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ABSTRACT  22 
Species within the genus Neisseria are especially adept at sharing adaptive allelic variation 23 
across species’ boundaries, with commensal species repeatedly transferring resistance to their 24 
pathogenic relative N. gonorrhoeae. However, resistance in commensal Neisseria is infrequently 25 
characterized at both the phenotypic and genotypic levels, limiting our ability to predict novel and 26 
potentially transferable resistance mechanisms that ultimately may become important clinically. 27 
Unique evolutionary starting places of each Neisseria species will have distinct genomic 28 
backgrounds, which may ultimately control the fate of evolving populations in response to 29 
selection, as epistatic and additive interactions may coerce lineages along divergent evolutionary 30 
trajectories. However alternatively, similar genetic content present across species due to shared 31 
ancestry may constrain the adaptive solutions that exist. Thus, identifying the paths to resistance 32 
across commensals may aid in characterizing the Neisseria resistome – or the reservoir of alleles 33 
within the genus, as well as its depth. Here, we use in vitro evolution of four commensal species 34 
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to investigate the potential for and repeatability of resistance evolution to two antimicrobials, the 35 
macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved 36 
elevated minimum inhibitory concentrations (MICs) to penicillin and azithromycin in 11/16 and 12/16 37 
cases respectively. Almost all cases of resistance emergence converged on mutations within 38 
ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection, and 39 
mtrRCDE or penA for penicillin selection; thus, supporting constrained adaptive solutions despite 40 
divergent evolutionary starting points across the genus for these particular drugs. However, 41 
continuing to explore the paths to resistance across different experimental conditions and 42 
genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will 43 
ultimately flesh out the full Neisseria resistome.  44 
 45 
INTRODUCTION 46 

The emergence of antibiotic resistance within bacterial populations is mediated by natural 47 
selection, whereby mutations encoding drug-protective mechanisms are produced stochastically, 48 
and subsequently increase in frequency as a result of only the cells harboring these mutations 49 
surviving exposure events. However, a key question for both understanding evolutionary process 50 
and also the enhancement of surveillance efforts is: how repeatable and predictable is resistance 51 
evolution at the genotypic level? Two alternate hypotheses can be advanced: (1) adaptive 52 
landscapes are constrained to one or few solutions (i.e., genotypic constraint), or (2) a multitude 53 
of fitness peaks exist created by many mutations imparting similar phenotypic outcomes. Many 54 
prior studies support some level of genotypic constraint on resistance evolution at the strain or 55 
species-level1–5, however less frequently has the repeatability of resistance evolution been 56 
interrogated across species’ boundaries. Applying selection across different genomic 57 
backgrounds at the species-level may lead us to predict a higher likelihood of divergent 58 
evolutionary outcomes, with different mutations giving rise to similar phenotypic resistance in 59 
different species. We may predict this given that the pre-existing suite of potentially additive and/or 60 
epistatically-interacting mutations already present in each species’ genomes will likely be unique 61 
as a result of both genetic drift since the time of lineage divergence and also niche-specific 62 
adaptation. However, if genotypic convergence is observed across species, this suggests 63 
constrained ranges of adaptive solutions between high-level taxonomic groupings (e.g., genera, 64 
families, etc.) due to their shared ancestral history and conserved genetic makeup. Here, we 65 
begin to interrogate this question: does genotypic constraint or divergence govern the emergence 66 
of resistance evolution within the genus Neisseria?  67 
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 The genus Neisseria is comprised of several Gram-negative, typically diplococcoid, 68 
oxidase-positive, and often catalase-positive species, which most frequently colonize the 69 
nasopharyngeal or oral niche in humans or animals6. Most human-associated Neisseria are 70 
carried harmlessly as commensals in 100% of healthy human adults and children, however N. 71 
gonorrhoeae and N. meningitidis are obligate and opportunistic pathogens respectively and are 72 
carried in a smaller percentage of the population (between 0.01-10%)7–11. Within the N. 73 
gonorrhoeae population, rates of resistance to multiple classes of antimicrobials are rising. For 74 
example, according to the latest Gonococcal Isolate Surveillance Project (GISP) report12 ~15% of 75 
surveyed isolates were resistance to penicillin, ~20% resistant to tetracycline, 33.2% to 76 
ciprofloxacin, 5.8% to azithromycin, and 0.3% to cefixime in the United States; and although 77 
resistance (≥ 0.25 μg/ml) was not observed in 2020 to ceftriaxone, isolates with reduced 78 
susceptibly have been identified in previous years (2017-2019) as a part of the GISP collection12. 79 
Additionally, surveillance studies in other countries have identified higher rates of circulating 80 
ceftriaxone resistance (e.g., 4.2% in Taiwan13, 16% in in Guangdong, China14); with recent 81 
observations indicating global dissemination (Japan, China, Europe, Australia, North America and 82 
Southeast Asia) of high-level ceftriaxone-resistant strains15–20. Though the genetic basis of some 83 
resistance phenotypes appears to be exclusively encoded by recurrently acquired mutations (i.e., 84 
ciprofloxacin resistance is almost always caused by amino acid substitutions in the DNA 85 
gyrase subunit A (GyrA S91F and D95G/D95A21,22)); the complete genetic bases of other 86 
resistance phenotypes is currently not fully described and/or is clearly imparted by multiple 87 
additive or epistatically-interacting loci (i.e., penicillin23–27 and azithromycin22,28 resistance). Thus, 88 
experimentally interrogating the paths to resistance and their repeatability will become an 89 
important component of both identifying novel contributing mutations, and understanding their 90 
potential prevalence and evolution within populations.  91 
 Studies on the paths to resistance within gonococci have previously been explored in vitro 92 
(e.g.,29–34). However, gonococci in addition to gaining resistance through de novo mutations, are 93 
also superbly adept at acquiring resistance from their close commensal relatives5,28,35–37. This 94 
allelic exchange across Neisseria species likely occurs in their shared colonization sites of the 95 
naso- and oropharyngeal niches38, with the whole genus often being referred to as a consortium 96 
with ‘fuzzy’ borders due to the high frequency of DNA donation through horizontal gene transfer 97 
(HGT)39–41. Commensal species thus serve as a bubbling cauldron of new adaptive solutions and 98 
reservoir of resistance for gonococci, with each species containing a unique genomic background 99 
in which novel resistance genotypes may emerge. Therefore, expanding the investigation on the 100 
repeatability of evolution to the entire genus may serve two important goals in the fight against 101 
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the spread of resistance in gonococci: 1) identifying resistance phenotypes for which a multitude 102 
of genotypic paths exist, either within distinct genomic contexts or across several, and 2) 103 
determining which drugs and/or drug classes have limited adaptive solutions within the genus. 104 
Both of these findings may guide the development of nucleic acid-based resistance tests (i.e. 105 
NAAT or WGS) for surveillance programs by defining the scope of mutations which must be 106 
surveyed. 107 

Here, we begin to interrogate the paths to resistance to two drugs with as-of-yet not fully 108 
identified genotypic bases within the pathogenic Neisseria. We use four different genomic 109 
contexts across the Neisseria genus (N. cinerea, N. subflava, N. elongata, and N. canis), and 110 
select for increasing minimum inhibitory concentrations (MICs) by passaging each species across 111 
selective gradients as previously described5. Though the scope of this initial and a prior study5 112 
have been limited (i.e., limited species and experimental replicates) we imagine that by continuing 113 
to ‘roll the evolutionary dice’ we will ultimately coalesce on the possible and quantity of paths to 114 
resistance, addressing the repeatability of evolution to different drug classes across the genus. 115 
Finally, both this and our previous study5 were conducted as part of exercises within 116 
undergraduate classrooms at the Rochester Institute of Technology, highlighting the power of 117 
experimental evolution in addressing fundamental questions impacting global public health, while 118 
also providing important experiential learning opportunities for students.  119 
 120 
RESULTS 121 
Rolling the dice: Evolving Neisseria commensals  122 
 Four Neisseria commensal species were selected as distinct evolutionary starting points 123 
for antibiotic selection (N. cinerea (AR-0944), N. subflava (AR-0953 and AR-0957), N. elongata 124 
(AR-0945), and N. canis (AR-0948)). All are human-associated commensals except for N. canis, 125 
which colonizes the oral cavity of dogs and cats, but has also been isolated from human patients 126 
with dog and cat bite wounds42–44. All isolates had been phenotyped for their minimum inhibitory 127 
concentrations (MICs) to penicillin and azithromycin (Table 1), and the majority sequenced 128 
previously45. One isolate, AR-0944, was sequenced as a part of this study (accession: 129 
SAMN37441995; length 2.13 Mbp, 131 contigs, N50= 250 kbp, GC content 50.78%).  130 
 For each species and drug combination, four replicate lineages were passaged with 131 
selection created by application of Etest strips on standard growth media as previously described5 132 
(Figure 1). Cells were passaged for 20 days, or ~480 generations, by sweeping the entire zone 133 
of inhibition (ZOI) and a 1 cm band surrounding the ZOI, and plating any collected cells on new 134 
selective growth media. For azithromycin, the average MICs of evolved N. cinerea (MIC=152 ± 135 
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120.79 μg/ml), N. canis (64 ± 36.95 μg/ml), and N. subflava (224 ± 64 μg/ml) lineages crossed 136 
the breakpoint of reduced susceptibility as defined by the Clinical and Laboratory Standards 137 
Institute (CLSI) guidelines for N. gonorrhoeae of ³ 2 μg/ml46. N. elongata lineages however did 138 

not surpass this breakpoint (0.69 ± 0.36 μg/ml). For penicillin, the average MICs for evolved 139 

lineages of all species surpassed the CLSI-defined breakpoint concentration of ³ 2 μg/ml46: N. 140 

cinerea (MIC=12 ± 0 μg/ml), N. elongata (6.75 ± 11.53 μg/ml), N. canis (5.44 ± 1.38 μg/ml), and 141 

N. subflava (3.69 ± 2.17 μg/ml). Control populations (n=3 per species) with no drug selection 142 
showed no significant increase in azithromycin or penicillin MICs compared to the ancestral stocks 143 
(Supplementary Table 1).  144 

 Final recorded MICs for azithromycin (92.17 ± 25.57 μg/ml) were significantly higher 145 

across all commensal species compared to the MICs for penicillin (4.45 ± 1.23 μg/ml) (W = 146 

38.5, P = 0.00073; Figure 2A). Azithromycin MIC fold-changes (4.39 ± 0.77) were also 147 

significantly higher than that of penicillin MICs (2.08 ± 0.65) across species (W = 74, P = 0.043; 148 

Figure 2B). The number of days for MICs to double for azithromycin (10.75 ± 1.34) compared to 149 

penicillin (9.07 ± 0.70) were not significantly different (W = 92.5, P = 0.41; Figure 2C); nor was 150 

the day the CLSI resistance breakpoint was passed at 9.0 ± 0 and 9.0 ± 0.45 respectively (W = 151 
18, p-value = 0.56; Figure 2D) – with species starting with above breakpoint values at the 152 
beginning of the experiment omitted for this last analysis. Between species for azithromycin, N. 153 
subflava and N. cinerea had significantly higher evolved MICs compared to N. elongata 154 
(Tukey’s HSD: p = 0.036; and p = 0.036 respectively; see also Figure 3A and Supplementary 155 
Table 1). There were no significant differences for final MICs between species for penicillin 156 
(Figure 3B). However, between species fold-change in MIC was significantly different for four 157 
contrasts for azithromycin (Tukey’s HSD: p < 0.05; Figure 3C) and three contrasts for penicillin 158 
(Tukey’s HSD: p < 0.01; Figure 3D). 159 
 160 
The frequency and identity of derived mutations 161 
 For each evolved lineage, a single colony was picked for further characterization and 162 
whole-genome sequencing (Supplementary Table 1). There were no significant differences 163 
between the number of derived mutations after the 20-day long experiment between drugs across 164 
all species, however each species and interaction between drugs and species (2-way ANOVA: p 165 
= 0.0008) had a significant and nearly significant (2-way ANOVA: p = 0.055) impact on the number 166 
of derived mutations respectively. N. elongata had significantly fewer derived mutations compared 167 
to N. canis (Tukey’s HSD: p = 0.02), N. cinerea (Tukey’s HSD: p = 0.0007), and N. subflava 168 
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(Tukey’s HSD: p = 0.004). When separated by drug class, for penicillin both N. canis and N. 169 
cinerea had significantly more derived mutations compared to N. elongata (Tukey’s HSD: p = 0.02 170 
and p = 0.059 respectively; Figure 4); and for azithromycin N. subflava had significantly more 171 
novel mutations compared to N. elongata (Tukey’s HSD: p = 0.045; Figure 4).   172 
 Mutations within coding domain sequences (CDSs) were identified for all evolved 173 
lineages, and after correcting for mutations also present in control lineages with no drug exposure, 174 
were considered candidates for imparting resistance (Figure 5). For azithromycin, all replicate 175 
lineages of N. subflava, N. canis, and N. cinerea evolved resistance, however none of the N. 176 
elongata strains did (Figure 1). The most frequent mutation occurring in N. subflava lineages was 177 
located within pilM. Additional mutations that emerged included those in fabH, mafB5, nadh, rplP, 178 
rplV, and rpmH. For N.canis, the most frequent mutations occurred in mtrR; followed by rplV, 179 
duf2169, mtrD, and pglB2. Finally, for N.cinerea, mutations emerged in glk, prmA, and rpmH. For 180 
penicillin, all replicate evolved lineages gained resistance except for one N. elongata strain and 181 
all N.subflava strains; however each of these lineages developed increased MICs compared to 182 
the ancestral strains, and had MICs ≥ 1 μg/ml. Mutations in N. subflava lineages which emerged 183 
includes those in mtrD and mtrR, tufA, and a murin transglycosylase. The most frequent mutations 184 
in N. canis includes those in the 16s and 23s rRNAs, followed by those in PNL71104_P2, gmhA, 185 
an HTH11-domain coding protein, a phage-associated protein, prfB, rpoA, and tRNA-fMet(cat). 186 
In N. elongata, derived mutations include those in mtrD, penA, ispE, and tgt. Finally in N. cinerea, 187 
mutations included those in penA, pilM, glk, pitA, ppx, rpoB, and slmA; along with some additional 188 
singleton mutations (Figure 5).  189 
 190 
DISCUSSION  191 
 Commensal Neisseria have repeatedly donated resistance alleles to their pathogenic 192 
relative N. gonorrhoeae28,35–37, and beyond doubt serve as a bubbling cauldron of new adaptive 193 
solutions to address ‘the antibiotic crisis’ that N. gonorrhoeae faces. However, we do not yet 194 
understand the full suite of resistance alleles that commensal Neisseria can carry, if the pool of 195 
mechanisms is large or small, and if the pool size varies by antibiotic. Here, we to role the 196 
evolutionary dice using antibiotic selection across divergent commensal Neisseria genomic 197 
contexts to begin to answer three important questions: 1) what are the identities of resistance 198 
mutations that can emerge in commensals, 2) are the paths to resistance evolution constrained 199 
or broad, and 3) do the answers to the two prior questions vary by drug class? 200 

Azithromycin is a macrolide antibiotic that inhibits protein synthesis by binding to the 23S 201 
rRNA component of the 50S ribosome. Mutations that impact the conformation or block the 202 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.26.559611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559611
http://creativecommons.org/licenses/by/4.0/


 7 

binding site of the drug have previously been described in N. gonorrhoeae to impart resistance 203 
and include: mutations in the 23S rRNA azithromycin binding sites (C2611T and A2059G)47,48, a 204 
G70D mutation in the RplD 50S ribosomal protein L449, rplV tandem duplications22, and variants 205 
of the rRNA methylase genes ermC and ermB50. Here, we also find a suite of variants that 206 
emerged post-selection within the CDSs encoding ribosomal proteins. For example, in both N. 207 
subflava and N. canis we uncovered mutations emerging in rplV encoding the 50S ribosomal 208 
protein L22; with 2/4 N. subflava lineages and 2/4 N. canis lineages evolving tandem duplications 209 
within this gene; previously predicted to block the azithromycin binding site22. In-frame insertions 210 
in rpmH, which encodes the 50S ribosomal L34 protein, were also frequent; and found within 2/2 211 
surviving N. cinerea and 2/4 N. subflava strains. N. cinerea strains both evolved distinct rpmH 212 
variants (18-bp variant: GATAAGTGCGTTTCATGA; 21-bp variant: 213 
GTTGATAAGTGCGTTTCATGA), while N. subflava strains evolved the same variant (24-bp 214 
variant: AAACGCACTTATCAACCTTCCGTT).  The N. cinerea rpmH variants were nearly 215 
identical to those previously described in N. elongata5 and N. gonorrhoeae30, which were found 216 
to be casual to high-level azithromycin resistance through transformation in N. elongata5, and 217 
thus are the likely mechanisms imparting high-level resistance in N. cinerea strains within this 218 
study. Interestingly the N. elongata strains evolved in this study did not evolve reduced 219 
azithromycin susceptibility (Figure 1; Table 1); however, in our prior work5, only 44% of replicate 220 
N. elongata lineages evolved resistance, and only 43% of these resistant isolates gained 221 
resistance through mutations in rpmH. With only 4 replicate N. elongata strains selected in this 222 
study we speculate that we did not have sufficient power to uncover these mutations. Finally, we 223 
find evidence for a duplication within the rplP gene encoding the 50S ribosomal protein L16 within 224 
a single N. subflava strain, however we find no difference in MICs between this strain which also 225 
harbors a rplV duplication and a second strain with just a rplV duplication, suggesting that the 226 
variant uncovered in rplP may not contribute to the elevated MICs observed. Manoharan-Basil et 227 
al. (2021)51 describe multiple recombination events in genes encoding ribosomal proteins across 228 
pathogenic and commensal Neisseria, supporting the possibility of transfer of these types of 229 
resistance mutations in natural Neisseria populations.  230 
 The Multiple transferable resistance efflux pump (Mtr) is a primary mechanism by which 231 
N. gonorrhoeae gains resistance to both azithromycin and penicillin. The Mtr efflux pump is 232 
comprised of the MtrC-MtrD-MtrE cell envelope proteins, which together export diverse 233 
hydrophobic antimicrobial agents such as antibiotics, nonionic detergents, antibacterial peptides, 234 
bile salts, and gonadal steroidal hormones from the cell52–55. Overexpression of the pump, through 235 
mutations that ablate or decrease the expression of the repressor of the pump (MtrR) have been 236 
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demonstrated to increase resistance to both azithromycin and penicillin22,26,56,57; and substitutions 237 
within the inner membrane component MtrD have been shown to decrease susceptibility to 238 
azithromycin28,36. Here, in response to azithromycin-based selection, all four experimental 239 
replicates of N. canis evolved mutations in MtrR: two with a G172D substitution, one A37V, and 240 
one insertion impacting the reading frame and resulting in a premature stop codon. 3/4 replicates 241 
of N. subflava evolved mtrR mutations in response to penicillin exposure which resulted in a T11I 242 
substitution in MtrR. MtrD mutations also emerged in response to penicillin-selection in N. 243 
subflava (L996I) and N. elongata (with all three strains carrying different mutations: V139G, F604I, 244 
or A1009T). Finally, a MtrD mutation also emerged in 1/4 N. canis strains after azithromycin 245 
selection E823K. Interestingly, this last E823K MtrD substitution was predicted to be the causal 246 
mutation imparting azithromycin resistance in mosaic commensal Neisseria alleles transferred to 247 
N. gonorrhoeae28,36.  248 
 β-lactams, such as penicillin, target the penicillin binding proteins and inhibit cell wall 249 
biosynthesis. Mutations in Penicillin-Binding Protein 2 (PBP2, encoded by penA) in particular 250 
have been well documented to impart elevated penicillin MICs in N. gonorrhoeae25,58, and also 251 
other β-lactams including the extended spectrum cephalosporin ceftriaxone, through both native 252 
gonococcal alleles59 and non-native alleles acquired from commensal Neisseria 22,37,58,60. These 253 
mutations act by lowering the affinity of the beta-lactam antibiotics for PBP2 and also by restricting 254 
the motions of PBP2 which are important for acylation by beta-lactams61. Therefore, 255 
unsurprisingly we observed multiple mutations emerge in penA, though only in two species: N. 256 
elongata and N. cinerea. 3/3 surviving N. elongata evolved lines had penA mutations emerge: 257 
P399S, V574E, and A581S; and all four experimental N. cinerea replicates evolved penA 258 
mutations encoding the amino acid substitutions: F518S, V548E, and A549E. 259 
 Additional derived mutations of note that emerged after selection include those in the RNA 260 
polymerase and components of the pilus. Here, after penicillin selection a rpoA mutation emerged 261 
in N. canis, and rpoB mutations emerged in N. cinerea. In N. gonorrhoeae, both RpoD (E98K and 262 
Δ92) and RpoB (R201H) mutations impact ceftriaxone susceptibility, likely through increased 263 
expression of PBP1 and reduced expression of D,D-carboxypeptidase62. Here, the rpoA G147A 264 
nucleotide substitution in N. canis resulted in a silent change so does not likely contribute to 265 
elevated penicillin MICs; however, the evolved rpoB mutations did encode amino acid 266 
substitutions (E345A and P591S) in 2/4 N. cinerea replicate lineages. Finally, the pilus-associated 267 
mutations in PilM in N. cinerea in response to penicillin selection and PilQ in N. subflava in 268 
response to azithromycin likely impact drug diffusion across the outer membrane in some way 269 
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similar to gonococci63, however are not likely to be evolutionarily maintained in natural Neisseria 270 
populations due to the importance of the pilus in host-cell attachment64.  271 
 The aforementioned ribosomal, MtrRCDE, and PenA mechanisms seem to be the likely 272 
contributors to the emergence of reduced susceptibly in all of the Neisseria commensals 273 
investigated in this study for both penicillin and azithromycin-based selection (Figure 6). 274 
Therefore, despite 2/2 N. canis replicates evolving low-level penicillin resistance with as-of-yet 275 
unexplained genetic bases; with 19/21 cases of Neisseria evolution converging on known 276 
resistance mechanisms, we must accept a constrained range of adaptive solutions to antibiotic 277 
selection within the genus at this point. Remaining questions do exist however. For example: 278 
MICs varied greatly among experimental replicates of the same species, so what other modulating 279 
mutations emerged that impact resistance phenotype? Furthermore, here we only investigate 280 
coding-domain regions, thus important mutations in intergenic regions were likely missed (i.e., 281 
promoter region mutations). We also acknowledge that our small sample of strains and 282 
experimental replicates may have limited the pool of potential resistance mechanisms uncovered. 283 
For example, some mechanisms may be less frequently observed due to high fitness costs, 284 
necessitating the evolution of compensatory mutations. These types of mutations may therefore 285 
be missed in small-scale experimental studies. Finally, evolution does not occur in controlled 286 
laboratory environments, so what is the role of intergenus gene exchange in Neisseria resistance 287 
emergence? Can other genera transfer clinically relevant resistance mechanisms to the Neisseria 288 
(see Goytia & Wadsworth (2022)35 for a discussion on this possibility)? In summary, our current 289 
results highlight conserved paths to resistance within the Neisseria genus, though continued 290 
tosses of the evolutionary dice may ultimately paint a different picture.   291 
 292 
METHODS 293 
Bacterial strains and culturing 294 

Stocks of Neisseria were obtained from the Centers for Disease Control and Prevention 295 
(CDC) and Food and Drug Association’s (FDA) Antibiotic Resistance (AR) Isolate Bank 296 
“Neisseria species MALDI-TOF Verification panel”. Evolved strains included: AR-0944 (N. 297 
cinerea), AR-0945 (N. elongata), AR-0948 (N. canis), AR-0953 (N. subflava), and AR-0957 (N. 298 
subflava). Bacteria were cultivated for all subsequent protocols on GC agar base (Becton 299 
Dickinson Co., Franklin Lakes, NJ, USA) media plates containing 1% Kelloggs solution (GCP-K 300 
plates) for 18-24 hours at 37°C in a 5% CO2 atmosphere. Bacterial stocks were stored in trypticase 301 
soy broth (TSB) containing 50% glycerol at -80°C. 302 
 303 
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Experimental evolution and MIC testing 304 
Minimum inhibitory concentrations (MICs) were measured by Etest strips (bioMérieux, 305 

Durham, NC) on GCB-K plates according to the manufacturer specifications. In brief, cells from 306 
overnight plates were suspended in TSB to a 0.5 McFarland standard and inoculated onto GCB-307 
K plates. Etest strips were incubated on these plates for 18-24 hours at 37°C in a 5% CO2 308 
incubator. MICs were subsequently determined by reading the lowest concentration that inhibited 309 
growth of bacterial lawns.  310 

For each of the four Neisseria sp. used in the study, four replicates were passaged on 311 
GCB-K plates containing a selective gradient of either penicillin or azithromycin. Selective 312 
gradients were created using Etest strips as described above and previously5, and MICs were 313 
recorded each day. Cells to be passaged were collected from the entire zone of inhibition (ZOI) 314 
and a 1 cm region in the bacterial lawn surrounding the ZOI (Figure 1). Cells were suspended in 315 
TSB, and spread onto a new GCB-K plate containing a fresh Etest strip. Strains were exposed to 316 
azithromycin and penicillin for 20 days, or ~480 generations. Controls for each species were 317 
passaged on GCB-K plates as described above, however they did not contain any antibiotic. 318 
 319 
Genomic sequencing and comparative genomics 320 

DNA was isolated from cells using the PureLink Genomic DNA Mini kit (Thermo Fisher 321 
Corp., Waltham, MA), following lysis in TE buffer (10 mM Tris [pH 8.0], 10 mM EDTA) with 0.5 322 
mg/mL lysozyme and 3 mg/mL proteinase K (Sigma-Aldrich Corp., St. Louis, MO). Resultant 323 
genomic DNA was treated with RNase A and prepared for sequencing using the Nextera XT kit 324 
(Illumina Corp., San Diego, CA). Libraries were uniquely dual-indexed and pooled, and 325 
sequenced on the Illumina MiSeq platform at the Rochester Institute of Technology Genomics 326 
Core using V3 600 cycle cartridges (2x300bp). Sequencing quality of each paired-end read library 327 
was assessed using FastQC v0.11.965. Trimmomatic v0.3966 was used to trim adapter sequences, 328 
and remove bases with phred quality score < 15 over a 4 bp sliding window. Reads < 36 bp long, 329 
or those missing a mate, were also removed from subsequent analysis. Draft assemblies had 330 
been previously published for all strains45, except for N. cinerea AR-0944. This assembly was 331 
constructed using SPAdes v.3.14.167 and all assemblies were annotated with Bakta v.1.8.168. 332 
Assembly quality was assessed using QUAST (http://cab.cc.spbu.ru/quast/). Trimmed reads were 333 
mapped back to draft assemblies using Bowtie2 v.2.2.469 using the “end-to-end” and “very-334 
sensitive” options and Pilon v.1.1670 was used to call variant sites. Data analysis and 335 
visualizations were conducted in R71.  336 
 337 
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Data Availability 338 
All scripts and datasets are available on: https://github.com/wadsworthlab. Read libraries 339 

for the genomics datasets generated in this study can be accessed on the Sequence Read 340 
Archive for evolved strains can be access as a part of the BioProject PRJNA1018855. The 341 
assembly for AR-0944 has been deposited to GenBank (accession: SAMN37441995). 342 
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 356 
Figure Captions 357 
 358 
Figure 1. Azithromycin and penicillin-mediated selection of four species of commensal Neisseria. 359 
(A) Four species with distinct genetic backgrounds were selected as unique starting points for in 360 
vitro evolution to two antimicrobials. Each experimental replicate and species/drug combination 361 
can be envisioned as an independent “roll of the dice”, in which new derived mutations and 362 
evolutionary trajectories may emerge. In brief, 4 experimental replicates were passaged for each 363 
species and drug combination for 20 days (~480 generations) on selective gradients created with 364 
Etest strips. Cells for each passage were selected by sweeping the entire zone of inhibition (ZOI) 365 
and a 1 cm band in the bacterial lawn surrounding the ZOI. (B) Overall, after 20 days, evolved 366 
azithromycin minimum inhibitory concentrations (MICs) tended to be higher than of penicillin 367 
MICs; with species also differing in their evolutionary trajectories towards elevated MICs within a 368 
drug class.  369 
 370 
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Figure 2. Across all species, evolved azithromycin MICs were significantly elevated compared to 371 
penicillin MICs in both (A) their final values (p < 0.0001), and (B) their fold-increase from ancestral 372 
MICs (p < 0.01). The (C) time for MICs to double was not significantly different between drugs (p 373 
> 0.05), as was the number of days to surpass the breakpoint value as defined by CLSI guidelines 374 
for Neisseria gonorrhoeae (P >0.05).  375 
 376 
Figure 3. Evolved MICs and MIC log-fold change values separated by drug and species. (A) For 377 
azithromycin, N. subflava and N. cinerea had significantly higher MICs compared to N. elongata 378 
after selection (Tukey’s HSD: p = 0.036; and p = 0.036 respectively). (B) Species were not 379 
significantly different between any contrast for penicillin. However, between species fold-change 380 
in MIC after evolution was significantly different for (C) four contrasts for azithromycin (Tukey’s 381 
HSD: p < 0.05) and (D) three contrasts for penicillin (Tukey’s HSD: p < 0.01). 382 
 383 
Figure 4. The number of derived mutations after the 20-day long experiment for azithromycin and 384 
penicillin selected lines, as well as control lineages. For penicillin both N. canis and N. cinerea 385 
had significantly more derived mutations compared to N. elongata (Tukey’s HSD: p = 0.02 and p 386 
= 0.059 respectively); and for azithromycin N. subflava had significantly more derived mutations 387 
compared to N. elongata (Tukey’s HSD: p = 0.045).  388 
 389 
Figure 5. Identity of derived mutations in coding domain sequences (CDSs) for drug-selected 390 
lineages. The frequency of a mutations within a gene are displayed as a heatmap, with brighter 391 
blue coloration indicating more frequent occurrence of a mutation within a CDS in replicate 392 
evolved lineages for each species. 393 
 394 
Figure 6. Paths to resistance emergence across members of the Neisseria genus. For 395 
azithromycin selection, all species with evolved resistance converged on mutations within 396 
ribosome components or the mtrRCDE efflux pump system. For penicillin resistance, N.cinerea, 397 
N. elongata, and N. subflava all strains evolving resistance acquired mutations in either the 398 
mtrRCDE efflux pump system or penA. N. canis experimental replicates evolving penicillin 399 
resistance acquired as-of-yet undescribed resistance mutations.  400 
 401 
Supplementary Figure Captions 402 
 403 
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Supplementary Figure 1. Ancestral azithromycin MICs started significantly higher across 404 
species compared to penicillin MICs (P < 0.001). 405 
 406 
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Table 1. Minimum inhibitory concetrations (MICs) for ancestral and average MICs for evolved strains

Ancestral Strains Azi MIC (μg/ml)

Average Azi 
MIC (μg/ml) 

evolved (n=4) Pen MIC (μg/ml)

Average Pen 
MIC (μg/ml) 

evolved (n=4) 
AR-0944 (N. cinerea ) 8 152 0.38 12
AR-0945 (N. elongata ) 0.5 0.69 0.25 6.72
AR-0948 (N. canis ) 0.38 64 0.25 5.44
AR-0953 (N. subflava ) 2 224 1.5 †
AR-0957 (N. subflava ) 8 † 1 3.69
† AR-0953 was only selected with azithromycin and AR-0957 was only selected with penicillin; see disucssion for further details.
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