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Abstract 

We have developed the HybriSeq method for single-cell RNA profiling, which utilizes in situ 

hybridization of multiple probes for targeted transcripts, followed by split-pool barcoding and 

sequencing analysis of the probes. We have shown that HybriSeq can achieve high sensitivity 

for RNA detection with multiple probes and profile differential splicing. The utility of HybriSeq is 

demonstrated in characterizing cell-to-cell heterogeneities of a panel of 95 cell-cycle-related 

genes and the detection of misannotated transcripts.  

 

Introduction 

With its ability to profile individual transcriptomes of many cells, single-cell RNA sequencing 

(scRNAseq) has proven to be an invaluable tool in understanding cell-to-cell heterogeneity and 

gene regulatory networks in complex systems (1). Most scRNAseq methods capture 

polyadenylated RNA and then use reverse transcription to convert it into double-stranded DNA 

that is compatible with sequencing reactions (2). Although this approach can analyze mRNAs in 

an unbiased way, the typical detection efficiencies for individual RNA transcripts range between 

5-45% (3, 4, 5), largely caused by the inefficiency of the template-switching reaction during 

reverse transcription. These inefficiencies are particularly deleterious for detection of low copy 

number RNA and lead to drop out or noisy measurements making classification of subtle 

phenotypes difficult with few cells. (6).  

 

In contrast to the low detection efficiency in scRNAseq, single-molecule fluorescence in situ 

hybridization (smFISH) regularly achieves a detection efficiency close to 100% by utilizing 

multiple probes to probe the target RNA directly (7). Taking this concept, single-cell RNA 

profiling can also be achieved by sequencing multiple in situ hybridization probes for one given 

transcript to decrease the likelihood of a molecule going undetected and increase the 

measurement confidence. Indeed, several probe-based single-cell RNA profiling methods have 

been developed recently, such as HyPR-Seq (8), ProBac-seq (9), and 10X Genomics 

Chromium Flex protocol (10). Due to their probe-based nature, these methods are inherently 

targeted, allowing for efficient utilization of sequencing reads, and they are not limited to 

profiling polyadenylated RNA like many scRNAseq methods. On the other hand, they each have 

their unique limitations. For instance, their probe chemistry either requires complex oligo 

hybridization and ligation steps, leading to low probe detection efficiency and high background, 

or simply relies only on hybridization-based specificity, leading to low specificity. Additionally, all 

of them use microfluidic partitioning of single cells, which can limit the number of cells profiled 
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and require costly instrumentation. In contrast, highly scalable methods such as SPLiT-Seq (11) 

and Sci-Plex (12) can sequence millions of cells by utilizing combinatorial indexing. Combining a 

probe-based approach with combinatorial indexing can thus enable single-cell RNA profiling 

with both high sensitivity/efficiency and high throughput.   

 

In pursuit of this goal, we developed Hybridization of probes to RNA targets followed by 

Sequencing (HybriSeq). This method involves in situ hybridization of multiple split single-strand 

DNA (ssDNA) probes to one or many target RNAs in fixed and permeabilized cells (Fig. 1a), 

ligating these split probes hybridized to the RNA to ensure specificity (Fig. 1b), ligating a unique 

cell barcode to the hybridized probes via two rounds of split-pool barcoding followed by an 

indexed PCR (Fig. 1c), and sequencing the ligated probe-barcodes, This method can sensitively 

detect transcripts in a targeted fashion without the need for microfluidics. We demonstrate the 

utility of this method by profiling the cell-cell heterogeneity in an asynchronous immortalized cell 

line.  

 

Results 

Development and Validation of HybriSeq 

To establish a method for efficient hybridization and recovery of ssDNA probes to target RNAs 

with low nonspecific binding, we performed in situ hybridization in fixed and permeabilized 

HEK293 cells in suspension and quantified the efficiency and specificity of probe recovery by 

sequencing. We found that ssDNA probes have non-negligible nonspecific binding to the cells, 

which can contribute to background signal (Supplementary Fig. 1b). We tried to improve the 

specificity by releasing hybridized but not nonspecifically bound probes using RNAes H 

digestion of the cells (Supplementary Fig. 1c), but the signal/background ratio was still low even 

after optimizing hybridization conditions (Supplementary Figs. 1d-e) (see Supplementary Note 

1). Therefore, we adopted a method similar to LISH (13), splitting the probe into two parts and 

ligating hybridized pairs using SplintR ligase that acts on DNA-RNA hybrids (Figs. 1a-b). Bulk-

level qPCR measurements of ligated probes in cells showed that with ligation (Supplementary 

Fig. 2a), it is possible to saturate the probe signal from a high expression transcript 

(Supplementary Figs. 2b-c) and achieve a specificity > 99% (Supplementary Fig. 2b) (see 

Supplementary Note 1).  

 

To enable single-cell analysis, we adapted the split-pooling method (11) to uniquely label the 

probes in individual cells with cell-specific barcodes (see Supplementary Note 2). In 96-well 
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plates, hybridized and ligated probes are labeled with well-specific barcodes via ligation on the 

3’ end in two rounds of split and pool procedures followed by a third round of barcoding by PCR 

with well specific primers (Fig. 1c). Depending on the path a cell takes through this procedure, 

all the probes in that cell will have one of 884,736 possible unique cell barcodes (CBC), of which 

< 5% are utilized to avoid excessive CBC collision. Different from previous split-pooling 

methods, our main challenge is the mixing of barcodes between cells, which can arise from 

inefficient ligation before pooling, excess ligatable barcode oligos in subsequent ligation 

reactions, and priming of incompletely ligated species. We screened a variety of barcode 

ligation and washing/quenching conditions in bulk with qPCR. We found that long ligation times 

and high barcode oligo concentrations are needed for efficient barcode ligation (Supplementary 

Fig. 3b). Additionally, we found that quenching barcode oligos as opposed to blocking linker 

strands resulted in less barcode hopping and that washing away excess barcodes after each 

ligation step led to significantly less barcode hopping (Supplementary Figs. 3c-f).  

 

To investigate the performance of HybriSeq at the single-cell level, we designed a set of probes 

(5-6 probes per transcript) targeting mNeonGreen21-10 (mNG) and GFP1-10 (GFP) 

(Supplementary table S1) transcripts. Using human embryonic kidney 293 (HEK293) cells stably 

expressing either mNG or GFP at a variable range of expression levels (14) we profiled these 

transcripts with HybriSeq and sequenced libraries to a median per cell saturation of 74% (3990 

reads per cell) and observed a total of 691 cells (Supplementary Fig. 4a) (921 cells expected) 

and a median of 557 UMIs/cell (Unique Molecular Identifier). To determine the single-cell purity 

of HybriSeq, we performed a cell mixing experiment of the mNG and GFP cells in equal 

proportions. We observed that 2.6% of CBC contained multiple probes from both mNG and GFP 

suggesting a doublet rate of 5.2% (Fig. 1d) (from a 50/50 mix of cells, half of the doublets will 

arise from two cells with the same CBC). UMI counts per probe per cell for three highly 

expressed transcripts (Supplementary Table S2) were highly correlated between biological 

replicates with a Pearson’s R > 0.99 (Fig. 1e).  A median of 99.6% of reads for each CBC were 

specific to either mNG or GFP probes. These data suggest HybriSeq libraries have a high level 

of single-cell purity and reproducibility. This multiple rate is higher than the expected multiple 

rate of 2.45%. This is most likely due to cell clumping, ambient probes, or RNA leaking from 

cells. While nonzero this is lower than most droplet-based approaches. 

 

HybriSeq specificity arises from both the specific hybridization of ssDNA to transcripts and from 

the ligation of two adjacent probes hybridized. To evaluate the specificity of HybriSeq, we 
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examined reads in the library that contained left-probe and right-probe targeting regions not 

predicted to be adjacent to each other. We compared the amount of these nonspecific ligation 

events to the specific and correctly ligated events. mNG probes gave > 400,000-fold higher 

signal than nonspecific ligation events with a median of 302 UMIs per cell, and GFP probes 

gave > 1,000,000-fold higher signal than nonspecific ligation events with a median of 869 UMIs 

per cell. The average number of nonspecific UMIs per cell was 0.00023. This result suggests 

that HybriSeq is highly specific.  

 

Variability of Probe Detection Efficiency 

To characterize the variability of detection efficiency for probes designed using our method, we 

constructed a set of probes completely tiling 6 transcripts (tiling probes) with expression levels 

ranging from 15 to 165 Transcripts per Million (TPM) in HEK293 cells (Supplementary Fig. 5a, 

Supplementary Table 4). These transcripts are expected to only have one isoform expressed 

that does not have expected variation during the cell cycle, which is the main source of 

heterogeneity in a monoculture cell culture system. Our transcript tiling results reveal that the 

vast majority of probes targeting the same transcript have low variabilities in the average 

detected number of UMIs per cell (Fig. 2). For example, SCAF8, ARL5B, and MARVELD1 

showed a relatively uniform probe occupancy throughout the length of the transcript with few 

outliers (Figs. 2c-e). Surprisingly, for the two transcripts with high expression, we observed that 

continuous stretches of probes are underrepresented or hardly represented at all, despite the 

otherwise highly uniform probe representation (Fig. 2a-b). For EIF2S2 (ENSG00000125977) the 

3’ half of the transcript has very few UMIs associated (Fig. 2a). While not as extensive, this 

depletion is also seen in GHITM (ENSG00000165678) (Fig. 2b). This depletion cannot be 

explained by CG content nor probe specificity (Supplementary Fig. 5b-c). We confirmed that this 

underrepresentation of probes for parts of EIF2S2 and GHITM transcripts is not due to poor 

probe accessibility or detection efficiency issues by removing RNA from its in situ context. We 

performed In vitro bulk hybridization and ligation by extracting total RNA from HEK293 cells, 

treating RNA with proteinase K to remove protein, hybridizing tiling probes, and capturing RNA 

with Poly(dT) magnetic beads to enrich mRNA. To rule out cis/trans RNA secondary structures 

we included conditions in which deprotonated RNA was denatured in the presence of probes. 

We observed close to no representation of probes from the regions that were underrepresented 

in our single-cell experiments and little difference between native and denatured RNA 

(Supplementary Fig. 6a). We suspected that these segments of the RNA, which have relatively 

few probes associated with them, could be missing entirely. To determine if this was indeed the 
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case, we examined another dataset that captured full-length polyadenylated RNA sequences. 

To this end, we analyzed 15 long-read sequencing datasets (Supplementary Table 10) from the 

Long-read RNA-Seq Genome Annotation Assessment Project (15). We observe little 

representation of probe-depleted regions in all datasets (Supplementary Fig. 6b-c) and a high 

fraction of reads truncated before their annotated polyadenylation site (Supplementary Figs. 6b-

c), suggesting these transcripts may be misannotated in the reference transcriptome. These 

results demonstrate that HybriSeq has the potential to reveal intra-transcript biological 

variabilities, such as those resulting from alternative splicing.  

 

Linear Signal Amplification using Multiple Probes 

Having demonstrated that the probe-to-probe variability across the same transcript is low with 

HybriSeq, we reasoned that multiple probes for the same transcript act to linearly amplify the 

signal to enhance the signal-to-noise ratio (SNR). Thus, we created a simple mathematical 

model (Supplementary Fig. 7a) by approximating the detection of a specific transcript or probe 

as a binomial trial (exactly two possible outcomes: detected and not detected). In the case of a 

scRNAseq measurement, there is only one chance to capture a transcript (Supplementary Fig. 

7b), leading to potential “dropout” and excess noise caused by a single priming event. In this 

scenario, our model predicts that signal scales with the number of transcripts present and the 

efficiency of capture, the noise is proportional to the square root of the signal, and the SNR is 

also proportional to the square root of the signal (Supplementary Fig. 7a). Applying this model 

with the best detection efficiency reported of 45% and an SNR threshold of 2, the lowest 

number of RNAs reliably detected is 8. With the more typical detection efficiency of 10%, this 

number is closer to 40 RNAs/cell (Supplementary Fig. S7D). Now for the same model with a 

linear amplification factor as in HybriSeq (Supplementary Fig. 7c) and an average detection 

efficiency for a single probe of 20%, a similar or better lower limit of detection can theoretically 

be accomplished with > 2 probes (Supplementary Fig. 7d).  

 

To confirm our model’s predictions, we subsampled varying numbers of probes for each 

transcript from our tiling experiment and calculated the signal (UMIs/cell), noise (signal standard 

deviation), and SNR as a function of number of probes sampled. Our model predicts that for a 

given transcript number and capture efficiency, the number of UMIs/transcript will increase in a 

linear fashion with respect to the number of probes subsampled, the noise will fall off as 

1/square root of the number of probes subsampled, and the SNR will increase as a function of 

the square root of the number of probes subsampled (Supplementary Fig. 8a). We observed for 
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all probed transcripts that our simple model explains the trends in the signal, noise, and SNR 

(Supplementary Figs. 8b-g). For all but one of the transcripts tested (NEFH), we were able to 

achieve an SNR > 2 with fewer than 6 probes (Supplementary Figs. 8b-g). In fact, near single-

molecule/cell sensitivity can be achieved when > 20 probes are used (e.g. SCAF8 and ARL5B 

when summing up all probes (Supplementary Fig. 8a).  

 

Quantitative Accuracy of HybriSeq  

To demonstrate the profiling of a panel of RNAs using HybriSeq, we constructed a set of probes 

targeting 95 transcripts (2-4 probes per target) associated with the cell cycle (Supplementary 

Table S3). These transcripts range in bulk expected expression of 5-355 TPM in HEK293 cells 

(16). Using this set of probes, we performed HybriSeq for an asynchronous population of 

HEK293 cells. The resulting bulk expression values correlate well with published bulk RNA-Seq 

data (16). (r = 0.7) (Fig. 3a). UMI counts per cell for probes targeting the same transcript 

correlate well, with 72% of the same transcript probe pairs having a Pearson’s R > 0.8 

(Supplementary Fig. 4b). To determine the effect on measurement precision if fewer probes per 

transcript were used, we subsampled the number of probes used to calculate a Pearson 

correlation coefficient. As expected, the use of 3-4 probes per transcript was optimal, while less 

precise results were seen when 1-2 probes were sampled (Supplementary Fig. 4c) consistent 

with our model and tiling experiments.  

 

Probing cell-to-cell heterogeneities with HybriSeq  

A monoculture of proliferating cells will have cell-cell transcriptional heterogeneity due to the 

asynchronous progression through the cell cycle. To demonstrate the ability for HybriSeq to 

characterize such heterogeneities, we analyzed the HybriSeq data set which probes the 95 cell-

cycle-related transcripts. Dimensionality reduction was performed on the cell gene matrix and 

the resulting UMAP projection was clustered with the Leiden algorithm (Fig. 3b). The transcripts 

with the most variable expression used to define the Leiden clusters showed groupings of genes 

with similar expression profiles that are typically associated with a particular phase of the cell 

cycle (Fig. 3c). When transcripts are grouped together based on known association to one of 

the cell cycle phases, their scaled expression shows a clear transcriptional program (Fig. 3d). 

These results suggest that the Leiden clusters represent rough boundaries of cell cycle phases. 

Because clustering approaches like Leiden are less efficient in assigning a cell state along a 

continuous axis of variation, we also used an alternative approach by calculating a phase score 

for each cell based on known cell cycle associated genes (Fig. 3e). Based on the binned phase 
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scores, clustering the cells into three phases, G1, S, and G2M, shows a more biologically 

representative clustering than the Leiden clustering (Fig. 3f). The proportion of each cell type 

was similar to a previously published single-cell transcriptome analysis of HEK293 cells (17) 

when only genes with HybriSeq probes were considered (Supplementary Figs. 9a-b). 

Additionally, the expression distribution profiles of cell binned by phase score show a clearer 

trend compared to the subtle trend seen with Leiden clustering (Supplementary Fig. 10) and the 

pattern of co-expression in the scaled expression profile is much clearer when grouped by G1, 

S, G2M clusters (Fig. 3g). Notably, our HybriSeq results were obtained using an Illumina MiSeq 

V3 and substantially fewer reads than other whole transcriptome methods, demonstrating that 

HybriSeq is an affordable approach to targeted single-cell RNA profiling.  

 

Discussion 

Here, we present HybriSeq, a probe-based, microfluidics-free method to sensitively profile a set 

of targeted RNA in single cells. HybriSeq provides a unique set of advantages that overcome 

current limitations in scRNAseq approaches. First, by utilizing many probes per transcript, 

HybriSeq offers the ability to confidently detect low-expression transcripts by decreasing the 

measurement noise. Second, because of the targeted and scalable nature of probe-based split-

pool methods, HybriSeq can cost-effectively profile specific biology in many cells by only 

including probes for transcripts of interest, which greatly increases the efficiency of sequencing 

and reduces the cost. Finally, HybriSeq utilizes a split-pool approach to label cells with unique 

cell barcodes, which eliminates the need for microfluidic devices used in other probe-based 

single-cell RNA profiling methods (8,9,10). This feature allows for the use of cost-effective, off-

the-shelf reagents and a simple protocol that is accessible to most users. The unique features of 

HybriSeq unlock possibilities that were once unattainable with conventional scRNAseq 

methods. For example, HybriSeq could profile cell-cell heterogeneity in splicing patterns. The 

distinctive features of HybriSeq lie in its ability to accurately quantify RNA expression and intra-

transcript variation across diverse transcripts, facilitating the study of cellular transcriptional 

heterogeneity with heightened sensitivity and resolution. 

 

While powerful in its ability to sensitively detect RNA, the sensitivity of HybriSeq and other 

probe-based single-cell RNA profiling methods is limited by the length of the RNA molecule 

being measured, which restricts the total number of probe binding sites. This is the case for all 

in situ hybridization-based approaches and methods utilizing random priming or cDNA 

fragmentation. For short RNA targets, the number of probes able to hybridize to a transcript 
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could be small even with reduced probe length. A potential workaround to this problem is to use 

probes with partially overlapped hybridization target regions, as has been utilized in multiplexed 

FISH methods (7). Moreover, although probe-based methods are efficient in counting transcript 

copy numbers, they are not designed to sequence the RNA molecule itself, thus rendering it 

inappropriate for detecting RNA sequence variants or modifications. Last, a limitation of 

HybriSeq is that probe hybridization and cell barcoding require multiple rounds of washes as 

well as multiple ligation steps. Each of these steps is associated with inefficiency that 

contributes multiplicatively to decreased sensitivity. Increasing the probe number per transcript 

could, in some cases, compensate for these inefficiencies.  

 

Our transcript tiling results have shown low probe-to-probe variability for the vast majority of 

probes. For some transcripts, targeted probes showed lower abundance than those targeting 

the rest of the transcript, which we conclude is due to the absence of this region of the transcript 

and not lack of probe accessibility. Indeed, we confirmed that this absence of probe binding was 

due to unannotated alternative polyadenylation sites. While it is known that the UTR of 

transcripts can be highly structured and interact with regulatory proteins (18, 19, 20) we were 

not able to see this impact probe binding in the transcripts we tested. Considering that certain 

probes show higher cell-to-cell variabilities compared to other probes targeting the same 

transcript, this pattern of enrichment/depletion may indeed be indicative of underlying biology 

pertinent to gene expression regulation and cell-to-cell heterogeneity. In the case of transcripts 

with alternative splicing, such analysis can be performed by including probes for introns and 

across splicing junctions, showcasing the advantage of non-3’-biased detection in HybriSeq. 

Furthermore, investigation into this phenomenon will also yield useful insights into probe design 

for FISH-based spatial transcriptomic approaches, which rely on hybridization to make 

measurements.  

 

Methods 

HybriSeq Split probe design  

HybriSeq ssDNA probes are composed of five regions split into two probes as follows from 5’ to 

3’: 

1. (Left probe) 20 nt priming region which is a partial Illumina Nextara read 2 or a different 

universal priming region.  

2. (Left probe) 30 nt left probe targeting region. 
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3. (Right probe) 30 nt right probe targeting region. The first two bases are either A or T. 

SplintR ligase has higher efficiency when C or G are not in the first two bases of the 

ligation site.  

4. (Right probe) 8 nt random UMI sequence 

5. (Right probe) 20 nt round 1 ligation handle   

A probe design pipeline was adapted from Moffitt et al. (21). With minor changes. For 

calculating gene and isoform level specificity of probes our pipeline only considers the center 30 

nt of the targeting region (last 15 nt left probe + first 15 nt of right probe) and does not directly 

consider melting temperature as a parameter when selecting probes but considers CG content.  

 

Probes were obtained from IDT (Integrated DNA Technologies) in the 50 nmole oPools format 

or individually as single probes ordered as DNA oligos (Supplementary Tables S1, S2, S3, S4). 

Probes design and all analysis use human reference genome GRCh38. 

 

Right side probes were 5’ phosphorated with T4 Polynucleotide Kinase (New England Biolabs -

NEB ref M0201S). Probes were then column cleaned with ssDNA/RNA Clean & Concentrator 

(Zymo D7010) and quantified. Left-side probes were added at an equal molar concentration and 

used in hybridization.  

 

HEK293 Cell culture 

HEK293 cells were cultured in DMEM + 10% FBS & 1% Penicillin-Streptomycin. Cells were 

washed twice with 1x PBS, then detached by incubating 2-5 minutes at room temperature with 3 

mL of 0.25% Trypsin. Once cells were detached, they were added to 7 mL of media with 10% 

FBS. In cell mixing experiments, cells were combined at the desired concentrations at this step. 

 

Fixation 

Cells were centrifuged for 3 minutes at 500 g at 4 ºC. Cells were washed in 1 mL of 1X PBS. 

The cells were then passed through a 40 μm strainer into a 15 mL falcon tube and counted. 

Cells were centrifuged for 3 minutes at 500 g at 4ºC. Cells were resuspended in 0.5 mL/million 

cells of 4% freshly prepared formaldehyde solution in 1x PBS. Cells were fixed for 30 minutes at 

room temperature under gentle agitation. Cells were centrifuged for 3 minutes at 500 g at 4 ºC 

and washed 2 times in 1x PBS. The cells were then passed through a 40 μm strainer into a 15 

mL falcon tube and counted.  
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Hybridization & Ligation 

Cells were resuspended in Hybridization buffer (30% formamide, 1% BSA, 0.5% Tween 20, 2X 

SSC, 40U/ml RNasin) for 10 minutes at 37 ºC under gentle agitation. Cells were centrifuged for 

3 minutes at 500g at 4ºC. Cells were resuspended in a Hybridization buffer with probes at 

10nM/probe. Cells were incubated at 37 ºC for 18-24 h with gentle agitation. Cells were then 

washed in wash buffer (20% formamide, 0.5% Tween 20, 4X SSC, 40 U/mL RNasin) two times 

at 37 ºC for 5 minutes. Cells were washed in ligation buffer (1X T4 DNA Ligase Reaction Buffer 

(NEB ref B0202S), 0.4 mM ATP, 40 U/mL RNasin) and then resuspended in ligation buffer plus 

2 µM SplintR Ligase (NEB ref M0375S). Cells were incubated for 1h at 37 ºC with gentle 

agitation.  

 

RNA Isolation 

After cells were treated with Trypsin and detached from the plate cells were centrifuged for 3 

minutes at 500 g at 4 ºC. Cells were washed in 1 mL of 1X PBS. ~5 million cells were 

centrifuged for 3 minutes at 500 g at 4 ºC and total RNA was extracted with RNeasy Mini kit 

(Qiagen ref 74104) according to the manufacturer’s protocol. Total RNA was then treated with 

DNase I (NEB ref M0303L) by combining 10ug of total RNA in 1X DNase I reaction buffer (NEB 

ref M0303L) with 2 units of DNase I (NEB ref M0303S) and heating at 37 ºC for 15 minutes. 

DNA-depleted RNA was extracted with an RNeasy Mini kit (Qiagen ref 74104) according to the 

manufacturer’s protocol.  

 

In vitro Hybridization, Ligation, and mRNA Capture 

1ug of RNA was diluted in in vitro hybridization buffer (final concentration: 30% formamide, 2X 

SSC, 40U/ml RNasin) with probes (10nM/probe) to a total volume of 25ul. For the denatured 

condition, RNA was heated at 90 ºC for 5 minutes before being incubated at 37 ºC for 18-24 h. 

For the native condition, RNA was incubated at 37 ºC for 18-24 h. After hybridization, 0.2mg of 

Oligo d(T)25 Magnetic Beads (NEB ref S1419S) in 75ul of 20X SSC were added to the RNA. 

RNA was incubated at 37 ºC for 5 minutes before being cooled to 4 ºC at 0.1 ºC/second to 

anneal RNA to beads. Tubes containing the bead/RNA hybrids were placed against a strong 

magnet for 2 minutes until the solution was clear. Beads were washed two times in 20X SSC to 

remove unbound RNA, and wash solution was removed. 50ul of 1X DNA ligation buffer plus 2 

µM SplintR Ligase was added to the Bead/RNA hybrids and incubated for 1 hour at 37 ºC to 

ligate adjacent RNA-bound probes. 150ul of 20X SSC was added to the ligation mix and 

incubated for 5 minutes at 25 ºC. Tubes containing the bead/RNA hybrids were placed against a 
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strong magnet for 2 minutes until the solution was clear. Bead/RNA hybrids were resuspended 

in 1X RNase H buffer containing 5 units of RNase H (NEB ref M0297S) and incubated at for 1 

hour at 37 ºC to release probes into solution. Tubes containing the mixture were placed against 

a strong magnet for 2 minutes until the solution was clear, and the solution was collected for 

sequencing library preparation.  

 

Preparing Oligos for Ligations 

The first and second barcoding steps consist of a ligation reaction. Each round uses a different 

set of 96 well barcoding plates. Ligation rounds have a universal linker (Supplementary Table 

S5) strand with partial complementarity to a second strand containing the unique well-specific 

barcode sequence added to each well (Supplementary Table S6, S7). These strands were 

annealed together prior to barcoding to create a DNA molecule with three domains: a 15 nt 5’ 

overhang that is complementary to the 15 nt 3’ overhang present on the right-side probe, a well-

specific barcode sequence, and a 15 nt 3’ overhang complementary to the 5’ overhang present 

on the next barcode molecule to be subsequently ligated. For the second-round barcodes, the 3’ 

overhang acts as a universal priming region to which the third round well-specific primer can 

anneal and extend in a PCR. Barcode strands (IDT) for the ligation rounds are added to 96 well 

plates and their 5’ ends phosphorylated with T4 Polynucleotide Kinase (NEB ref M0201S).  After 

5’ phosphorylation, equal molar amounts of linker strand are added to each well making the final 

concertation 5.4 µM. Oligos for ligation are annealed by heating plates to 95 °C for 2 minutes 

and cooling down to 20 °C at a rate of –0.1 °C per second. For ligation reactions, 2.31 µL of 

barcode/linker oligos are added to 96 well plates to which cells can be added.  

 

Cell barcoding 

After probe ligation cells were counted and added to the ligase buffer (1X T4 DNA Ligase 

Reaction Buffer (NEB ref B0202S), 0.4 mM ATP, 40 U/mL RNasin, 0.5% Tween 20, 1% BSA, 

200,000 U/mL T4 ligase) so that the final volume was 1.1 mL at a 22,000 cells/mL. Cells were 

passed through a 40 μm strainer. 22.69 µL of cells in ligase buffer were added to each well of 

48 wells of a 96-well protein low bind plate, which had 2.31 µL of barcode 1 and linker 1 oligos 

already in each well. Cells were mixed by gently pipetting up and down. Plates were sealed and 

incubated at 25 ºC for 2 h. 2 µL of 62.5 µM quenching oligo 1 (Supplementary table S5) were 

added to each well and mixed by pipetting. Plates were sealed and incubated at 25 ºC for 30 

minutes. 25 µL of barcode wash buffer (50 mM EDTA, 0.5% Tween 20) was added to each well 

and incubated for 10 minutes. Cells from all 48 wells were pooled into a single 5ml low-bind 
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Eppendorf tube. Cells were centrifuged for 3 minutes at 500 g at 4 ºC. Cells were washed two 

times in barcode wash buffer (+5 µM quenching oligo 1) and then washed in ligase buffer (+5 

µM quenching oligo 1, -T4 ligase). Cells were resuspended in 1.1ml ligase buffer (+5 µM 

quenching oligo 1) and passed through a 40 μm strainer. 22.69 µL of cells in ligase buffer (+5 

µM quenching oligo 1) were added to each well of 48 wells of a 96-well protein low bind plate, 

which had 2.31 µL of barcode 2 and linker 2 oligos already in each well. Cells were mixed by 

gently pipetting up and down. Plates were sealed and incubated at 25 ºC for 2 h. 2 µL of 62.5 

µM quenching oligo 2 were added to each well and mixed by pipetting. Plates were sealed and 

incubated at 25 ºC for 30 minutes. 25 µL of barcode wash buffer was added to each well and 

incubated for 10 minutes. Cells from all 48 wells were pooled into a single 5ml low-bind 

Eppendorf tube. Cells were centrifuged for 3 minutes at 500 g at 4 ºC. Cells were washed two 

times in barcode wash buffer (+5 µM each of quenching oligo 1 & 2) and then resuspended in 

ice-cold 1x ThermoPol reaction buffer (NEB ref B9004S) cells were passed through a 40μm 

strainer and counted. Cell concentration was normalized to 23,000 cells/mL in a cold ThermoPol 

reaction buffer. 115 cells were dispensed into 8 wells of a strip tube. 20 µL of PCR solution (1x 

KAPA HiFi HotStart ReadyMix (final concentration) and forward primer) with well-specific round 

3 reverse primers (Supplementary Table S8) added to each well, so that the final concentration 

of each primer was 0.4 µM. PCR thermocycling was performed as follows: 95 °C for 30 sec, 

then 20 cycles at 95 °C for 30 seconds, 55 °C for 30 seconds, 72 °C for 30 seconds, followed by 

a final extension at 72 ºC for 30 seconds. 

 

Library Preparation for Sequencing, Single Cell 

Round 3 PCR reactions were centrifuged at full speed for 1 minute to pellet cells. All round 3 

PCR reaction solution was removed, pooled, and column purified with the Zymo DNA clean & 

concentrator kit (Zymo 11-305). Purified libraries were analyzed on an Agilent TapeStation 

Systems (D1000 kit) to check for the correct size. If the predominate band was the correct size 

(252 ± 2 bp or 232 ± 2 bp depending if the left probe included a partial read 2 sequence) and 

was < 90% of the library the purified PCR product was run on a 2% agarose (TBE) 

electrophoresis gel (200V 20 minutes) and the correct size band was cut out and extracted from 

the agarose with the Zymo Gel recovery kit (Zymo D4002). We observe that libraries that 

contained left probes containing the non-read 2 priming regions produced some nonspecific 

amplification requiring size selection purification. The purified pooled round 3 DNA product was 

placed into a final limited cycle PCR to add Illumina sequencing adaptors. The adapter addition 

PCR reaction was as follows: 0.5 ng DNA from pooled round 3 PCR product, 0.4 µM P7 forward 
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primer, 0.4 µM P5 reverse primer and 1X KAPA HiFi HotStart ReadyMix. PCR thermocycling 

was performed as follows: 95 °C for 30 sec, then 10 cycles at 95 °C for 30 seconds, 55 °C for 

30 seconds, 72 °C for 30 seconds, followed by a final extension at 72 ºC for 30 seconds. The 

PCR reaction was removed and purified with a 0.8X ratio of SPRI beads to generate an 

Illumina-compatible sequencing library.  

 

Library Preparation for Sequencing, Bulk 

For bulk in vitro experiments, 1ul of RNase H digestion product was loaded into a 25 µL 1x 

KAPA HiFi HotStart ReadyMix PCR reaction with 0.3 µM primers containing partial Illumina 

sequencing adapters. PCR thermocycling was performed as follows: 95 °C for 30 sec, then 15 

cycles at 95 °C for 30 seconds, 55 °C for 30 seconds, 72 °C for 30 seconds, followed by a final 

extension at 72 ºC for 30 seconds. 1ul of this unpurified PCR reaction was then added to a 

similar PCR reaction containing the primers for the addition of the full Illumina sequencing 

adaptors. PCR thermocycling was performed as follows: 95 °C for 30 sec, then 8 cycles at 95 

°C for 30 seconds, 55 °C for 30 seconds, 72 °C for 30 seconds, followed by a final extension at 

72 ºC for 30 seconds. The PCR reaction was removed and purified with a 1.3X ratio of SPRI 

beads to generate an Illumina-compatible sequencing library.  

 

Illumina Sequencing 

15 Pm libraries were sequenced on a MiSeq (Illumina) using a 150 nucleotide (nt) V3 kit in 

paired-end format. Read 1 (75 nt) covered the cell barcode and read 2 (75 nt) covered the 

probe and UMI. 

 

RNase H specificity  

After non-split probe hybridization and washing, cells were resuspended in RNase H reaction 

buffer containing 20 U/mL of RNase H enzyme (NEB M0297S). Cells were incubated for one 

hour at 37 °C with gentle agitation. Released probes were quantified with sequencing or qPCR. 

 

qPCR 

qPCR was performed on probes or barcoded probes (Supplementary table S9) released from 

cells via RNase H release or heat release. Cells and released probes were centrifuged to pellet 

cells and the supernatant was purified with spin columns and DNA was eluted in 20ul of water 

(Zymo ssDNA/RNA clean & concentrator). 1 µL of purified samples were loaded into each 20 µL 

reaction of a qPCR with 0.3 µM primers (Supplementary table S9) according to manufacturer’s 
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instructions using Maxima SYBR Green qPCR Master Mix (Thermo Fisher Ref K0222). 

Thermocycling and measurements were performed on a QuantStudio™ 5 System with the 

follows temperatures: 95 ºC for 60 seconds, 45 cycle of 95 ºC for 15 seconds and 60 ºC for 30 

seconds (1.6 ºC/second ramp rate) in which the fluorescence was recorded at the end of each 

cycle. QuantStudio™ Design and Analysis Software v1.4.1 was used to analyze fluorescence 

signal and calculate CT values. A standard curve was made by running a dilution series of the 

arget oligo (ordered from IDT), and the Ct values from this were used as the standard curve 

from which the concentrations of target oligos in the sample were determined. To measure the 

% ligated barcode in supplementary Fig. 3 the concentration of ligated species (right side probe 

+ barcode 1) was compared to the concentration of just the right-side probe present in the 

reaction.  

 

HybriSeq Computational Pipeline 

We constructed a pipeline to analyze HybriSeq data by taking raw sequencing reads and 

constructing a count matrix (counts per probe per cell). Briefly, we identify real barcodes, 

identify probe-targeting regions with correct ligation, remove duplicates using UMIs, and filter 

out reads not containing barcodes or probe-targeting regions. Detailed key steps were as 

follows: 

  

1. From the demultiplexed FASTQs generated by the Illumina analysis software, we filtered 

out reads not containing common regions contained in barcode one, two, and three in 

the correct location.  

2. To determine the unique barcode, a whitelist of each round of barcode sequences was 

constructed including barcodes within a hamming distance of two. With this list, barcode 

sequences for each round of split pool indexing were determined from read 1. From this, 

a unique cell barcode was constructed. Reads for which no barcode could be found 

were excluded.  

3. To determine the targeting region from read 2, a whitelist of each probe was constructed 

including probe sequences within a hamming distance of two. With this list, both left- and 

right-side probe targeting regions were determined. Reads containing targeting regions 

not predicted to be adjacent were excluded. From read 2 we also extracted the 8 bp 

simple UMI included on the right-side probe.  

4. We constructed a data frame of reads that included the unique cell barcode, probe 

targeting region, and simple 8bp UMI. We then collapsed duplicate reads by considering 
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a combined UMI which contained the 8bp simple UMI, the unique cell barcode, and the 

probe targeting region.  

5. We generate a count table of UMIs per probe per unique cell barcode or UMIs per 

transcript per unique cell barcode.  

6. To determine which unique cell barcodes were associated with real cells a threshold for 

UMIs/cell was calculated by taking 10% of the 99th percentile of the top set of unique cell 

barcodes equal to the number of expected cells and considering a doublet rate of ~5% 

or visually setting the threshold at the first knee of the cell rank - UMI plot. We note that 

when only considering lowly or highly variably expressed transcripts, the inclusion of 

probes targeting moderately and stably expressed transcripts can help set a threshold.  

7. The Scanpy library in Python was used for all standard single-cell analyses. 

 

Mixing/ Single-Cell Purity Experiment 

Two HEK293 cell lines, each containing a specific transcript (mNeonGreen21-10 (mNG) and 

GFP1-10 (GFP)) were subjected to the standard HybriSeq protocol. Probes targeting mNG and 

GFP (Supplementary Table S1) were added to the probe mixture during the hybridization step. 

At the PFA fixation step, equal concentrations of each cell line were mixed. 

 

Probe Tiling Analysis 

Each transcript was analyzed independently only considering probes targeting that transcript. 

Probe counts for each cell were normalized so that the total sum of all normalized counts in 

each cell was equal to the median UMIs/cell of the cell population. This was done to account for 

differences in expression levels between cells. The average relative counts were taken for each 

probe and plotted as a trace for all cells. The standard deviation was calculated for each probe. 

For bulk in vitro and in situ tiling experiments, each transcript was analyzed independently, only 

considering probes targeting that transcript. Probe counts were normalized so that the total sum 

of all normalized counts was equal to 200. The standard deviation was calculated for each 

probe from three independent experiments.  

 

Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Data Analysis 

15 datasets were selected from the LRGASP by querying untreated/unperturbed polyadenylated 

long-read human cell line RNA sequencing data generated using the Pacific Biosciences Sequel 

system, which was replicated and had sufficient sequencing depth (Supplementary Table S10). 

Binary Alignment Map (BAM) files, excluding unfiltered BAM files, were retrieved from ENCODE 
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(Supplementary table S10). Sequences that mapped to chr20: 34088309-34112243 (EIF2S2) 

and chr10:84139482-84154841 (GHITM) were extracted from BAM files using Samtools. For 

each annotated transcript sequence (EIF2S2: ENST00000374980.3, GHITM: 

ENST00000372134.6) a list of every 20bp subsequence was created. The number of 

occurrences of each 20bp subsequence in each sample’s extracted alignments was calculated 

for both transcripts separately and normalized to the total number of alignments in each dataset 

to generate the fraction of reads which contain each 20bp subsequence. Standard deviation 

was calculated across the 15 datasets.  

 

Measurement Variability Model and Simulation 

To model measurement noise associated with sampling a specific transcript in a cell we started 

off by making a few assumptions. 

 Sampling of a transcript in a cell can be modeled with a Poisson distribution.  

 The probability of capturing a transcript or probe is the same for all probes targeting the 

same transcript or priming events.   

 The background signal from random probe ligation is minimal and can be assumed to be 

negligible.  

 Probe binding a transcript does not influence different probes binding the same 

transcript.  

 Probes are hybridized at a saturating concentration.  

 The underlying cell-cell heterogeneity can be modeled as a constant value of standard 

deviation and is not dependent on the number of probes used.  

 All cells have the same efficiency of detection for the same transcript.   

To model single cell transcript measurement variability: 

Let N be the number of specific transcripts in a cell, n be the number of detection chances per 

transcript in a cell, e be the efficiency at which n is successfully detected, and C be the number 

of counts or UMIs for a specific transcript. If we assume that N is Poisson, the variability 

associated with counts C is equal to the mean of C and we define measurement noise as the 

standard deviation of the measurement C: 

                           𝐶  ൌ  ሺ𝑁ሻሺ𝑛ሻሺ𝑒ሻ,     𝑁𝑜𝑖𝑠𝑒஼  ൌ  𝜎 ൌ ඥሺ𝑁ሻሺ𝑛ሻሺ𝑒ሻ                 (1,2) 

Taking the ratio of the counts C to the noise associated with C we get the signal to noise ratio 

(SNR) 

𝑆𝑁𝑅  ൌ  ඥሺ𝑁ሻሺ𝑛ሻሺ𝑒ሻ                        (3) 
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For a population of cells, C will scale linearly with n. If we define expression, M, as C normalized 

to the number of probes used to make the measurement, expression is given by: 

𝑀  ൌ  
஼

௡
ൌ

ሺேሻሺ௘ሻሺ௡ሻ

௡
  ൌ  ሺ𝑁ሻሺ𝑒ሻ,     𝑁𝑜𝑖𝑠𝑒ெ  ൌ

ඥሺேሻሺ௡ሻሺ௘ሻ

௡
൅ 𝑏 ൌ  ට

ெ

௡
൅ 𝑏                (4,5) 

Here we assume that that the contribution to noise in the expression measurement from biology 

is independent of the number of probes used to make the measurements and can be defined as 

constant b.  

The expression SNR is then given by the ratio of M to Noise associated with M: 

                                   𝑆𝑁𝑅ெ  ൌ  
ெ

ටಾ
೙

ା௕
                           (6) 

For the simulations in fig 2 we experimentally determine M by taking the slope of the line fit to 

the UMI/cell – probe number plot. This slope is the number of counts you would expect to gain 

for each additional probe included in the analysis. 

We then non-linearly used least squares to fit the function for Noise of M to the standard 

deviation of M as a function of the number of probes used to make the measurement keeping M 

constant from the experimentally determined M and only fitting the model by optimizing b.  

 

Calculation of signal, standard deviation, and SNR for multiple probes 

Total probe counts for each cell were normalized so that the total sum of all normalized counts 

in each cell was equal to the total median UMIs/cell of the cell population. This was done to 

account for differences in expression levels between cells, as the goal is to gain an 

understanding of the measurement-associated variation and not necessarily the underlying 

inherent biological variation. To calculate the average signal or counts, for each number of 

probes considered (n), a random set of probes was chosen without replacement, and the 

number UMIs/cell was calculated along with a standard deviation for each n. To calculate the 

SNR, the ratio of average expression (UMIs/cell/n) to the standard deviation of expression was 

calculated for all n. This procedure was repeated 10,000 times, randomly sampling the set of 

probes used to make the measurement and the average and standard deviations of these 

calculations were plotted. 
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Figure Legends 

Fig. 1. Schematic and validation of HybriSeq.  a. Multiple split probes are designed per 

transcript of interest. b. Hybridization and ligation of split probes. c. Labeling probes with unique 

cell barcodes via the split-and-pool method. Rounds 1 and 2 barcodes are ligated, and round 3 

barcodes are added via PCR. d. Sequencing results of 1:1 mixed HEK293 cells stably 

expressing either mNG or GFP. E. Scatter plot of average HybriSeq UMIs/HEK293 cell in two 

independent biological replicates. Each dot represents a single probe for either GAPDH, 

RPL13A, or ACTB.    

 

Fig. 2. Intra-transcript Probing Variation. a-f. Relative probe counts for probes targeting the 

specific transcript with standard deviation across all cells plotted for each probe. Gray lines are 

traces for individual cells, and the blue line is the average for each probe across all cells. The 

means of average counts for all probes reported to the right with standard deviations. (*) For 

EIF2S2, only the first 11 out of 24 probes were considered in calculating the mean and standard 

deviation. For GHITM only the first 17 out of 20 probes were considered in calculating the mean 

and standard deviation. 

 

Fig. 3. Analyzing cell cycle-regulated transcripts using HybriSeq. a. Scatter plot of cell line 

matched bulk RNA-Seq TMP number and HybriSeq average UMIs/cell for 95 cell cycle 

associated genes. Each point represents a transcript measured. b. UMAP of cell cycle 

transcripts in HEK293 cells measured with HybriSeq colored by Leiden cluster. c. Heat map of 

scaled expression values for the top 6 differentially expressed genes for each cluster. d. Heat 

map of scaled expression values for gene grouped together by association with specific phases 

of the cell cycle and Leiden cluster. e. UMAP colored by the Phase score calculated from all 

genes. f. UMAP in e colored based on binned phase score into G1, S, G2-M. g. Heat map of 

scaled expression values for gene groped buy by association with specific phases of the cell 

cycle and binned phase score in f. 
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