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Abstract

Cancer is a heterogeneous disease that demands precise molecular profiling for better understanding
and management. Recently, deep learning has demonstrated potentials for cost-efficient prediction
of molecular alterations from histology images. While transformer-based deep learning architectures
have enabled significant progress in non-medical domains, their application to histology images
remains limited due to small dataset sizes coupled with the explosion of trainable parameters. Here,
we develop SEQUOIA, a transformer model to predict cancer transcriptomes from whole-slide
histology images. To enable the full potential of transformers, we first pre-train the model using data
from 1,802 normal tissues. Then, we fine-tune and evaluate the model in 4,331 tumor samples across
nine cancer types. The prediction performance is assessed at individual gene levels and pathway
levels through Pearson correlation analysis and root mean square error. The generalization capacity
is validated across two independent cohorts comprising 1,305 tumors. In predicting the expression
levels of 25,749 genes, the highest performance is observed in cancers from breast, kidney and lung,
where SEQUOIA accurately predicts the expression of 11,069, 10,086 and 8,759 genes, respectively.
The accurately predicted genes are associated with the regulation of inflammatory response, cell
cycles and metabolisms. While the model is trained at the tissue level, we showcase its potential
in predicting spatial gene expression patterns using spatial transcriptomics datasets. Leveraging the
prediction performance, we develop a digital gene expression signature that predicts the risk of
recurrence in breast cancer. SEQUOIA deciphers clinically relevant gene expression patterns from
histology images, opening avenues for improved cancer management and personalized therapies.
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Introduction

Cancer is a dynamic disease characterized by intricate molecular and cellular evolution. Over the course
of evolution, cancer becomes more heterogeneous, and this heterogeneity is classified into inter-patient
heterogeneity and intra-tumoral heterogeneity [1]. Inter-patient heterogeneity refers to the difference
found between patients, which results from patient-specific factors, including germline genetic varia-
tions, differences in mutation profiles and environmental factors [2–4]. Comparatively, intra-tumoral
heterogeneity describes the co-existence of cell subpopulations carrying different genomics, epigenomics
and transcriptomics profiles within the same tissue. The spatial distribution of these cell subpopula-
tions forms a complex ecosystem fostering signaling transduction that drives tumor progression [5, 6]. A
systematic understanding of cancer heterogeneity presents formidable challenges for effective diagnosis
and management.

With the growing interest in precision medicine, molecular profiling has gained significant attention as
a critical component of prognostication and treatment planning. In the past decade, the advancement
of RNA sequencing (RNA-seq) has enabled the comprehensive measurement of gene expression profiles
at both bulk tissue levels and at locoregional levels [3, 5]. The resulting information has deepened our
understanding of cancer heterogeneity, leading to the discovery of molecular signatures associated with
treatment sensitivity [7–9]. However, incorporating gene expression analysis into clinical practice still
represents a challenge. Current methods involve time-consuming and expensive laboratory procedures,
limiting the integration of gene expression analysis in routine diagnostics.

With the digitization of histopathology glass slides into Whole Slide Images (WSIs), unprecedented
opportunities arise for cost-efficient analyses of tumor properties. Notably, WSIs are available with-
out additional cost as they are obtained in routine clinical practice for diagnostics. Despite providing
only morphological information, WSIs can also reflect the molecular status of tumors. Over the past
decade, deep learning-based computational methods have been developed to extract hidden morpholog-
ical features from WSIs that associate with molecular properties. Convolutional neural networks (CNN)
are trained to predict aneuploidies, genetic alterations and expression signatures of cancer infiltrating
immune cells from WSIs [10–19].

Although remarkable progress has been made in computer vision for medical images, applying state-of-
the-art methods to WSIs remains exceedingly challenging. Due to their immense size and resolutions,
WSIs are first cropped into thousands of smaller tiles to enable feature extraction [12, 15, 16, 18, 20, 21].
The lack of fine-grained annotations for individual tiles poses significant challenges in extracting relevant
morphological information associated with slide-level molecular features. Moreover, tile-level models
cannot capture contextual and hierarchical relationships between multiple tiles of an image.

Recently, transformer-based deep-learning architectures have been adapted for computer vision [22].
Compared to traditional CNN models, vision transformers employ attention-based mechanisms to cap-
ture the contextual relationships between different regions of an image. Vision transformers have been
trained on histology images for phenotype classification, disease subtyping and survival predictions
[23, 24]. Alsaafin et al. developed tRNAsformer, a deep-learning method using attention-based mech-
anism to infer gene expression levels from WSIs [25]. This study provides evidence that transformers
can learn high-dimensional molecular features from WSIs. However, the study is limited in three criti-
cal aspects. First, the model is trained exclusively on data from kidney cancer, and its applicability to
cancers from other origins remains to be elucidated. Second, due to explosion in the number of train-
able parameters, vision transformers have been shown to excel particularly when the model has been
pretrained on large-scale datasets [26]. However, the benefit of pretraining was not integrated into their
models. Third, the study only investigates the capacity of transformers in predicting gene expression
levels at bulk tissue levels, whereas effective computational methods for resolving intra-tumoral gene
expression heterogeneity are still limited.

Here, we present SEQUOIA, a deep learning model for Slide-based Expression Quantification using
grouped Vision Attention. To generate contextualized representations of features from WSIs, we employ
the transformer architecture to implement self-attention. The model is trained to automatically derive
which tiles are relevant for the slide-level gene expression prediction. To enable the full potential of
transformers, we pretrained the transformer encoder using 1,802 slides from six normal tissues. The
model is then fine-tuned and evaluated using data from 4,331 tumor samples across nine cancer types.
To assess the generalization capacity of our models, we validated our predictions in two independent
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cohorts. Through comprehensive biological pathway analysis, we demonstrate the model’s capacity to
accurately predict gene expression governing inflammatory response, cancer cell metabolism and prolif-
eration. Moreover, we develop a computational technique that utilizes our models to resolve spatial gene
expression patterns within tumor tissues. Finally, by developing a novel RNA-seq-based gene expres-
sion signature, we demonstrate the clinical utility of our model in predicting breast cancer recurrence.
SEQUOIA offers a cost-efficient way to infer and analyze gene expression patterns on a large scale,
with potential applications in both research and clinical settings.

Results

SEQUOIA as tool for gene expression prediction from WSIs

We present SEQUOIA, a deep learning model for Slide-based Expression Quantification using grouped
vision Attention (“Methods”, Figures 1a-b-c). To train and evaluate the model, we utilized WSIs and
RNA-seq gene expression data of nine cancer types available in The Cancer Genome Atlas (TCGA, Sup-
plementary Table A1): (1) prostate adenocarcinoma (PRAD), (2) pancreatic adenocarcinoma (PAAD),
(3) lung adenocarcinoma (LUAD), (4) lung squamous cell carcinoma (LUSC), (5) kidney renal papil-
lary cell carcinoma (KIRP), (6) kidney renal clear cell carcinoma (KIRC), (7) glioblastoma multiforme
(GBM), (8) colon adenocarcinoma (COAD), and (9) breast invasive carcinoma (BRCA).

Since histological phenotypes and gene expression profiles vary across cancer types, the model was inde-
pendently developed and validated in each cancer type. To evaluate the model, we carried out five-fold
cross-validation. In each iteration, slides from 80% of the patients were allocated for training and inter-
nal validation, while the remaining 20% were reserved for testing. Prediction performance was assessed
for each gene by comparing the predicted messenger RNA expression levels to the ground truth using
Pearson’s correlation analysis and root mean squared error (RMSE). The resulting correlation coeffi-
cient and RMSE values were further compared to those obtained with a random, untrained model of
the same architecture (see “Methods” for details). To identify genes with significantly well-predicted
expression levels, we combined three criteria: (1) the predicted gene expression values must be signif-
icantly correlated with the ground truth, with a positive correlation coefficient and the associated P
value smaller than 0.05 (r1 > 0 and p1 < 0.05) ; (2) r1 must be statistically higher than r2 (r1 > r2), as
determined by Steiger’s Z test, where r2 represents the correlation coefficient obtained from the random
model. For this comparison, we required the raw Steiger P value to be smaller than 0.05 (p2 < 0.05)
and the adjusted P value by Benjamini-Hochberg correction smaller than 0.2 (p3 < 0.2); (3) The RMSE
values obtained from the trained model must be smaller than those from the random model.

When trained from scratch, SEQUOIA was able to accurately predicted the expression levels of many
genes. On average, 6,970 out of 25,749 genes were significantly well predicted across the nine cancer types
(Figure 1d and Supplementary Table A4). Overall, the number of well-predicted genes was positively
correlated with the number of training samples available in each cancer (Supplementary Table A4). The
highest number (N = 12, 239) of genes was identified in BRCA, the cancer type with the most available
slides (N = 1, 130 slides). Further, we identified 9,747 well-predicted genes in LUAD (N = 536 slides)
and 6,985 genes in KIRC (N = 514 slides). Comparatively, PAAD and GBM had the lowest number of
well-predicted genes as well as the lowest number of slides (PAAD: N = 418 genes from N = 202 slides;
GBM: N = 4, 208 genes from N = 237 slides).

The correlation observed between the number of accurately predicted genes and the sample size suggests
that the model can reach higher performance with a larger training dataset. Since published studies have
revealed the advantages of pretraining transformer models on data of the same modality [22], we then
pretrained the weights of transformer encoders using WSIs and RNA-seq data from normal tissues in
the GTex cohort (A3) [27]. We found that finetuning a model pretrained on normal tissues increased the
number of well-predicted genes in four cancer types (i.e., PAAD, KIRC, PRAD , COAD) (Figure 1d and
Supplementary Table A4). Notably, incorporating the pretraining increased the number of significant
genes by 8.1 times in PAAD, the cancer type with the least number of slides (N = 202 slides), and the
median correlation coefficient increased by 1.5 times.
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Fig. 1: Overview of the workflow for the SEQUOIA model. a) Cancer types on which the SEQUOIA
model is developed and validated. The panel is created with BioRender.com. b) The model is trained and
evaluated using matched WSIs and bulk RNA-Seq data from nine cancer types available in the TCGA database.
To pretrain the transformer encoder, we use matched WSIs and gene expression data of normal tissues from
the GTEx database. The model is independently validated using data from the CPTAC and Tempus cohorts.
Apart from predicting tissue-level gene expression, we integrate a spatial prediction technique that elucidates
region-level gene expression patterns within tumor tissues, validated using a spatial transcriptomics dataset [5].
Clinical utility is demonstrated by evaluating the model’s capacity to predict cancer recurrence. c) SEQUOIA
architecture. First, N tiles are sampled from the WSI, and a feature vector is extracted from each tile using a
ResNet-50 module pretrained on ImageNet. We then cluster the feature vectors into K clusters, and an average
feature vector is obtained from each cluster, resulting in K aggregated feature vectors. Next, a transformer
encoder and dense layers translate the obtained K feature vectors to predicted gene expression values. d)
Performance of SEQUOIA compared to HE2RNA. For both architectures, we show the performance when
trained from scratch and when finetuning from a model pretrained on normal tissues. Violin plots illustrate
the distribution of Pearson correlation coefficients (left y axis) between the predicted and ground truth gene
expression values in TCGA test sets. The top 1,000 genes with the highest correlation coefficients in each
architecture are shown. Black squares indicate the absolute number (right y axis) of genes with significantly
well-predicted expression levels. e) Distribution of RMSE values between the ground truth and predicted gene
expression levels in TCGA test sets. WSI: whole-slide images; RMSE: root mean square error.
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Since the histological appearance of BRCA has been shown to be associated with hormone receptor
status [28], we separately assessed the performance in the estrogen receptor (ER) negative and ER
positive subtypes. SEQUOIA accurately predicted the expression values for 8,517 and 3,840 genes in
the ER positive and ER negative subtype, respectively (Supplementary Figure A1a). Of these genes,
2,103 genes were significantly predicted in both subtypes. These results demonstrate the capacity of
SEQUOIA in predicting gene expression signals specific to breast cancer subtypes.

To compare the performance of our model with existing architectures, we benchmarked our results
with the HE2RNA model [29]. SEQUOIA outperformed HE2RNA in all cancer types, irrespective
of using the pretrained models or training from scratch (Figure 1d and Supplementary Table A4). On
average, the number of genes with accurately predicted expression values increased by 8.2 times (7,464
genes versus 910 genes) with the pretrained SEQUOIA model compared to the counterpart of the
HE2RNA model. Notably, in KIRP and LUAD, the number of accurately predicted genes increased by
23.5 and 14.6 times, respectively, with the SEQUOIA model. The cancer type with the smallest factor
of increase (×1.9) was GBM, where SEQUOIA significantly predicted the expression levels for 2,498
genes compared to 1,303 genes using HE2RNA.

Finally, to compare the quality of predictions, we assessed both the correlation coefficients and RMSE
values between the ground truth and predicted gene expression values obtained from the SEQUOIA
and HE2RNA models. We found that SEQUOIA significantly outperformed HE2RNA in all cancer
types (Figure 1d-e). On average, the median correlation coefficient was 2.0 times higher for SEQUOIA
models compared to HE2RNA, and the RMSE value was 30% lower for SEQUOIA models (Figure
1d-e; Supplementary Tables A5 and A6; Supplementary Figure A2 and A3, Whitney U test, P < 0.0001).

Pathway-level analysis of the predicted gene expression values

In our subsequent analysis, we focused on results obtained from SEQUOIA models pretrained on
normal tissues. Genes with accurately predicted expression levels include protein-coding genes, long
non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs). On average, over 90% of the genes are protein-
coding genes (Supplementary Figure A1b). To characterize their biological functions, we carried out
gene set analysis. First, we performed hyper-geometric tests using the gene list with accurately predicted
expression values in each cancer type. Second, we conducted gene set variation analysis (GSVA) using
the predicted expression values and the pathway membership of each gene to assess the prediction
accuracy at the pathway level [30].

In our hyper-geometric tests, we considered three gene set categories: (1) gene ontology, (2) KEGG
pathway and (3) cell-type signatures. Gene ontology analysis revealed several common pathways
enriched in the well-predicted genes across cancer types, including T cell activation (e.g., CCL2, CCR2,
CCDC88B), cell-matrix adhesion (e.g., EMP2, COL16A1, VEGFA), epithelial-mesenchymal transition
(BMP2, PDPN, SMAD2 ) and response to oxidative stress (e.g., TP53, PRDX1, VRK2 ) (Figure 2a and
Supplementary Data 1). Additionally, some gene sets were found enriched in specific cancer types. For
instance, in GBM (Figure 2b) we identified genes associated with macrophage migration (CCL2, EDN2,
CKLF ), protein kinase B signaling (TNF, ADTRP, SETX ), and endothelial cell development (ROCK1,
IKBKB, TNFRSF1A). In LUSC (Supplementary Figure A1c), we identified genes associated with col-
lagen biosynthetic process (CREB3L1, WNT4, TGFB1 ), natural killer cell differentiation (PTPRC,
PIK3CD, KAT7 ), and histone H2A acetylation (ACTL6A, MEAF6, DMAP1 ). Gene sets enriched in
other cancer types can be found in Supplementary Data 1.

Furthermore, KEGG pathway analysis revealed that genes with accurately predicted expression levels
are involved in the PD-L1 expression and check point pathway (CD247, CD274, MAPK11 ), NF-kappa
B signaling (CXCL12, NFKB1, PRKCB), HIF-1 signaling (GAPDH, HIF1A, VEGFA), and VEGF
signaling (SPHK1, HRAS, HSPB1 ) (Figures 2c-d and Supplementary Data 2). Moreover, the well-
predicted genes include cell-type markers for endothelial cells (CD69, CD93 ), CD4 T cell (CD3E, CD4,
CD48 ), M2 macrophage (CD14, CD163, CD84 ), and B cell (CD19, CD53, CD37 ) (Supplementary
Figure A1d and Supplementary Data 3). Overall, these results highlight the critical biological functions
of the accurately predicted genes in regulating cell cycles, inflammation and hypoxia response.

To assess the prediction performance at the pathway level, we performed GSVA analysis[30]. An enrich-
ment score was assigned to each gene ontology or KEGG pathway (total N = 3,120) based on the
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predicted expression values of individual genes and their pathway membership. The predicted enrich-
ment score of each pathway was then compared to the ground truth using Pearson correlation analysis
and RMSE values. To select significant pathways with accurately predicted enrichment scores, we com-
pared the results to those obtained from the random model of the same architecture, using the same
statistical methods and thresholds as we defined for selecting individual genes (Methods). On aver-
age, the enrichment score for 241 out of 3,120 pathways were significantly well predicted across the
nine cancer types (Figure 2e). The accurately predicted pathways were similar to those identified using
hyper-geometric tests, including pathways regulating cell cycle, inflammatory response and extracellular
matrix organization.

When comparing the prediction performance between the SEQUOIA models pretrained on normal tis-
sues versus models trained from scratch, the pretrained models achieved significantly higher correlation
coefficients in six out of nine cancer types, including PAAD, LUSC, KIRC KIRP, COAD and GBM
(Figure 2e, Mann-Whitney U test, P < 0.002). Of note, the number of accurately predicted pathways
in PAAD was 12.3 times higher in the pretrained model compared to the scratch, and the median cor-
relation coefficient was 1.4 times higher in the pretrained model (Mann-Whitney U test, P < 1e− 34).
Moreover, in KIRC and LUSC, we observed an average of 1.4-time increase in median correlation coef-
ficients using the pretrained model (Mann-Whitney U test, P < 4e − 33). These results indicated that
pretraining the SEQUOIA models on data from normal tissues increased the prediction performance at
pathway levels in specific cancer types.

When comparing the GSVA results obtained from the pretrained SEQUOIA models versus those from
the HE2RNA models, we found SEQUOIA models achieved significantly higher correlation coefficients
and lower RMSE values between the ground truth and the predicted pathway scores in all cancer types
(Figure 2e-f, Mann-Whitney U test, P < 3e − 10). Overall, these results highlighted the advanced
prediction performance of SEQUOIA models in predicting gene expression values at pathway levels.
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Fig. 2: Evaluation of gene expression predictions at the pathway level. a) Heatmap showing significant
P values obtained from hyper-geometric tests in gene ontology analysis of the well-predicted genes. Color and
size of the circles represent the negative log-transformed P values. Integers represent the absolute gene count
in each category, and non-significant categories are left in blank. b) Circos plot showing the enriched biological
processes associated with the well-predicted genes in GBM. Gene names are displayed on the left and the
corresponding biological processes are shown on the right. c) Heatmap showing the significant P values of the
KEGG pathways across cancer types. Color and size of the circles represent the negative log-transformed P
values. Integers represent the absolute gene count in each category, and non-significant categories are left in
blank. d) Circos plot showing the KEGG pathways associated with the well-predicted genes in COAD. Gene
names are displayed on the left and the corresponding pathways on the right. e) Violin plots illustrating the
distribution of Pearson correlation coefficients (left y axis) between the predicted and ground truth pathway
enrichment scores in TCGA test sets. The top 100 pathways with the highest correlation coefficients in each
model are shown. Black squares indicate the absolute number (right y axis) of pathways with significantly well-
predicted enrichment scores in each cancer. f) Violin plots illustrating the distribution of RMSE values between
the predicted and ground truth pathway enrichment scores in TCGA test sets. The top 100 pathways with the
lowest RMSE values in each model are shown. RMSE: root mean square error.
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SEQUOIA generalizes to independent cohorts

Deep learning models trained on a specific dataset may be subject to bias due to technical noise (e.g.,
stain variations and color range), potentially leading to overfitting and limiting their ability to generalize
to other datasets. To test the generalization capacity of SEQUOIA, we applied the models developed
in the TCGA cohort to the matched cancer type in the CPTAC (Clinical Proteomic Tumor Analysis
Consortium) cohort [3, 31–36]. We extended our validation to seven cancers from six tissues, including
breast, lung, kidney, brain, colon and pancreas (Supplementary Table A2). For each gene, we compared
the predicted expression levels in each cancer type to the ground truth using correlation coefficients and
RMSE values as described for our TCGA analysis. This list of accurately predicted genes identified in the
CPTAC cohort was then compared to the the gene list discovered in the TCGA cohort. Since the cohort
size in CPTAC is smaller compared to the TCGA (Supplementary Table A2), it is expected that fewer
genes can pass our significance thresholds. Despite this limitation, we were able to validate the prediction
performance on many genes (Figure 3a). In BRCA, we validated the accuracy of predictions on 8,587
genes in the CPTAC cohort, which overlapped with 78% of the well-predicted genes (N = 11,069 genes)
identified in the TCGA cohort. Additionally, we validated the accuracy of gene expression predictions for
7,259 (72%) genes in KIRC, 3,560 (72%) genes in LUSC, 5,330 (61%) genes in LUAD, 1,464 (59%) genes
in GBM, 3,941 (51 %) genes in COAD and 1,177 (35%) genes in PAAD. Gene ontology analysis revealed
the key functions of the validated genes in regulating angiogenesis, inflammatory response and cell cycle
(Figure 3b). Furthermore, KEGG pathway analysis showed that the validated genes are associated with
cell adhesion, NF-kappa B signaling, PI3K-Akt signaling and p53 signaling pathway (Figure 3c).

To benchmark the generalization capacity of our model to existing architectures, we compared the
prediction results to those from the HE2RNA model. Although HE2RNA identified numerous genes
with accurately predicted expression values in both the TCGA and CPTAC cohorts, only a limited
overlap of these genes was found between the two cohorts (Supplementary Table A7).

To further test the generalization capacity of our models, we extended the validation to a lung ade-
nocaricnoma (LUAD) cohort from Tempus (“Methods”, N = 287 slides from N = 249 patients). This
led to the identification of 1,217 genes that were well-predicted across all three (TCGA, CPTAC and
Tempus) cohorts for patients with lung adenocarcinoma. Functional analysis of these genes revealed
their regulatory functions in inflammatory response (ITGAL, CYBB, PTGER4 ), angiogenesis (VEGFD,
TSPAN12, EMP2 ), ERK signaling (PRKCZ, PDGFA, FGF10 ), and Wnt signaling pathway (WIF1,
SFRP2, NKD2 ) (Figure 3d). These results demonstrate the generalization capacity of SEQUOIA in
predicting gene expression values across independent cohorts.
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Fig. 3: Characterization of the genes validated in external cancer cohorts. a) The number of genes
validated in the CPTAC cohort. Percentages enclosed within the parenthesis indicate the proportion of significant
genes discovered in the TCGA cohort that were validated in the CPTAC cohort. b) Heatmap showing the
significant P values from the gene ontology analysis of the validated genes. Color and size of the circles represent
the negative log-transformed P values. Integers represent the absolute gene count in each category, and non-
significant categories are left in blank. c) Heatmap showing the significant P values from the KEGG analysis
of the validated genes. Color and size of the circles represent the negative log-transformed P values. Integers
represent the absolute gene count in each category, and non-significant categories are left in blank. d) Circos plot
showing the enriched biological processes associated with the validated genes in lung adenocarcinoma.P values
were adjusted for multiple testing using the Benjamini–Hochberg method.

A digital signature for breast cancer recurrence prediction

Given that SEQUOIA was able to predict the transcriptional activity of genes involved in key cancer-
related pathways (Figures 2 and 3), we next assessed whether these genes have prognostic value. We
focused our analysis on breast cancer, in which the highest number of genes (N = 11,069) were accurately
predicted for their expression levels.

The accurately predicted genes encompass various published prognostic signatures (Supplementary Data
5) [37–40]. These include 47 out of 50 (94%) genes of the PAM50 signature, all 12 (100%) genes of the
EndoPredict signature, 13 out of 21 (62%) genes of the Oncotype DX signature, 47 out of 70 (67%)
genes of the Mammaprint signature, 6 out of 7 (86%) genes of the Breast Cancer Index and 4 out of 5
(80%) gene of the Mammostrat signature.

Since the Oncotype DX and MammaPrint signatures are developed on data from RT-qPCR and microar-
ray assays, and their exact mathematical formulas are protected by proprietary license, we next sought
to develop a RNA-seq-based gene expression signature that can stratify the risk of breast cancer recur-
rence. We fitted a regularized Cox regression model on the ground-truth gene expression values for the
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accurately predicted genes from SEQUOIA, and the regression model aims to predict a risk score of
recurrence for each patient (see ”Methods” for details). High risk scores indicate a greater likelihood
of recurrence. The model was developed on the TCGA cohort (N = 858 patients) and independently
validated using data from the ”SCANB” cohort (N = 5,034 patients). Moreover, to test whether our
signature can be generalized to traditional microarray-based gene expression data, we further validated
it using an independent dataset of the ”METABRIC” cohort (N = 2,262 patients) [41].

Our analysis led to the identification of a 50-gene signature significantly associated with recurrence
(Figures 4a-c and Supplementary Data 6). To assess its performance, we first treated the predicted
risk score as a continuous variable. Results from univariate Cox regression analyses (Figures 4a-b and
Supplementary Figure A1e) showed that the predicted risk scores were significantly associated with
recurrence-free survival: TCGA (HR = 2.24, .95CI = 1.99-2.52, P < 2e − 16), SCANB (HR = 1.31,
.95CI =1.25-1.39, P < 2e − 16), and METABRIC (HR = 1.21, .95CI = 1.08-1.36, P = 7.8e − 07). To
further assess the model, we treated the predicted risk score as a dichotomous variable. Patients within
each cohort were divided into a high-risk and a low-risk group based on the median risk score (Figures
4a-b and Supplementary Figure A1e). Results from the log-rank test demonstrate that the high-risk
group had significantly worse prognosis compared to the low risk group: TCGA (P < 2e− 16), SCANB
(P = 4e− 13), and METABRIC (P = 8e− 05).

To assess whether breast cancer subtype was a confounding variable in risk prediction, we incorpo-
rated the PAM50 molecular subtypes and hormone (i.e., estrogen and progesterone) receptor status as
covariates into our Cox regression analyses. We found that the predicted risk score was still signifi-
cantly associated with prognosis after including these covariates: TCGA (HR = 2.22, .95CI =1.96-2.52,
P < 2e− 16), SCANB (HR = 1.26, .95CI =1.20-1.33, P < 2e− 16), METABRIC (HR = 1.22, .95CI =
1.08-1.39, P = 7.6e− 05).

Gene ontology analysis (Figure 4c) revealed the regulatory functions of the signature genes in cell
apoptosis (MSX1, PTPN2, BCL2A1 ), cell-cycle phase transition (NEK10, CDK14, RAD51C, PLK2 ),
inflammatory response (IL21, PTGS2, PPP2R3C ), cytokine production (CLEC9A, CLEC6A), cellular
metabolic process (PDE8B, ADA2, NEU3, SUMO2, ACAT2 ), ERK signaling cascade (THPO, PTPN2 ),
cell-fate specification (POU5F1, SIX2 ), cell membrane transportation (CACNA1E, PTGS2, CACNG4,
PLK2 ), and cell migration (MDGA1, HTR6 ).

So far, we have developed and validated a 50-gene signature using the ground-truth gene expression
values. We then tested whether utilizing the gene expression values predicted from histology images alone
was sufficient to stratify the risk groups. For each patient, we calculated a risk score using the same risk
coefficient in our Cox regression model, but this time replacing the ground-truth gene expression values
with the predicted values. As shown in Figure 4d, patients assigned with high risk scores demonstrated
significantly worse prognosis compared to patients with low risk scores (Cox regression: HR = 1.55,
.95Cl = 1.15-2.11, P = 0.006; Log-rank test: P = 0.005). These results indicate that SEQUOIA can
accurately predict the expression of genes associated with breast cancer recurrence.
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Fig. 4:Development and validation of a digital signature for predicting breast cancer recurrence. a)
Kaplan-Meier curves of recurrence-free survival obtained from the TCGA discovery dataset. Patients were split
by the median risk score. b) Kaplan-Meier curves of recurrence-free survival in the SCANB validation dataset.
c) Circos plot showing the biological processes associated with the prognostic gene signature. Gene names and
the associated risk coefficients are shown on the left and the corresponding biological processes are shown on
the right. d) Kaplan-Meier curves of recurrence-free survival obtained from the predicted gene expression values
in the TCGA dataset. Patients were split by the median risk score. HR: hazard ratio.

Tile-level predictions validated with spatial transcriptomics

So far, we have demonstrated the ability of SEQUOIA in predicting RNA-Seq gene expression val-
ues collected from bulk tissues. However, gene expression patterns are known to vary across different
tumor regions due to intra-tumoral heterogeneity that results from uneven spatial distributions of cell
phenotypes. Uncovering spatial gene expression patterns can reveal the intricate landscape of tumor
architecture and signaling environment, which is known to affect tumor growth, metabolic processes,
and resistance to therapy [6, 8]. We hence investigated whether our models trained at the slide-level can
be used to predict gene expression values at locoregional levels within tumor tissues.

Here, we implemented a sliding-window approach to generate tile-level predictions of gene expression.
The histology image was first processed using a sliding window of 10×10 tiles starting from the left
upper corner, where the dimensions of each tile (128um×128um) were consistent with those used during
the training of the SEQUOIA models. For each window, a 100 × 2048 feature vector was extracted
and used as input to SEQUOIA for generating a prediction. This prediction was then stored for every
tile within the window (see “Methods” for details). After processing the entire image, the predicted
gene expression for each tile was calculated as the average of the stored values for that tile. A stride
of 1 (tile) was chosen for fine-grained analysis. To validate the prediction, we utilized data from an
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Fig. 5: Spatial visualization of gene expression predicted at the tile level. a) Whole Slide
Image thumbnails from the validation cohort. b) Examples of genes that are well-predicted spatially
within slides, with predicted spatial gene expression on the left and ground truth on the right. The
prediction and ground truth maps were normalized to percentile scores between 0-100. c) Examples of
genes that are spatially well-predicted across several slides. Each row shows the prediction map (on the
left) and ground truth (on the right) for a particular gene across four slides. d) Heatmap showing the
correlation coefficients of meta-gene modules that define the transcriptional subtype and proliferation
state of GBM cells. e) Spatial organization of the predicted transcriptional subtypes within different
slides. Transcriptional subtypes were assigned based on the meta-gene module showing the highest
prediction values

independent cohort of patients with glioblastoma (GBM), which contains matched histology images and
spatial transcriptomics data (N = 54, 000 gene expression spots from N = 18 patients), providing tile-
level ground truth gene expression measurements [5] (Figure 5a). We focused our analysis on the top
500 genes for which SEQUOIA generated the best predictions on the TCGA test set (i.e. genes with
the highest Pearson correlation coefficients). For each of these genes, we generated a spatial heatmap
illustrating their expression values across the slide. To quantitatively assess the prediction performance,
we used the Earth Mover’s Distance (EMD) as an evaluation metric (“Methods”). EMD values are
bounded between 0 and 1, with lower values indicating a closer correspondence between predictions and
ground truth. On average, SEQUOIA achieved an EMD of 0.15 (.95CI = 0.148-0.152) across all slides
and genes (Supplementary Table A8). Higher performance was observed in slides with high degrees of
spatial variance in gene expression [5, 6].

Notably, SEQUOIA generated accurate spatial predictions for genes that hold significant relevance to
GBM malignancy and prognosis. For instance, the COL6A1 and COL9A3 genes are highly expressed
in the mesenchymal subtype of GBM, a subtype associated with unfavorable prognoses [42, 43]. In our
spatial predictions, we observed a median EMD of 0.11 across all slides for both COL6A1 and COL9A3
(Figures 5b-c). Furthermore, the CKAP4 gene, with and EMD of 0.12 has been shown to mediate the
growth, migration, and invasion of GBM cells [44]. These results highlight the potential of SEQUOIA
in accurately predicting spatial gene expression patterns related to GBM malignancy and prognosis.

The integrative analysis of single-cell RNA-seq and spatial transcriptomics data in recent studies have
revealed that cells sharing the same transcriptional subtype are often co-localized within spatially seg-
mented niches [5, 45]. To investigate whether SEQUOIA captured true biological signals that reflect
underlying tissue compositions, we assessed spatial co-expression patterns of functionally related genes.
We considered four previously established meta-gene modules governing the transcriptional subtype and
proliferation state of GBM cells: (1) ‘lineage development’ (124 genes), (2) ‘cell cycle’ (70 genes), (3)
‘mesenchymal-like’ (92 genes) and (4) ‘astrocyte-like’ (37 genes) [46]. Spatial correlation analyses showed
that genes within the same meta module consistently clustered together, exhibiting similar spatial
expression patterns (Figures 5d-e). To demonstrate the spatial prediction capacity of SEQUOIA in other
cancer types, we developed an user-friendly, interactive web application (https://sequoia.stanford.edu)
where users can explore the spatial heatmap for genes predicted in the TCGA cohorts. These results
demonstrate the potential of SEQUOIA in resolving spatial cellular architectures within heterogeneous
tumor tissues.

Discussion

Transcriptomic analysis of tumor tissues holds immense promise in advancing personalized diagnosis and
outcome predictions. In this study, we presented SEQUOIA, a deep learning model for predicting RNA-
seq gene expression data from Whole Slide Images (WSIs). We combined algorithmic and methodological
advancements, followed by thorough analyses of gene functions, clinical relevance, and generalization
capacity. Through a comprehensive evaluation of our model in nine cancer types across seven tissues,
we demonstrated the value of SEQUOIA in predicting clinically relevant gene expression patterns.

Over the past decade, deep learning has revolutionized cancer diagnosis. Published studies have demon-
strated the potential of deep neural networks in extracting intricate patterns from medical images. He
et al. developed ST-Net, a convolutional neural network that predicts the expression values of 250 genes
from histology images in breast cancer [47]. Their model however is trained on individual tiles, which
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requires high-resolution training labels obtained from spatial transcriptomics assays and did not inte-
grate contextual information across tiles. To model contextual information, Graziani et al. incorporate
an attention mechanism into their model for gene expression predictions. However, this strategy requires
training a dedicated model for predicting the expression of each individual gene [48]. While this approach
reaches publishable performance, it can lead to computational challenges, particularly when attempt-
ing to infer the entire transcriptome. In a recent study, Alsaafin et al. utilized transformer modules to
extract latent representation of WSIs. Their model, trained exclusively in renal cell carcinoma, was used
for gene expression predictions and subtype classifications [25]. However, the generalization capacity of
the model to other cancer types remain to be determined. Moreover, published studies have indicated
that transformer-based models outperforms convolutional neural network only when a pretraining step
using large dataset is incorporated[26]. Moreover, the increased complexity of transformer-based models
may lead to overfitting, especially with limited training data[49].

To address these challenges, we pretrained the weight parameters of the transformer encoder using data
from normal tissues. Our results showed that the pretraining regimen improved the prediction perfor-
mance at both individual gene levels and at the pathway level. The observed improvement was most
significant in cancers with small training datasets. To demonstrate the advantages of our model, we com-
pared it with HE2RNA [29], a recent model for whole transcriptome prediction from WSIs. The results
of our analysis revealed consistent improvements across various cancer types when using SEQUOIA
in comparison to HE2RNA. A key factor driving this performance boost lies in the attention-based
mechanism leveraged by SEQUOIA, which enables effective integration of information between tiles.
In contrast, HE2RNA treated each tile as an independent entity, limiting its ability to capture the
contextual relationships present in the data.

The genes with accurately predicted expression values by SEQUOIA were found to be associated with
key pathways pertinent to cancer progression. Among these were genes involved in regulating cell cycles,
inflammation, angiogenesis, and hypoxia response. Additionally, the model effectively captured cell-
type markers, including those for endothelial cells, CD4 T cells, M2 macrophages and B cells. Building
upon the well-predicted genes, we developed a 50-gene signature that predicts the risk of breast can-
cer recurrence. Although the gene expression signature was developed on ground-truth gene expression
values, we demonstrated its utility in patient stratification by just using the predicted gene expression.
Despite the decreasing costs for transcriptomics sequencing, the integration of gene expression analysis
into clinical routines is hindered by the lack of necessary equipment and trained personnel. By lever-
aging SEQUOIA’s predictions, one can gain mechanistic insights linking histopathological phenotypes
to molecular characteristics, thereby offering guidance for disease classification, prognostication, and
treatment planning.

Understanding spatial topological organization of tumor cells has attracted recent research interest in
the field. The advancement of spatial transcriptomics and proteomics technologies have deepened our
understanding of the intrinsic signaling environment that drive tumor growth, metastasis and treatment
sensitivity. While SEQUOIA was trained using bulk RNA gene expression, we demonstrated its poten-
tial in predicting gene expression patterns at the locoregional level. We implemented a technique that
enables computational reconstruction of high-resolution spatial gene expression within tumor tissues.
The results were validated using a spatial transcriptomics dataset obtained from an independent cohort
of glioblastoma patients. Notably, genes with accurate spatial expression predictions include those reg-
ulating malignant phenotype and prognosis. Applying such computational method to WSIs can bring
significant values to both clinical and research settings. In the clinic, it can aid in identifying specific
regions within a heterogeneous tumor that require sequencing, hence ensuring the accurate detection
of biomarkers and preventing the omission of critical lesions [18]. In research, this approach enables
the cost-efficient exploration of gene expression dynamics at high resolution, which allows to generate
hypotheses about signaling events driving cellular interactions, thereby advancing our understanding of
the complex mechanisms underlying cancer progression.

In the future, the accurate prediction of molecular traits from histology holds immense potential for
enhancing diagnosis and prognosis for cancer. The predicted gene expression and pathway activation
levels can provide valuable insights into a tumor’s aggressiveness and its molecular characteristics,
advancing our understanding of cancer heterogeneity and enabling personalized and targeted therapies.
Once clinically validated and further improved (e.g. by training on large, multi-center cohorts), the
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implementation of such predictive models has the potential to streamline medical processes, save costs,
and improve efficiency by rapidly identifying actionable information from image-based data.

In conclusion, by combining algorithmic advancements with thorough analyses of biological func-
tions, clinical relevance, and generalization capacity, our research demonstrates the potential of using
transformer-based deep learning models in predicting high-dimensional gene expression features from
whole-slide histology images.

Methods

Patient cohorts and ethics

TCGA

For model training and evaluation, anonymized patient data were retrieved from the publicly avail-
able The Cancer Genome Atlas (TCGA) archive (available at https://portal.gdc.cancer. gov). We used
paraffin-embedded (FFPE) whole slide images (WSIs) and matched gene expression data of nine cancer
types, including prostate adenocarcinoma (PRAD), pancreatic adenocarcinoma (PAAD), lung ade-
nocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), kidney renal papillary cell carcinoma
(KIRP), kidney renal clear cell carcinoma (KIRC), glioblastoma multiforme (GBM), colon adenocarci-
noma (COAD), and breast adenocarcinoma (BRCA). The number of patients, WSIs and genes used for
training each cancer type is listed in Supplementary Table A1.

CPTAC

For validation, anonymized patient data were retrieved from the publicly available Clinical Proteomic
Tumor Analysis Consortium (CPTAC) cohort (https://portal.gdc.cancer. gov). We downloaded matched
WSIs and gene expression data from seven cancer types from six tissues, including breast invasive
carcinoma (BRCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LSCC/LUSC), colon
adenocarcinoma (COAD), kidney renal clear cell carcinoma (CCRCC/KIRC), glioblastoma multiforme
(GBM), pancreatic adenocarcinoma (PDA/PAAD). The sample size is described in Supplementary Table
A2.

Tempus

For an additional validation, we utilized matched WSIs and RNA-seq data (N = 287 slides from N = 249
patients) of lung adenocarcinoma (LUAD). The data were obtained through a data transfer agreement
with Tempus Labs, Inc.

GTex

For pre-training the transformer encoder, we used WSIs and gene expression data from six normal tissues
(i.e., brain, colon, kidney, lung, pancreas, prostate). Data were obtained from The Genotype-Tissue
Expression (GTEx) project (https://gtexportal.org), and the sample size is described in Supplementary
Table A3

Spatial GBM, SCANB, METABRIC

Spatial transcriptomic data and matched histology images of GBM were obtained from a published
study by Ravi et al. (https://datadryad.org/stash/dataset/doi:10.5061/dryad.h70rxwdmj) [5]. Data of
the SCANB and METABRIC breast cancer cohorts were obtained from published studies by Staaf et
al.[50] and Curties et al.[41].

Preprocessing of RNA-Seq data

For training and validation of our models, we used FPKM-UQ normalized gene expression values. Since
the gene expression values span several orders of magnitude and our model was trained using the Mean
Squared Error loss function, the training process may introduce bias to genes with large gene expression
values. To overcome this potential bias, we performed log2 transformation (v → log2(v+ 1)) of the gene
expression values.

15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2024. ; https://doi.org/10.1101/2023.09.28.560068doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.560068
http://creativecommons.org/licenses/by-nc-nd/4.0/


For pre-training the transformer encoder, we obtained the RNA-seq data of normal tissues from the
GTEx data portal (https://gtexportal.org/home/datasets). We performed the same log2 transformation
(v → log2(v + 1)) of the gene expression values. Since during the pre-training phase, we combined
data from all tissue types, we performed a z -score normalization of the gene expression values in each
individual tissue type, and the normalized gene expression matrices were concatenated across the tissue
types.

We focused our analysis on three gene categories: (1) protein-coding genes, (2) micro-RNAs (miRNAs)
and (3) long non-coding RNAs (lncRNAs). On average, the protein-coding genes account for 85% of all
the analyzed genes.

Preprocessing of Whole Slide Images

Whole-slide images (WSIs) were acquired in SVS format and downsampled to 20× magnification (0.5µm
px-1). We used the Otsu threshold method to obtain a mask of the tissue, which allows to omit tiles
mostly containing white background [51]. WSIs have much larger dimensions than natural images (usu-
ally over 10k × 10k pixels), and therefore cannot be used directly to train machine learning models. To
address this challenge, we employed a multiple instance learning (MIL) approach, where each WSI was
cropped into non-overlapping tiles of 256 × 256 pixels (128µm × 128µm). In each slide, we randomly
selected a maximum of N = 4000 tiles, omitting those containing more than 20% background and tiles
with low contrast.

To obtain a feature representation at slide-level, we organized the selected tiles into bags. First, we
used a ResNet-50 module pre-trained on ImageNet to covert each tile into a feature vector (1 × 2048).
Then, we used the k-means algorithm to cluster similar tiles of each slide into K = 100 clusters. Each
cluster contains tiles with similar morphological features, where cluster A may represent tiles that mostly
contain tumor cells, cluster B may contain tiles with mostly connective tissue and so on. Features of
patches within the same cluster were averaged, resulting in a matrix of 100×2048 vectors that represent
the slide.

SEQUOIA architecture

SEQUOIA is inspired by the vanilla Vision Transformer (ViT) architecture [26] which extrapolates the
Transformer architecture from the natural language processing (NLP) domain to computer vision [52].
For a ViT, an image is divided in patches of 16 × 16 px, representing “tokens” of the image. Feature
vectors are then extracted from these patches by linear projection in the ViT. Then, they are fed to a
transformer encoder, which outputs a new representation of the input and forwards it to a multi-layer
perceptron (MLP) head that makes the final prediction.

In our work, the division of an image into small patches corresponds to the WSI being divided into the
K feature clusters (K = 100). The 100 × 2048 feature matrix is fed to the transformer encoder, which
comprises 6 encoder blocks, 16 attention heads, and a head dimension of 64. The transformer encoder
allows modeling the relationship across feature clusters before deciding whether they are relevant for
the slide-level prediction. After layer normalization, the output is sent to an MLP layer with dimension
2048 × num genes, with num genes the number of genes available to predict in each cancer type (see
Supplementary Table A1).

Pretraining on normal tissues

We performed pre-training of the SEQUOIA and HE2RNA models using normal tissues corresponding
to the tested cancer types (Supplementary Table A3). We combined data from all normal tissues for the
pre-training step, and the resulting model was afterwards finetuned for each specific cancer type.

Notably, in our preliminary experiments, we observed that incorporating breast normal tissues into
the pre-training led to an overall decrease in performance compared to the model pre-trained on all
other normal tissues without the breast. This decrease can likely be attributed to the known differences
in tissue composition between the normal breast and breast cancer. While the normal breast mainly
comprises adipocytes, the tumors consist of transformed epithelial cells. Consequently, we excluded
normal breast tissue from the pre-training process, resulting in six tissue types used for pre-training:
lung, brain, kidney, pancreas, prostate, colon. We utilized the gene expression data for 19,198 genes
available across all normal tissues.
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The model was trained using the Mean Squared Error loss function for 200 epochs with early stopping
(i.e., early stop if the loss did not decrease for a patience of 100 epochs), and a batch size of 16. Model
parameters were optimized using the Adam optimizer with a learning rate of 3 × 10−3.

Training details

After pretraining the model on normal tissues, we finetuned a dedicated model for each cancer type
using data of the TCGA cohort. The transformer encoder was initialized with the pre-trained weights,
and a new prediction head, consisting of a layer norm and a linear layer, was trained to predict the gene
expression levels in cancer tissues (see Figure 1).

For training and evaluation of the model, we conducted a five-fold cross-validation using data from the
TCGA cohort. In each fold i, the dataset was partitioned on patient level, allocating 80% for ‘global‘
training and 20% for testing. To determine the optimal stop point for training the model in fold i,
the ‘global‘ training set i was further split into 90% for training and 10% for internal validation. We
used the Mean Squared Error (MSE) as the loss function during model training, with each model being
trained for a maximum of 200 epochs. For early stopping and determining the point for model saving,
instead of relying solely on the Pearson correlation coefficient as described in Schmauch et al. [29] , we
employed a criterion that considers both MSE and correlation. Specifically, we continued training and
saved the model at each optimal MSE point as long as the MSE continued to decrease. Once the MSE
stopped improving for a consecutive patience interval of 100 epochs, we continued the training process
if the correlation had improved in the last patience epochs and if the MSE remained below a reasonable
threshold (i.e. MSE < δ + bestMSE, with δ = 0.5). We then saved the model at the optimal epoch if
the correlation had improved (i.e. corr > best corr). Throughout this process, we used a fixed learning
rate of 1×10−3 and batch size of 16, and the model parameters were optimized with the Adam optimizer.

Identification of significantly well-predicted genes and pathways

To assess the performance within the TCGA cohort, we concatenated the predictions of all test sets i (i
= 1..5). For each gene, the predicted gene expression values were compared to the ground truth using
both Pearson’s correlation analysis and root mean squared error (RMSE). The resulting correlation
coefficient and RMSE values were then compared to those obtained with a random, untrained model of
the same architecture. To identify genes with significantly well-predicted expression levels, we combined
three criteria: (1) The correlation coefficient (r1) between ground truth and the predicted gene expression
values must be positive and the associated P value (p1) should be less than 0.05 (r1 > 0 and p1 < 0.05);
(2) r1 must be significantly higher than r2 (r1 > r2) as determined by the Steiger’s Z test, where r2
represents the correlation coefficient between ground truth and predicted gene expression values obtained
from the random model. We required the raw Steiger P value to be less than 0.05 (p2 ¡ 0.05) and the
adjusted P value by Benjamini-Hochberg correction to be less than 0.2 (p3 ¡ 0.2); (3) The RMSE values
obtained from the trained model must be smaller than those from the random model.

Gene set analysis

The gene set analysis was performed with the ClusterProfiler R library (version 4.2.1) [53] and
GSEApy package (version 1.0.5) [54]. Biological processes from gene ontology and cell-type signa-
tures were obtained from the MSigDB database (https://www.gsea-msigdb.org/gsea). KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway annotations were obtained from the KEGG database
(https://www.genome.jp/kegg/catalog/org list.html). The enrichment analysis was performed with
hyper-geometric testing, and the P values were corrected with the Benjamini-Hochberg procedure. To
generate heatmaps of the P values, we aggregated gene sets with high similarities (e.g., “regulation of
T cell proliferation” and “positive regulation of T cell proliferation”), and the average P values were
shown. Gene set variation analysis (GSVA) was performed to assign an enrichment score to each gene
ontology or KEGG pathway based on the ground truth or predicted gene expression values using the
GSEApy package (version 1.0.5).

Identification and validation of the prognostic gene signature

To construct a gene expression model for predicting breast cancer recurrence, we first selected the top
5,000 well-predicted protein-coding genes from the TCGA-BRCA cohort as potential candidates. Then,
we performed LASSO Cox regression model analysis with the ‘glmnet’ R package (version 4.1)[55].
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The penalized Cox regression model with LASSO penalty was used to achieve shrinkage and variable
selection simultaneously. The optimal value of the penalty parameter λ was determined through a
five-fold cross-validation.

Utilizing the optimal λ value, we curated a list of prognostic genes, each associated with a coefficient (i.e.,
hazard ratio) that was not equal to zero. The risk score was derived by performing a linear combination
of the expression levels of the selected genes, with each expression level being weighted by its associated
coefficient, as described by the equation 1:

risk score =

n∑
i=1

Ci × Expi (1)

where Ci represents the coefficient of a gene and Expi its expression value.

The patients in each dataset were split into a low-risk and a high-risk group according to the median risk
score. Finally, the Kaplan–Meier estimator and the log-rank test were performed to assess the difference
in recurrence-free survival between the low-risk and high-risk groups.

Spatial visualization of predicted gene expression on tile level

To visualize predicted gene expression spatially on tile-level, we implemented a sliding-window method.
Starting from the left upper corner of the WSI, consider a window of 10 × 10 tiles. For clarity, we refer
to the location of the window by the (x, y) coordinate of the left upper tile in the window. Hence, the
window in the left upper corner has coordinate (0, 0) and is referred to as w0,0 (x, y axes defined as
in image processing, origin in left upper corner and x-axis increases when moving to the right, y-axis
increasing when moving below).

The 100 × 2048 feature vectors of tiles in the window wx,y are fed to the model (each individual tile
feature vector serves as a ‘cluster mean vector’). The resulting predicted gene expression gwx,y

is saved
for all tiles in the window. Then, the window is moved stride number of tiles to the right (wx+stride,y),
and the predicted gene expression is again saved for each tile in the window. When the window has
reached the end of a row (x + stride + 10 equals the width of the image), a new window is started at
position stride below the previous row (w0,y+stride). After the window has passed the entire WSI, the
prediction for each tile is calculated as the average of all values that were saved for that tile when it was
part of a window wx,y. In our implementation, we chose stride = 1 (larger strides require less compute
time but are less fine-grained).

For comparison of the predicted spatial gene expression with the spatial transcriptomics measurement in
the ground truth, we resampled the ground truth resolution to match the predicted resolution. Namely,
the ground truth resolution was 55µm per spot which is higher than the predicted resolution of 256µm
per spot. Hence, we compared each spot in the prediction with the average of the four nearest spots in
the ground truth (nearest in terms of smallest Euclidean distance between the x,y coordinates of the
spots). We also performed median filtering on the ground truth map to remove noise (window size 3×3)
and we only considered genes with >= 10 unique measured values in the spatial ground truth map (to
avoid incorporating noisy measurements). Finally, we converted both the predicted and ground truth
values to normalized percentile scores between 0-100.

Earth Mover’s Distance

For a quantitative evaluation of the spatial visualization capabilities of the model, we used the two
dimensional Earth Mover’s Distance (EMD) (implemented with the cv2.EMD function from opencv-
python [56]). Intuitively, the metric captures the minimum amount of ‘work’ required to transform one
distribution into the other. Often the two distributions are informally described as different ways of
piling up earth/dirt, and the ‘work’ to transform one distribution into another is defined as the amount
of dirt multiplied by the distance (Euclidean distance in our case) over which it is moved. Hence, this
metric takes into account the spatial context to determine how well the prediction map corresponds to
the ground truth. This is in contrast to pixel-level metrics which only take into account how correct a
certain pixel is irrelevant of its 2D location and context (e.g. calculating for each pixel the Mean Squared
Error between prediction and ground truth).

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2024. ; https://doi.org/10.1101/2023.09.28.560068doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.28.560068
http://creativecommons.org/licenses/by-nc-nd/4.0/


Spatial correlation analysis of GBM signature genes

To assess whether genes exhibiting similar spatial expression patterns are functionally related, we used
four recurrent meta-gene modules governing the transcriptional subtype and proliferation state of GBM
cells as discovered from a published single-cell RNA-seq study [46]. We included all signature genes
from these modules, except for those (N = 18 genes) not included in our training process. The neural-
progenitor-like (NPC-like) and oligodendrocyte-progenitor-like (OPC-like) modules were combined into
one group, namely ’lineage development’, which includes a total of 124 genes. Further, gene modules
regulating G1/S and G2/M phase transitions (N = 70 gens) were combined into a ’cell-cycle’ module.
Finally, the ‘mesenchymal-like’ (N = 92 genes) and ‘astrocyte-like’ (N = 39 genes) modules were
included as separate groups.

To assess spatial co-expression patterns, we determined the similarity of spatial prediction maps for
each pairwise combination of genes (N = 325 genes in total). This was accomplished by first flattening
the tile-level predictions into two 1D arrays and then computing the Pearson correlation between them.
This process was repeated in each slide, and the resulting correlation matrices were averaged across all
eighteen slides. The spatial correlation matrix was clustered using hierarchical clustering to reveal genes
that exhibit similar spatial expression patterns. We further assigned a color to each row and column in
the matrix indicating the meta-module each gene belongs to.

Code availability

Codes for data pre-processing, model training and evaluation were deposited into a public GitHub
repository (https://github.com/gevaertlab/sequoia-pub).

Data availability

Anonymized WSIs, gene expression and clinical data of the The Cancer Genome Atlas’
(TCGA) cohorts were retrieved from the publicly available Genomic Data Commons
(GDC) portal (https://portal.gdc.cancer. gov). Gene expression data of the Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC) cohort were downloaded from GDC portal
(https://portal.gdc.cancer. gov) and WSIs were obtained from the Cancer Image Archive
with the accession URL (https://www.cancerimagingarchive.net/collections). Gene expres-
sion data and WSIs of the Tempus cohort were obtained through a data transfer
agreement with Tempus Labs, Inc. Publicly available gene expression data and WSIs of
The Genotype-Tissue Expression (GTEx) project were retrieved with the accession URL
(https://gtexportal.org). The publicly available spatial transcriptomics data of GBM were acquired
from Datadryad using the following accession URL (https://doi.org/10.5061/dryad.h70rxwdmj)
[5]. The RNA-seq data and clinical annotations of the SCANB cohort were obtained
from the accession URL (https://data.mendeley.com/datasets/yzxtxn4nmd/3), and
data of the METABRIC cohort was obtained for cbioportal with accession URL
(https://www.cbioportal.org/study/summary?id=brca metabric).
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Appendix A Supplementary tables and figures

Table A1: Number of genes, Whole Slide Images and unique number
of patients used from each cancer type in TCGA.

TCGA project number genes number WSIs number patients
TCGA-BRCA 25,761 1,130 1,059
TCGA-LUAD 25,812 536 473
TCGA-LUSC 26,443 510 476
TCGA-GBM 26,530 237 102
TCGA-PRAD 25,587 448 401
TCGA-PAAD 26,172 202 176
TCGA-KIRP 25,141 299 275
TCGA-KIRC 26,653 514 508
TCGA-COAD 23,645 455 447
total 4,331 3,917

Table A2: Number of genes, Whole Slide Images and unique number
of patients used from each cancer type in CPTAC.

CPTAC project number genes number WSIs number patients
CPTAC-BRCA 25,761 106 106
CPTAC-CCRCC 26,653 302 211
CPTAC-COAD 23,645 103 103
CPTAC-GBM 26,530 94 94
CPTAC-LUAD 25,812 222 222
CPTAC-LSCC 26,443 109 108
CPTAC-PDA 26,172 146 146
total 1,081 989

Table A3: Number of genes, Whole Slide Images and unique num-
ber of patients used from each normal tissue in GTex.

GTex project number genes number WSIs number patients
GTex-Brain 19,198 238 238
GTex-Colon 19,198 405 405
GTex-Kidney 19,198 65 65
GTex-Lung 19,198 530 530
GTex-Pancreas 19,198 325 325
GTex-Prostate 19,198 239 239
total 1,802 1,802

Table A4: Number of genes significantly well predicted in the TCGA test sets. N
shows the total number of slides available for each cancer type.

he2rna scratch he2rna pretrain sequoia scratch sequoia pretrain
BRCA (N = 1130) 1,429 2,902 12,239 11,069
LUAD (N = 536) 413 601 9,747 8,759
KIRC (N = 514) 0 66 6,985 10,086
LUSC (N = 510) 22 6 5,269 4,919
COAD (N = 455) 2,348 464 6,090 7,740
PRAD (N = 448) 973 2,124 8,895 10,825
KIRP (N = 299) 626 336 8,884 7,905
GBM (N = 237) 983 1,303 4,208 2,498
PAAD (N = 202) 314 387 418 3,378
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Table A5: Median correlation coefficient between prediction and
ground truth in TCGA test set for top 1000 genes within each model.
Top genes defined as genes with highest correlation coefficient for each
model type.

he2rna scratch he2rna pretrain sequoia scratch sequoia pretrain
BRCA 0.120 0.200 0.327 0.282
LUAD 0.116 0.117 0.284 0.269
KIRC 0.090 0.108 0.229 0.300
LUSC 0.097 0.088 0.199 0.206
COAD 0.223 0.141 0.268 0.310
PRAD 0.128 0.205 0.321 0.303
KIRP 0.164 0.135 0.368 0.333
GBM 0.188 0.205 0.289 0.242
PAAD 0.169 0.164 0.173 0.265

Table A6: Median RMSE values between prediction and ground truth
in TCGA test set within each model.

he2rna scratch he2rna pretrain sequoia scratch sequoia pretrain
BRCA 0.559 0.476 0.456 0.449
LUAD 0.543 0.488 0.471 0.452
KIRC 0.576 0.457 0.379 0.386
LUSC 0.635 0.524 0.451 0.456
COAD 0.613 0.555 0.422 0.413
PRAD 0.693 0.388 0.352 0.348
KIRP 0.702 0.472 0.432 0.445
GBM 0.727 0.492 0.389 0.420
PAAD 0.906 0.695 0.376 0.395

Table A7: Number of genes validated in the CPTAC cohort using the HE2RNA
model versus the SEQUOIA model.

Cancer Abbreviation he2rna pretrain sequoia pretrain
Breast invasive carcinoma BRCA 11 (0.4%) 8,587 (78%)
Lung squamous cell carcinoma LUSC (LSCC) 0 (0.0%) 3,560 (72%)
Kidney renal clear cell carcinoma KIRC (CCRCC) 0 (0.0%) 7,259 (72%)
Lung adenocarcinoma LUAD 1 (0.1%) 5,330 (61%)
Glioblastoma multiforme GBM 0 (0.0%) 1,464 (59%)
Colon adenocarcinoma COAD 1 (0.2%) 3,941 (51%)
Pancreatic adenocarcinoma PAAD (PDA) 1 (0.3%) 1,177 (35%)

Table A8: Median Earth Mover’s Distance
between prediction and ground truth for top
500 genes from TCGA test set evaluated on dif-
ferent slides in spatial validation cohort.

slide ID median EMD slide ID median EMD

242 0.116 266 0.096
243 0.152 268 0.238
248 0.170 269 0.128
251 0.171 270 0.134
255 0.113 275 0.132
259 0.123 296 0.138
260 0.131 304 0.121
262 0.126 313 0.179
265 0.174 334 0.197
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Fig. A1: Characterization of the well-predicted genes. a) Venn diagram showing the number of well
predicted genes in the estrogen-receptor (ER) positive and ER negative breast cancer. b) The proportion of
protein-coding genes, miRNAs and lncRNAs among the well predicted genes from each cancer type. c) Circos
plot showing the biological processes associated with the well predicted genes in LUSC. d) Heatmap showing
the significant P values for the enrichment of cell-type signatures across cancer types. Color and size of the
circles represent the negative log-transformed P values. Integers represent the absolute gene count in each
category, and non-significant categories are left in blank. P values were adjusted for multiple testing using the
Benjamini–Hochberg method. e) Kaplan-Meier curves of recurrence-free survival in the METABRIC validation
dataset (n = 2,262 patients). Patients were split by the median risk score. HR: hazard ratio.22
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Fig. A2: P values for testing the distributions of correlation coefficients for the top 1,000 most
accurately predicted genes obtained from each model. A P value is calculated for each pairwise compar-
ison using a one-sided Mann-Whitney U test for the hypothesis that model x is larger than model y, formatted
on the left axis as x-y.

Fig. A3: P values for testing the distributions of RMSE values between each of the two models. A
P value was calculated for each pairwise comparison using a one-sided Mann-Whitney U test for the hypothesis
that model x is smaller than model y, formatted on the left axis as x-y.

Fig. A4: Data splitting. First, five folds are made each of which consist of a ‘global’ train and test set. The
‘global’ train set is further split into a train (90%) and validation (10%) set. In each fold i, validation set i is
used to determine the optimal point to stop training model i, which is then evaluated on test set i. Afterwards,
predictions on patients from test sets i (i = 1..5) are concatenated before calculating performance measures (e.g.
Pearson correlation between predicted gene expression and ground truth expression across patients).
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