single mammalian cells,” but still sufficient for the purpose of
this work.

Using Percolator for control of FDR < 0.05, 94 PSMs were
annotated in the E. coli database, identifying 29 peptides of 19
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Figure 2. Single bacterium proteomics workflow. The cultured E. coli
cells were isolated as single or double cells on 96-well plates by FACS;
lysed by freeze-and-thaw, and digested before TMT-10plex labeling.
Data acquisition was achieved on an Orbitrap Fusion Eclipse mass
spectrometer equipped with FAIMS Pro, collecting MS2 spectra for
reporter ion based quantification.

bacterial proteins across the 96 single/double cells (Tables 1
and 2). The following three proteins were identified with >2
peptides each: elongation factor Tu 2 (POCE48), glyceralde-
hyde-3 phosphate dehydrogenase 3 A (POA9B2), and 2-
iminobutanoate/2-iminopropanoate deaminase (POAF93).

An alternative FDR < 0.05 control was performed with the
Target Decoy PSM Validator node in Proteome Discoverer.
This approach resulted in 79 PSMs yielding 69 peptides and 60
proteins, with most proteins (16 and SS, respectively)
identified by one peptide. Out of these, 12 proteins were the
same. Out of the five proteins discovered with >2 peptides
(Tables 1 and 2), glyceraldehyde-3 phosphate dehydrogenase
3 A with >2 peptides was the same in both approaches to FDR
control.

An additional FDR control was the peptide abundance rank
among all peptides quantified in the bulk analysis. The
assumption was made that any peptide detected in single and
double cells should be among the top 25% of most abundant
peptides in bulk analysis. Yet another FDR control was
implemented in the form of the 25% threshold for channel
occupancy, which is the percentage of TMT channels among
the 96 single and double cells for which nonzero abundance
was detected.
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Figure 3. Distributions of the mean abundances calculated with eight
bacterial proteins quantified across the data set. The median values
are provided for easier comparison.

With a < 25% rank cutoff for the peptide abundance in bulk
analysis and a > 25% channel occupancy, 32 peptides
belonging to 12 proteins were detected that passed the FDR
< 0.05 threshold in either of the above approaches (Tables 1
and 2). Among these proteins, one ribosomal protein (50S
ribosomal protein L7/L12, POA7K2) was readily detected by
both methods as well as translation initiation factor (POA705),
that is a key component of protein synthesis, indirectly related
to the ribosomal complex.

The distribution of the relative abundances of the TMT
reporter ion for the above peptides in the single- and double
cell channels is shown in Figure 3. The mean normalized
abundances of eight quantified proteins (glyceraldehyde-3-
phosphate dehydrogenase A, 2-iminobutanoate/2-iminopropa-
noate deaminase, 5S0S ribosomal protein L7/L12, elongation
factor Tu 2, biotin carboxylase detected by the Percolator
method and glutamine-binding periplasmic protein, translation
initiation factor IF-2, chaperone protein DnaK detected by the
Targeted Decoy method) were used together to compare the
levels of these proteins in samples with single and double cells.
For comparison, the data for the channels corresponding to CP
with 250 cells as well as for empty channels are also provided.
The average value in the latter was statistically indistinguish-
able from zero, which indicates the absence of carry-over. The
average abundance in the double bacteria channels was (60 +
10)% higher than that in the single bacterium channels, largely
consistent with our expectations. As expected, the average
abundance in the CP channels was much higher, even though
the difference by a factor of 7 with the single bacterium
channels was much below the theoretical value of 250. This
discrepancy can be attributed to the compression effect in
isobaric labeling,”* as some unlabeled peptides with zero
abundances in all TMT reporter channels were also present in
the analyzed samples.

B CONCLUSIONS

Summarizing, we have shown that a slightly modified SCoPE
MS approach is powerful enough to detect at least a dozen
proteins from single bacteria and differentiate quantitatively
between one and two bacteria. To the best of our knowledge,
this is the first report on MS-based proteomics of single
bacterium cells.

https://doi.org/10.1021/jasms.3c00242
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