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ABSTRACT

The advent of the perturbation-based massively parallel
reporter assays (MPRAs) technique has enabled delineating
of the roles of non-coding regulatory elements in
orchestrating gene expression. However, computational
efforts remain scant to evaluate and establish guidelines
for sequence design strategies for perturbation MPRAs.
Here, we propose a framework for evaluating and comparing
various perturbation strategies for MPRA experiments.
Under this framework, we benchmark three different
perturbation approaches from the perspectives of alteration
in motif-based profiles, consistency of MPRA outputs, and
robustness of models that predict the activities of putative
regulatory motifs. Although our analyses show similar
while significant results in multiple metrics, the method of
randomly shuffling nucleotides outperform the other two
methods. Thus, we still recommend designing sequences
by randomly shuffling the nucleotides of the perturbed site
in perturbation-MPRA. The evaluation framework, together
with the benchmarking findings in our work, creates a
resource of computational pipelines and illustrates the
promise of perturbation-MPRA for predicting non-coding
regulatory activities.

INTRODUCTION

Advances in high-throughput technologies have allowed a
detailed characterization of the human genome, including
regulatory elements such as enhancers which contain binding
motifs for transcription factors (TFs) and play a central role in
the transcriptional regulation of gene expression. Aberrations
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in the non-coding regions of the genome have been linked
to numerous polygenic disorders such as cancer, heart, and
neurological disorders (1, 2, 3), making the study of non-
coding regions an important area of research.

However, linking the non-coding genome to the etiology
of diseases is largely limited by the low throughput of
conventional “luciferase reporter assays”, especially when
numerous non-coding regions are of interest. To address
this challenge, massively parallel reporter assays (MPRAs)
were developed to simultaneously measure the activity of
thousands of regulatory elements and their variants in a single
experiment (4, 5). Furthermore, a perturbation-based MPRA
approach was introduced to elucidate the regulatory effects
of transcription factor (TF) binding motifs, instead of single
nucleotide variants (6, 7, 8). The essence of this technique is
to analyze the change in the transcription activity of reporter
genes after altering the DNA sequence of putative functional
regulatory regions.

In our recent studies, we have utilized utilized the
perturbation MPRA technique to successfully identify over
500 non-coding genomic regions that temporally regulate
gene transcription during neural differentiation (9, 10).
Although the potential of perturbation MPRA has been widely
acknowledged, there have been limited attempts to evaluate
different design strategies of the tested sequences.

Motivated by the scarcity of the gold standard for DNA
sequence designing strategies for the MPRAs technique,
we propose a framework for assessing and comparing
perturbation strategies (Figure 1). Under this framework,
we benchmark three different perturbation methods using
a publicly available dataset we recently generated (9, 10).
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Briefly, this dataset includes 591 wild-type (WT) sequences,
2,146 motif perturbation sequences, with each sequence
perturbed using three different perturbation approaches, and
591 negative control sequences. The perturbation methods, in
short, either replaced the target motifs with two different “non-
motif” sequences (PERT1 and PERT2), or simply shuffled the
nucleotides of target motifs (PERT3).

For benchmarking, we first define five indices to
comprehensively evaluate the achievement of the perturbation
goals. These indices include, for example, the perturbation rate
that indicates the impact on the target motifs both in-situ and
ex-situ, and the specificity index that indicates the proportion
of WT motifs that survives the perturbation processes, etc. By
comparing these indices, we found that the PERT3 exhibits
the highest specificity while the lowest perturbation rate.
Next, we compared the consistency of MPRA outputs, both
in functional regulatory site (FRS) identities and numeric
regulatory effects. Our analyses revealed a high correlation
among the three perturbation methods, but we also found a
constant bias in the results of PERT1 and PERT2. This is likely
due to their insertion of fixed sequences, which may introduce
systematic biases to the assayed regions. Finally, we extracted
multiple genomic features for each tested sequence and
used the difference in the features between the perturbation
sequences and their WT equivalents as independent variables
to fit predictive machine-learning models. Our results for
these predictive models demonstrated the robustness of both
classifiers and regressors based on PERT3 data.

To the best of our knowledge, this is the first study
that assesses and compares different perturbation methods
of MPRA experiments. Our study fills this gap by
constructing a blueprint evaluation framework for perturbation
sequence designing strategies. Additionally, our results
provide guidance for establishing a gold standard of
perturbation MPRAs techniques, and our prediction pipeline
holds great promise for further computationally identifying
functional genomic regulatory regions.

MATERIALS AND METHODS

Dataset overview
We utilized a publicly available dataset of perturbation
MPRA we recently published (9). The MPRA experiment
was performed in the human embryonic stem cell line across
seven time points after neural differentiation induction (0,
3, 6, 12, 24, 48, and 72 hours). Specifically, it assayed
three groups of genomic sequences: a) Wild type group:
591 wild-type sequences (denoted as “WT”): each WT
sequence represents a 171-nucleotide genomic region whose
regulatory activity differs over time (10), b) Motif perturbation
group: 2,146 sequences, each containing a single-perturbed
motif within the genomic region of its WT equivalent. And
each sequence is perturbed using three different perturbation
approaches (denoted as “motif PERT1”, “motif PERT2” and
“motif PERT3”):

1. PERT1: a motif is replaced with the prefix of an
artificially scrambled motif, while using three bp
downstream and upstream of the motif in the WT
sequence. Under this strategy, the sequence of the

perturbed motif is original sequence start“scrambled
motif1 prefix”original sequence end.

2. PERT2: similar to PERT1, a motif is replaced
with the prefix of another artificially scrambled
motif, while keeping the WT starting and ending
sequences. Under this strategy, the sequence of the
perturbed motif is original sequence start“scrambled
motif2 prefix”original sequence end.

3. PERT3: the motif is scrambled by randomly shuffling
its nucleotides.

and c) Negative control group 1: 591 scrambled sequences
(denoted as “SCRAM”). Scrambled sequences are based on
WT sequences with shuffled nucleotides, creating a set of
negative controls, d) Negative control group 2: these are a
set of all the 591 WT sequences where we perturbed a sub-
sequence in the length of the average motif (12 bp) in a
random location within the WT sequence using the same three
perturbation methods (denoted as “non-motif PERT1”,“non-
motif PERT2”, and “non-motif PERT3”). The non-motifs
and motifs are perturbed using the same three perturbation
approaches.

The experimental read-out of the perturbed sequences is
then subjected to the MPRAnalyze (11) and MPRAflow (12)
tools to assess the motif regulatory effect over time, which
is represented by the Log2 fold changes (Log2FC) of PERT
read-outs compared to the WT and SCRAM at each of the
seven time points. The sequences are further classified into
two according to the Log2FC values: activating (Log2FC >
0) and repressing (Log2FC < 0).

Additionally, to identify the functional regulatory sites
(FRS), we used MPRAnalyze (11) to apply a set of four filters
to the PERT sequences (9):

1. At one or more time points, the activity of a PERT
sequence significantly deviates from its WT equivalent.

2. The temporal activity of a PERT sequence significantly
deviates from its WT equivalent.

3. The activity of either a PERT sequence (at one or more
time points) or a WT sequence (across all the time
points) is significantly higher than its corresponding
SCRAM negative control sequence.

4. The temporal activity of either a PERT or a WT
sequence is significantly higher than its corresponding
SCRAM negative control sequence.

The target motif of a sequence will be labeled as an FRS if
the sequence passes all four filters and shares consistent effects
(either activating or regressing) in PERT3 and either PERT1 or
PERT2. In summary, the MPRA output consists of the numeric
regulatory effect (Log2FC) and the multi-class FRS identities
at seven time points. These two output types are used as input
variables for training the prediction models.

Metrics for assessing motif-based profiles
Hit rate (HR) A “hit” sequence indicates the in-situ removal
of its target motif (in-situ removal = “genomic location-
specific removal”). In detail, we define “hit” as the target motif
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of a perturbed sequence that does not occur in the scanning
results of the Find Individual Motif Occurrences (FIMO) tool
(13), matched by the motif name, DNA strands, and genomic
coordinates; otherwise, it’s a “fail.” The hit rate of PERTi is
denoted as HRi:

HRi=
NHiti

Ni
, (1)

where NHiti is the number of “hit” sequences and Ni is the
total number of designed sequences in PERTi.

Perturbation rate (PR) A “perturbed” sequence indicates that
all motifs that match the target motif ID are removed within
the designed genomic region. In detail, we define a sequence
as “perturbed” if the name of the target motif occurs in its
FIMO scanning results, regardless of its genomic position.
Then, the perturbation rate of PERTi is formulated as:

PRi=
NPerturbedi

Ni
, (2)

where NPerturbedi is the number of “perturbed” sequences
and Ni is the total number of designed sequences in PERTi.

Perturbation specificity (PS) To assess how many WT
motifs are impacted by the perturbation, we introduce the
“perturbation specificity” metric. For the designed sequence
j of PERTi, its perturbation specificity is formulated as:

PSij=
Msurvivedij

MWTij

, (3)

where MWTij
is the number of motifs that overlap with the

target motif in the corresponding WT sequence of designed
sequence j of PERTi, and Msurvivedij is the occurrence of
wild-type motifs that are still present within the designed
sequence j of PERTi. Both MWTij

and Msurvivedij are
obtained from FIMO scanning results.

Newly introduced target motifs per sequence (NTM) Since the
perturbation process alters the orders of nucleotides, some of
the newly introduced motifs may be identical to the target
motifs. To assess such impact of the perturbation methods,
we calculated and compared the “number of newly introduced
target motifs per sequence” among the three perturbation
methods. For PERTi , its “newly introduced target motifs per
sequence” metric is formulated as:

NTMi=
qi
Ni
, (4)

where qi is the number of newly introduced motifs that are
identical to the target motif IDs in PERTi , and Ni is the total
number of designed sequences in PERTi .

General alteration in the number of motifs To assess the
non-specific impacts of the perturbation, we obtained and
compared these indices among the three perturbation methods:

1. The number of gained motifs

2. The number of lost motifs

3. The net change in the number of motifs

Consistency analysis of MPRA outputs The MPRA outputs
consist of two parts: the multi-labeled FRS identities and the
numerical regulatory effects. To analyze the consistency of
FRS identities, we counted the number of overlapped and
unique activatorsregressors that are specific to their genomic
coordinates and DNA strands across three perturbation
methods. And the results are visualized by an UpSet plot
(14). As for the agreement in numerical regulatory effects, we
tested the correlation of Log2FCs between any two of the three
perturbation methods using three correlation tests: Pearson r
correlation, Spearman’s rank correlation, and Kendall’s rank
correlation test.

Features extraction for designed sequences
The features are a major determinant of the performance of
predictive models (15, 16). The features used in this work can
be grouped into two main categories: sequence-based features
and time-specific features.

Group A: sequence-based features Since this group of
features is based on the nucleotide sequences, each assayed
sequence, either WT or perturbed, has its own set of features:

• DNA 5-mer frequencies: 1,024 features indicating the
counts of all possible nucleotide 5-mers.

• #5-mers: a single feature summarizing the number of
distinct 5-mers.

• DeepBind scores: 515 predicted scores of all pre-trained
DeepBind models for transcription factor (TF) binding
(17).

• #DeepBind-top: a single feature summarizing the
number of models above the 90th percentile across all
the DeepBind models for TF binding (17).

• DeepSEA scores: 21,907 chromatin profiles
(transcription factor, histone marks, and chromatin
accessibility profiles across a wide range of cell types)
from the underlying DeepSEA learning model (16).

• #DeepSea-top: a single feature summarizing the number
of chromatin profiles above the 90th percentile across
all the DeepSEA profiles (16).

• DNA shape metrics: 13 predicted DNA shape features,
which are: helix twist (HelT), Rise, Roll, Shift, Slide,
Tilt, Buckle, Opening, propeller twist (ProT), Shear,
Stagger, Stretch, and minor groove width (MGW) (18,
19).
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• Max polyA/polyT lengths: two features indicating the
length of the longest polyA and polyT subsequences,
respectively.

• #ENCODE/CIS-BP motifs: 4,706 features, showing the
number of significant DNA-binding ENCODE/CIS-BP
(20, 21, 22) motifs from simple DNA-binding motif
scoring using the Find Individual Motif Occurrences
(FIMO) tool (13).

• ENCODE/CIS-BP motif summaries: four features
indicating the number of motifs, and the maximum
number of ENCODE/CIS-BP motifs within a 20 bp
window in the sequence, as determined by FIMO
scanning algorithm (13, 21, 22).

• #TF family: fourteen features indicating the frequency
of major TF families based on the FIMO results of
ENCODE/CIS-BP scannings, which are: Basic Domain
Group, Beta-Scaffold Factors, Helix-turn-helix, Other
Alpha-Helix Group, Unclassified Structure, and Zinc-
Coordinating Group (23).

For each perturbed sequence, we subtract its sequence-
specific features from that of its WT equivalent. Additionally,
we calculate the Levenshtein similarity scores between the
perturbed sequences and their respective correspondent WT
sequences (24, 25). In total, 28,189 features are yielded from
group A.

These differences in features (denoted as ∆“[feature
name]”, e.g., ∆#5-mers), along with the Levenshtein
similarity scores, are then subject to the feature normalization
process (see Section “Feature normalization”).

Group B: time-specific features The time-specific features
used in this study are the experimental read-outs of WT
sequences (10). These features include the signals of three
genomic assays at seven time points (0, 3, 6, 12, 24, 48, and
72 hours):

• ATAC-seq: the normalized number of reads using
DESeq2 (26) from an overlapping ATAC-seq peaks
within the designed genomic region

• H3K27ac ChIP-seq, the normalized number of reads
using DESeq2 (26) from an overlapping H3K27ac
peaks within the designed genomic region

• RNA-seq: mRNA expression of the nearest gene to the
designed region

In total, three features are yielded from group B. For each
perturbed sequence, we use the time-specific feature of its
corresponding WT sequence as its feature to fit prediction
models.

Feature normalization
Performing principal component analysis (PCA) is a common
technique to reduce the number of features in high-
dimensional data to avoid over-fitting and improve the
generalization performance of machine learning models. In
this case, PCA was applied to the large number of group A
features (28,189) to reduce them into a smaller set of principal

components (PCs) that capture the maximum amount of
variability in the data. By selecting the number of PCs such
that they explain at least 99% of the variance in the data, the
most important information in the original features is retained
while reducing their dimensionality.

In this study, we employed PCA to transform the 28,189
group A features into 1,500 PCs for each perturbation method.
Together with the time-specific features of group 2, a total of
1,503 features were used as input for subsequent prediction
tasks. This approach helps to prevent over-fitting and improves
the accuracy of the machine learning models.

Calculation of the feature importance scores
We first defined the importance score I of feature i as
the largest loading score of feature i across 1,500 PCs.
In particular, from the PCA step, we obtain a matrix L
to denote the loadings matrix that explains the correlations
between the original features and the PCs. L is a 28,189×
1,500 matrix with rows representing features and columns
representing 1,500 PCs. For feature i, its loading score on
the jth dimension is denoted as Lij . We then define the
importance score I of the feature i as its largest loading score
across the 1,500 PCs:

Ii=max{Li1,Li2,...,Lij},j∈{1,...,1500} (5)

Gene ontology analysis
We conducted the Gene ontology (GO) over-representation
analysis using the genes corresponding to the top 2,500
important TF binding features. The results were determined
using the R package ClusterProfiler (27). The significance of
GO terms was defined as an FDR-adjusted p < 0.05.

Model training
Classification models We utilized six classification models to
predict the FRS identity of perturbed sequences:

1. SGD: linear SVM classifiers with stochastic gradient
descent (SGD) training (28)

2. SVC: C-Support vector classifiers (29)

3. KNN: classifiers based on k-nearest neighbors voting
(30)

4. ET: ExtraTrees classifiers (31)

5. HGB: histogram-based gradient boosting classifiers
(32)

6. MLP: multilayer perceptron classifiers (33)

All classifiers were run with the default settings of the
scikit-learn package (34). The 1,503 normalized feature values
were used as input. To generate target values, the FRS identity
labels at seven time points were concatenated and stacked into
a single variable.
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Regression models

1. SGD: SGD: linear regressors fitted by minimizing a
regularized empirical loss with SGD training (28)

2. SVC: SVR: Epsilon-Support vector regressors (29)

3. KNN: regressors based on k-nearest neighbors voting
(30)

4. ET: ExtraTrees regressors (31)

5. HGB: histogram-based gradient boosting regressors
(32)

6. MLP: multilayer perceptron regressors (33)

All regressors were run with the default settings of the
scikit-learn package (34). The 1,503 normalized feature values
were used as input. The Log2FCs at seven time points were
concatenated and stacked into a single variable, and regarded
as target values.

The randomized 10-fold cross-validation test
We performed 10-fold cross-validation tests to evaluate the
performances of different models. A 10-fold cross-validation
test was chosen as it provides a good balance between
minimizing bias and reducing variance. In detail, the dataset is
randomly partitioned into ten subsets, with one subset utilized
as the testing dataset and the other nine together as the training
data set. This procedure was conducted 10 times, with each
subset being used once as a testing dataset to generate ten
models. The average performance of these ten models was
used to evaluate the performance of the different models.

To ensure a fair and objective comparison among the
models, we strictly implemented their algorithms and
optimized parameters to build models on the same training
dataset and subsequently benchmark their performance on the
independent test datasets.

Model performance measures
The performance of classification models is evaluated using
the area under the receiver-operating characteristic curve
(AUROC). For the regression models, we evaluated their
performance using three correlation tests: Pearson, Spearman,
and Kendall. Specifically, we tested the correlation between
the predicted Log2FC values and the observed Log2FC values
for each fold.

Statistical tests
For the motif-based profile metrics, the Kruskal–Wallis one-
way analysis of variance and post-hoc pairwise Dunn’s
multiple comparisons test were used to identify statistically
significant differences in continuous variables, including the
perturbation specificity and the number of gained/lost motifs.
Moreover, the pairwise Fisher’s exact test was conducted to
compare the count data, including hit and perturbation rates.
The pairwise exact binomial test was performed to compare
newly introduced target motifs per sequence (NTM).

For the consistency analyses, the correlation of Log2FCs
was indicated by three correlation coefficients: Pearson’s r,

Spearman’s ρ, and Kendall’s τ coefficient. The P values
of correlation tests were subsequently adjusted for multiple
comparisons at seven different time points by the Benjamini-
Hochberg method.

For the performance evaluation of prediction models, we
performed pairwise Wilcoxon rank sum tests on the AUROC
and correlation coefficients. For all pairwise tests, a threshold
of 0.05 was applied to the P values adjusted by the Benjamini-
Hochberg method. And an α level was considered 0.05 for all
statistical tests in this study.

RESULTS

To evaluate the three perturbation methods, we first defined
five motif-based metrics: 1) hit rate, representing the rate
of in-situ motif perturbation, defined as the proportion of
designed sequences that successfully eliminate the target
motif at the target genomic locale, 2) perturbation rate,
which represents the rate of both ex-situ and in-situ motif
perturbation and is defined as the proportion of designed
sequences that eliminate all the motifs that match the
target motif ID within the 171-nucleotide genomic region,
3) perturbation specificity, indicating the global impact of
perturbation on all the motifs that lie within the perturbed
sequence, and is defined as the proportion of WT motifs
that are still found in the perturbation sequence, 4) newly
introduced target motifs per sequence, which reflects the
occurrence of gained motifs that are identical to the target
motif ID, and is calculated by dividing the total number
of such gained motifs by the total number of perturbation
sequences, 5) non-specific changes in the number of motifs,
which include the number of gained, lost motifs, as well as the
net change in the number of motifs within the perturbation
sequence. We then assess the differences in these metrics
across the three perturbation methods (Figure 1, part I).
Next, we assess the important features representing variability
among all perturbation methods (Figure 1, part II). Third, we
compare the consistency of MPRA outputs (Figure 1, part III).
Finally, to evaluate the generalizability in referencing the non-
coding regulatory activity of the three perturbation methods,
we compare how different prediction models perform across
the three perturbation methods (Figure 1, part IV).

All perturbation methods achieve high in-situ hit rates
The basic goal of a motif perturbation is to remove the
target motif at the target genomic location. To assess how
well each perturbation method is in reaching this goal, we
computationally identified the occurrences of the motifs in
perturbed sequences, by using the FIMO tool 13 scanning
results and matching the motif names, DNA strands, and
genomic coordinates (Section “Methods”).

If a perturbed sequence yields a “non-occurrent” result,
it is defined as a “hit” indicating a successful perturbation,
otherwise a “fail” (Section “Methods”; Figure 2A). We
then calculated and compared the proportion of hit and fail
sequences for each perturbation method (equation 1). The
hit rates of PERT1 and PERT2 are similar (HR1=98%,
HR2=99%), and both are significantly higher than that of
PERT3 (HR3=98%, pairwise Fisher’s exact test, PERT1
vs. PERT2, P =1.00; PERT1 vs. PERT3, P =1.42×10−3;
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MPRA experimentsThree sequence designing approaches
· · · GGATTTGTAAAGATAAGCACAGGCCC  · · ·
· · · GGATTTGTACTAAAGAATACAGGCCC  · · ·
· · · GGATTTGTCGAGCATCTTACAGGCCC  · · ·
· · · GGATTTGTCGTGAAAAAAACAGGCCC · · · 
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III.  Consistency analyses
1. Number of shared FRS identities
2. Correlation test of Log2FC
3. Evaluation of systematic biases of Log2FC

plasmid library 
construction

IV.  Fitting models to predict MPRA outputs

Motif scanning algorithms

1. Classifiers (for predicting FRS): SGD classifiers, SVM classifiers, KNN 
classifiers,  ExtraTrees classifiers, HistGradientBoosting classifiers, 
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2. Regressors (for predicting Log2FC): SGD regressors,SVM regressors, 
KNN regressors, ExtraTrees regressors, HistGradientBoosting 
regresors, MLP regressors

Figure 1. An outline of the framework for evaluation of perturbation-bases massively parallel assays technique. In the “Three sequence designing approaches”
box, we used the “GATA known9” motif as an example. In detail, the GATA motifs are a group of sequences conforming to the consensus WGATAR (W = A or
T and R = A or G) (marked by the wavy underline), that can be recognized and bound by GATAbinding transcription factors (35).

PERT2 vs. PERT3, P =1.42×10−3). Still, all three PERTs
exhibit high hit rates of over 98% (Figure 2B).

The non-location-specific perturbation rate of PERT3 is
the lowest
Apart from the basic goal, one of the advanced goals of motif
perturbation is to reduce the regulatory activity of the target
motif to the baseline, that is, to eliminate all the motifs that
are identical to the target motif ID within the 171-nucleotide
genomic region of perturbation sequence. Hence, we further
quantified the occurrence of the target motif in each “hit”
sequence using the FIMO scanning results, by matching only
the motif name and not its location. Sequences were defined as
“perturbed” if no designed target motif was found within their
genomic region, and the perturbation rate was then calculated
as the proportion of ‘perturbed’ sequences (Figure 2C). In
simple words, this metric indicates the rate of both ex-situ

and in-situ motif perturbation, that is not specific to the target
genomic location (Section “Methods”, equation 2).

Comparing the perturbation rate of the three PERTs, we
found that PERT1 and PERT2 possess similar perturbation
rates of over 80%. Although the perturbation rate of PERT3 is
significantly lower than those of the other two , it is still as high
as 79% (Figure 2D, PR1=84%, PR2=83%, PR3=79%;
pairwise Fisher’s exact test, PERT1 vs. PERT2, P =0.649;
PERT1 vs. PERT3, P =8.79×10−5; PERT2 vs. PERT3, P =
4.58×10−4). These results indicate that the strategic design
of perturbation sequences (PERT1 and PERT2), instead of
simply shuffling the nucleotide sequences (PERT3), leads
to a higher chance of perturbing non-location-specific target
motifs within genomic regions.
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Figure 2. Evaluations of perturbation-wise metrics. (A) Toy examples of “hit” and “fail” sequences. (B) A comparison of hit rates among three perturbation
methods. (C) Toy examples of “perturbed” and “non-perturbed” sequences. (D) A comparison of perturbation rates among three perturbation methods.

Perturbation specificity are similar among three methods
Another advanced goal of motif perturbation is to keep the
impact on the overall motifs as low as possible: since the
perturbation process essentially alters the DNA sequence
within a certain range of the genome, the motifs that overlap
with the target motifs are likely to be affected. To assess
such a global impact of the perturbation on all the motifs
that lie within the perturbation sequence, we introduced the
perturbation specificity metric. It is defined as “the proportion
of WT motifs that are still present within the genomic region
after perturbation” (Section “Methods”, equation 3, Figure 3).

Comparing the perturbation specificity among three PERTs,
we found that all three perturbation methods vastly affect the
WT motifs. Namely, only 10% of the overlapping WT motifs
“survived” the perturbation processes. Specifically, PERT3
has the highest perturbation specificity, which implies that
randomly shuffling nucleotides exerts the least overall impact
within the genomic regions of perturbed sequences (Figure
3B, PS1=7%, PS2=7%, PS3=11%; pairwise Dunn’s test,

PERT1 vs. PERT2, P =5.73×10−3; PERT1 vs. PERT3, P =
8.95×10−27; PERT2 vs. PERT3, P =1.14×10−15).

On the other hand, another advanced goal is to avoid
“creating” target motifs in the perturbation sequences. To this
end, we sought to investigate which perturbation approach
introduces the highest number of new motifs that are
identical to the target motif ID. We defined the newly
introduced target motifs per sequence metric, which is
calculated by dividing the total number of “newly introduced
target motifs” by the total number of sequences for each
perturbation method (Section “Methods”, equation 4, Figure
3C). The highest metric is produced by PERT3, indicating
that shuffling the nucleotides increases the probability of
generating the same motifs as the target ones (Figure 3D,
NTM1=0.0043, NTM2=0.0085, NTM2=0.17; pairwise
exact binomial test, PERT1 vs. PERT2, P =0.122; PERT1
vs. PERT3, P =2.35×10−92; PERT2 vs. PERT3, P =1.73×
10−82).
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Figure 3. Evaluations of motif-based metrics. (A) An toy example of calculating perturbation specificity. (B) A comparison of perturbation specificity among
three perturbation methods. Significant P values (P < 0.05) are shown in red. (C) An toy of calculating “newly introduced target motifs per sequence”. (D) A
comparison of “newly introduced target motifs per sequence” among three perturbation methods.

All three perturbation approaches vary in motif gain/loss
To gain a better perturbation effect, the impacts that are non-
specific to the target motifs should also be minimized as much
as possible. To address such impacts, we evaluated the overall
motifs gained or lost across motif perturbation approaches
(Figure 4A), and found that PERT3 gains significantly
over 30 more motifs than PERT1 and PERT2 (Figure 4B,
PERT1∼=8.45, PERT2∼=10.63, PERT3∼=43,26;
pairwise Dunn’s test, PERT1 vs. PERT2, P =1.18×10−5;
PERT1 vs. PERT3, P =1.55×10−206; PERT2 vs. PERT3,
P =2.18×10−199). However, the number of motifs lost was
similar among the three methods (Figure 4C, PERT1∼=
101.12, PERT2∼=99.95, PERT3∼=90.73; pairwise
Dunn’s test, PERT1 vs. PERT2, P =0.771; PERT1 vs.
PERT3, P =0.0811; PERT2 vs. PERT3, P =0.109).

We also compared the net change in the number of
motifs for each perturbation approach. We observed that
PERT3 resulted in a significantly greater net change
compared to the other two approaches, whereas there was no
significant difference between PERT1 and PERT2 (Figure 4D,
PERT1∼=−92.72, PERT2∼=−89.38, PERT3∼=
−47.50; pairwise Dunn’s test, PERT1 vs. PERT2, P =0.232;

PERT1 vs. PERT3, P =3.63×10−69; PERT2 vs. PERT3,
P =1.58×10−60).

We then compared these non-specific metrics for the
non-motif perturbation sequences. We found similar results
to the motif perturbation group: PERT3 resulted in the most
motif gains (Figure 4E, PERT1∼=8.02,PERT2∼=
9.98,PERT3∼=29.35; pairwise Dunn’s test, PERT1 vs.
PERT2, P =0.451; PERT1 vs. PERT3, P =8.03×10−55;
PERT2 vs. PERT3, P =5.74×10−50), with no significant
difference in the number of lost motifs (Figure 4F,
PERT1∼=44.07,PERT2∼=43.56,PERT3∼=38.67).
In addition, the net change in the number of motifs of
PERT3 is negative but the highest (Figure 4G, PERT1∼=
−38.63,PERT2∼=−36.12,PERT3∼=−12.02; pairwise
Dunn’s test, PERT1 vs. PERT2, P =0.44; PERT1 vs. PERT3,
P =7.03×10−23; PERT2 vs. PERT3, P =8.26×10−20).
These findings further support that the differences in the
non-specific impacts are due to the perturbation method used.
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Figure 4. Evaluation of general alteration in the number of motifs. (A) Toy examples of calculating general alteration in the number of motifs. (B-D) The results
for motif perturbations: (B) the number of gained motifs, (B) the number of lost motifs, and (B) the net change in the number of motifs. Significant P values (P <
0.05) are shown in red. (E-G) The results for non-motif perturbations: (E) number of gained motifs, (F) number of lost motifs, and (G) net change in the number
of motifs. Significant P values (P < 0.05) are shown in red.

The three perturbation approaches share similar
important features, specifically neural developmental
features
We then set out to investigate which innate features represent
the variances among perturbation sequences, and whether
these features differ using different perturbation methods.
First, we queried the top 10% of the features ( 2,500) that
explain the variability among perturbed sequences (Section
“Methods”), and found that a majority of these features
(1,601) are shared by at least two perturbation methods
(Figure 5A). Notably, these features mainly fall into “the
change in the number of ENCODECIS-BP motifs” and “5-
mers frequencies” categories.

Further scrutiny of the top 30 features revealed a
substantially large overlap among the three perturbation
methods (Figure 5B). Since a majority of the shared
features are transcription factor (TF) binding motifs, we
conducted gene ontology analysis on the TFs corresponding
to the top 2,500 binding motifs. The analysis revealed
consistent enrichment of early embryonic development
ontologies, including neural development pathways among
three perturbation approaches (Figure 5C). These findings

suggest that the three perturbation approaches share important
features related to neural development.

The MPRA outputs are largely consistent across different
perturbations
After assessing the basic and advanced goals of perturbation
methods, we next evaluated the consistency of MPRA outputs
among three perturbation methods. The MPRA output consists
of two parts: the multi-class FRS identities, and the numeric
regulatory effect (Log2FC) at seven time points of neural
differentiation (Section “Methods”).

For the FRS identities, the activities of 419 functional
regulatory sites are consistent across three perturbation
methods, and 95% (399) of them are activators (Figure
6A). Additionally, 262 sites are consistent in any of the
two approaches but not the remaining one (Figure 6A). In
terms of the Log2FC, we found a high correlation among
all three perturbations across all the time points (Figure 6B-
D). However, we found that PERT2 yielded higher Log2FC
than the other two approaches (Supplementary Figure 1). This
indicates that using a perturbation approach where the same
sequence is being introduced, can cause a constant bias in the
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Figure 5. Assessment of the important features representing perturbation
sequences. (A) The number of important features shared by three perturbation
methods. (B) Top 30 important features of each perturbation method. The
names of features that are shared by at least two perturbation methods are
marked in bold. (C) Gene ontology enrichment analysis of the top 2500 genes
represented by the TF binding factors.

results (e.g., higher or lower Log2FC for PERT2 or PERT1
respectively).

Predictive models of MPRA activity perform the best in
PERT3
The perturbation MPRA technique, if designed appropriately,
has the potential to predict the activity of non-coding
regulatory genomic regions 15. Namely, it is feasible to
predict the regulatory activity of a motif by fitting predictive
models using the difference in the features between its
WT sequence and perturbation sequence. Consequently, this
leads to a critical question: which sequence design method
for motif perturbation could yield the best performance of
such prediction models? This suggests that by designing
the perturbation sequences, we may expand the applicability
of perturbation MPRA from experimentally identifying
regulatory motifs only within designed genomic regions to
computationally predicting regulatory elements throughout
the non-coding genome. In light of this, we further compared
the performances of three perturbation methods using the
supervised models as described in the Methods section.

Briefly, we use the difference of features between
perturbation sequences and their equivalent WT sequence
as the independent variables to fit both classification and

regression models. Next, we perform a 10-fold cross-
validation for each perturbation data. To benchmark the
performance of the models, we statistically compared the
AUROC for classifiers and the Pearson correlation coefficient
for regressors on the independent test data sets in each fold.

For the classification models that predict the measure
of motif FRS identities, we report the receiver-operating
characteristic curve (AUROC) of three perturbation
approaches (Figure 7). We found that three non-linear
models (ET, HGB, and MLP) exhibit high robustness in
predicting the FRS identities in the three perturbations.
Furthermore, using the results from ET models, we found
that PERT3 significantly outperforms PERT2 and PERT1,
and PERT1 significantly outperforms PERT2 (pairwise
Wilcoxon rank sum test, PERT1 vs. PERT2, P =5.58×10−5;
PERT1 vs. PERT3, P =3.24×10−5; PERT2 vs. PERT3,
P =3.24×10−5).

For the regression models that predict the quantitative
measure of motif regulatory effect, we report the Pearson
correlation coefficients for the three perturbation approaches
(Figure 8, Supplementary Figure 2, Supplementary Figure 3).
Similarly, the model-wise comparison shows the robustness of
the ET and HGB model, and PERT3 significantly outperforms
the other two methods, while PERT2 outperforms PERT1
(pairwise Wilcoxon rank sum tests, PERT1 vs. PERT2, P =
2.57×10−3; PERT1 vs. PERT3, P =3.89×10−5; PERT2 vs.
PERT3, P =3.89×10−5).

DISCUSSION

Comprehensively deciphering the regulatory activity of non-
coding loci is crucial to the understanding of gene expression
dynamics. Shedding light on this, the perturbation-based
MPRA technique has enabled the identification of regulatory
elements such as enhancers, promoters, and silencers (6, 9,
10). However, insufficient attention has been given to the
comprehensive evaluation of various perturbation approaches.
As a result, a gold standard of perturbation sequence design
strategies remains scant.

Motivated by this scarcity, we proposed a framework for
assessing different perturbation approaches, with the aim of
better identifying regulatory elements using the perturbation-
based MPRA technique. Further, we took advantage of a
publicly available data set, which contains the MPRA results
acquired from three perturbation approaches (PERT1, PERT2,
and PERT3), to conduct an all-inclusive characterization and
comparison of these approaches. In short, PERT1 and PERT2
replaced the target motifs with two different “non-motif”
sequences, and PERT3 simply shuffled the nucleotides of
target motifs.

Starting from the essential ideas of perturbation, which is
to eliminate the regulatory effects from target motif(s) within
a certain genomic region, we first defined five metrics for
assessing the impact from different perturbation approaches
(hit rate, perturbation rate, perturbation specificity, newly
introduced target motifs per sequence, and general alteration
in the number of motifs, see Section “Methods”). These
metrics allowed us to scrutinize the overall modification
of motif-based profiles within perturbation sequences from
different perspectives. Based on our findings, the three
approaches exhibit consistently high rates of removing the
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Figure 6. Consistency of MPRA outputs among three perturbations. (A) Number of sequences that share the same FRS identities. The bars are colored by
activators (red) and repressors (blue). In the “intersection type” matrix. The percentages are row-normalized, indicating the proportion of sequences belonging to
different intersection types within each perturbation method. (B) The correlation of Log2FC between motif PERT1 and motif PERT2. Each dot is a perturbation
sequence and is colored by the time point. (C) The correlation of Log2FC between motif PERT1 and motif PERT3. (D) The correlation of Log2FC between
motif PERT2 and motif PERT3.

target motifs at their targeted locations, which indicates
success in in-situ motif perturbation. Additionally, the
perturbation rate is kept high across the three perturbation
methods ( 80%), with PERT3 being the lowest ( 79%), while
not significantly different. This implies a further achievement
in both in-situ and ex-situ removal of target motifs of the
three methods. We note that PERT3 shows a higher probability
of introducing target-identical motifs. Despite these, PERT3
brings minimal alterations to the WT motifs within the
sequence region, implying that the perturbation specificity of
PERT3 is the highest. Moreover, PERT3 leads to the least non-
specific motif changes. So far, our observation suggests that
the selection of perturbation approaches is a trade-off: for the
researchers, it becomes a question of whether to sacrifice the
perturbation specificity to achieve a high perturbation rate, or
whether to pursue a higher specificity at the cost of a lower
perturbation rate.

The next part of our framework is the comparison of
MPRA outputs since they are crucial for inferring the activity
of target motifs. Particularly, MPRA outputs consist of
two parts: 1) the functional regulatory site (FRS) identities

that indicate whether the target motif is a non-functional,
repressing, or activating element, 2,) the numeric regulatory
effects (Log2FC) that quantify the FRS motifs. According
to our results, the FRS identities are largely consistent
and the Log2FC are highly correlated among all three
perturbations. Yet, we also observed a constant skew in the
results of PERT1 and PERT2, which indicates that inserting
repeated/fixed sequences across the assayed regions is likely
to introduce systematic biases in downstream results. The
results of this part demonstrated that PERT3 is less likely to
introduce systematic biases in MPRA outputs, albeit the high-
consistency and high-accuracy profiling for the regulatory
activity across all three perturbation methods.

The final part of the framework is to evaluate the
potential of perturbation-MPRA in predicting the regulatory
activity of non-coding motifs, since our previous works
have shown robustness in predicting the activity of putative
regulatory elements (15, 36). Specifically, by adequately
designing perturbation sequences, the MPRA outputs could be
computationally predicted by machine-learning models using
the biological features of designed sequences as predictor
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variables. This approach, in some cases, can efficiently
identify functional regulatory regions so as to reduce the time
and cost of wet lab experiments. Therefore, we developed
data-driven models to predict the regulatory activity of target
motifs by using the difference in over 28,000 predictive
features between perturbation and wild-type sequences.
Comparing the performance of models that are built upon the
three perturbation methods, we found that PERT3 significantly
outperforms the other two in both classification and regression
tasks. These findings further support the notion that using
a perturbation approach where the nucleotides are being
shuffled randomly, works generally better than a replacement
with a constant “non-motif” sequence approach.

In summary, we proposed a framework for the evaluation
of perturbation sequence design strategies for MPRA
experiments, and we utilized this framework to compare three
perturbation-based MPRA approaches. From a computational
perspective, this study is the first to comprehensively evaluate
the library design of the MPRA technique. From an
experimental perspective, our results provide deep insights
into understanding the impacts of motif perturbation in MPRA
experiments. Although it is challenging to offer strict guidance
in the absence of in-vivo ground truth, we recommend
designing sequences by randomly shuffling the nucleotides of
the perturbed site when possible.

We anticipate that our findings, together with the proposed
framework, will instill a new momentum for the non-coding
genomic studies using MPRA techniques, as well as inspire
the development of novel comprehensive computational
methods. Such efforts and studies will continually contribute
to improving our understanding of the functional effects of
non-coding regulatory elements.
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Wheeler, Rory Johnson, Jüri Reimand, Mark Gerstein, Ekta Khurana,
Peter J. Campbell, Núria López-Bigas, Joachim Weischenfeldt, Rameen
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Figure Supplementary Figure 1. Comparison of Log2FC among three perturbation methods.
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significant). (B) A summary of the mean ± standard deviation values for Spearman correlation coefficients of regression models.
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indicate levels of statistical significance, calculated by pairwise Wilcoxon rank sum tests (P-value < 0.05 *, < 0.01 **, < 0.001 ***, < 0.0001 ****; ns, non
significant). (B) A summary of the mean ± standard deviation values for Kendall correlation coefficients of regression models.
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