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Abstract 31 
 32 
The human brain undergoes protracted post-natal maturation, guided by dynamic changes in 33 
gene expression. Most studies exploring these processes have used bulk tissue analyses, 34 
which mask cell type-specific gene expression dynamics. Here, using single nucleus (sn)RNA-35 
seq on temporal lobe tissue, including samples of African ancestry, we build a joint paediatric 36 
and adult atlas of 75 cell subtypes, which we verify with spatial transcriptomics. We explore 37 
the differences between paediatric and adult cell types, revealing the genes and pathways 38 
that change during brain maturation. Our results highlight excitatory neuron subtypes, 39 
including the LTK and FREM subtypes, that show elevated expression of genes associated with 40 
cognition and synaptic plasticity in paediatric tissue. The new resources we present here 41 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2024. ; https://doi.org/10.1101/2023.09.29.560114doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.560114
http://creativecommons.org/licenses/by-nc-nd/4.0/


improve our understanding of the brain during its development and contribute to global 42 
efforts to build an inclusive brain cell map. 43 
 44 
Introduction 45 
 46 
The adult human brain is a complex assembly of diverse cell types, which has been defined 47 
with unprecedented accuracy using single cell transcriptomics1-4. This adult transcriptomic 48 
signature is set up over a protracted period of development, which begins in the embryo and 49 
continues after birth. While the single cell diversity of the embryonic human brain has been 50 
explored5,6, little is known about how these cell type-specific gene expression profiles change 51 
during childhood7. Most existing studies have used bulk transcriptomic approaches, which 52 
revealed a dramatic period of global gene expression change during the late foetal/early 53 
infancy transition, that stabilises during childhood (1 to <12-years-old) and adolescence (12 54 
to <20-years-old)6,8-11. Bulk transcriptomics, however, cannot reveal the more subtle, cell 55 
type-specific changes in gene expression that drive brain maturation from childhood, 56 
through adolescence to adulthood. 57 

Childhood and adolescence are periods of important changes in brain structure, during which 58 
neuronal connections are refined and strengthened. While synaptogenesis peaks in the early 59 
postnatal period, synaptic pruning activity begins during late childhood, peaks during 60 
adolescence, and then gradually decreases12-14. These stages therefore represent periods of 61 
enhanced susceptibility to environmental influence, as well as increased neuropsychiatric 62 
risk15. Describing the typical cell type-specific gene expression trajectories of the maturing 63 
brain will allow us to assess the effects of genetic perturbations and early adverse experiences 64 
on brain maturation. Furthermore, investigating the driving forces behind cell type-specific 65 
maturational processes may help develop targeted therapies for neurological disease16.  66 

To this end, the Paediatric Cell Atlas (PCA)17, a branch of the Human Cell Atlas (HCA)3, aims to 67 
ensure that the benefits of single cell transcriptomics are available to children as well as adults 68 
from diverse populations3,17. Africa has the most genetically diverse18 and youngest 69 
population19 worldwide and by 2050, 37% of the world’s children will grow up in Africa20. 70 
Consequently, it is essential to include the African paediatric population in the PCA’s efforts. 71 
A reference paediatric brain cell atlas that includes data from African donors will contribute 72 
to developing treatments for locally prevalent conditions, such as tuberculosis meningitis 73 
(TBM) and HIV21,22. In addition, studying the differences in gene expression dynamics between 74 
adult and paediatric brains may explain why the manifestation of neurological conditions and 75 
responses to therapies differ across the lifespan17.  76 

To contribute to these endeavours, we present a joint paediatric and adult temporal cortex 77 
cell atlas, including samples from eight Southern African donors, annotated using the Allen 78 
Brain Map middle temporal gyrus (MTG) cell taxonomy1. We validate our annotation using 79 
spatial transcriptomics analysis. In addition, we use de novo marker gene analysis with 80 
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machine learning tools to compare our paediatric and adult datasets to the existing MTG cell 81 
taxonomy and compare markers that define paediatric versus adult cell states. Using 82 
differential gene expression analysis, we highlight 21 cell subtypes that show differential 83 
expression of genes involved in neurodevelopment and cognition. Finally, we use our datasets 84 
to define the cell type-specific gene expression of putative site-of-disease TBM biomarkers23. 85 
Overall, we highlight the subtle cell type-specific differences between the paediatric and adult 86 
brain and expand the representation of diverse paediatric populations in the HCA.  87 

 88 
Results 89 
 90 
A joint paediatric and adult temporal cortex cell atlas 91 
 92 
We generated snRNA-seq libraries from five paediatric and three adult donor temporal cortex 93 
tissue samples. The majority of our samples were obtained from surgeries to treat epilepsy 94 
(Extended Data Table 1). These new libraries were analysed alongside similar published 95 
datasets24, resulting in a total of 23 snRNA-seq datasets (including technical replicates) from 96 
12 individuals (six paediatric and six adult) (Fig. 1a). The samples were sequenced to a median 97 
depth of 19,853 reads per nucleus, with 176,012 nuclei remaining after removing low quality 98 
barcodes (Extended Data Fig. 1, Extended Data Table 2). While our new datasets had a lower 99 
average sequencing depth than the co-analysed published datasets, the average number of 100 
genes and transcripts detected across datasets was similar (Extended Data Table 2). 101 
 102 
Using data integration and clustering we aligned similar cell types across the 23 datasets, 103 
yielding 40 clusters (Fig. 1a, Extended Data Fig. 1i-h). Each cluster was assigned to one of the 104 
major brain cell types (level 1 annotation) based on marker gene expression (Extended Data 105 
Fig. 2a, Extended Data Table 3, Supplementary Figure 1). Additionally, we used label transfer25 106 
to classify each nucleus according to the Allen Brain Map MTG atlas1 (level 2 annotation) 107 
(Extended Data Table 3). Barcodes with discordant level 1 and level 2 annotations (17.94%) 108 
were removed to focus downstream analyses on nuclei with high confidence annotations 109 
(Extended Data Table 3). Based on marker gene analysis1 (Extended Data Fig. 2b), many of 110 
these filtered barcodes are likely multiplets or nuclei contaminated with ambient mRNA.  111 
 112 
All 75 reference cell types were present in the final filtered dataset of 144,438 nuclei (Fig. 1b; 113 
Extended Data Table 3) and expressed the expected marker genes1 (Fig. 1d). Both neuronal 114 
and non-neuronal cell types showed high correlation with the corresponding reference cell 115 
types1 (cosine similarity score  > 0.83) and lower correlation to other subtypes within their 116 
class (Fig. 1e).  This pattern was maintained when we considered either the paediatric or adult 117 
datasets on their own, with the majority of paediatric cell types showing only slightly lower 118 
similarity scores than the adults (Extended Data Table 3), which is likely due to the reference 119 
dataset only containing adult data. The cell composition of the samples was very similar with 120 
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no significant differences in cell type proportions between paediatric and adult samples or 121 
between biological sexes (Fig. 1c; Extended Data Figure 2c-d; Extended Data Table 3). Similar 122 
to the reference atlas1, oligodendrocytes were the most common non-neuronal cell type and 123 
Exc_L2-3_LINC00507_FREM3 was the most common neuronal subtype. Neuronal clusters had 124 
a greater number of expressed genes and unique molecular identifiers (UMIs) compared to 125 
non-neuronal cells (Extended Data Figure 3a), while excitatory neurons had a greater number 126 
of genes detected per nucleus than inhibitory neurons (Extended Data Table 3). When 127 
comparing the paediatric to adult cell types, there were no significant differences in the 128 
number of genes or UMIs between the age categories. Overall, the quality and composition 129 
of the paediatric and adult cell atlases were very similar.  130 
 131 
 132 
Spatial mapping of cell types reveals similar tissue cytoarchitecture in adult and paediatric 133 
temporal cortex 134 
 135 
Next, we used spatial transcriptomics to explore the positions of our annotated cell types 136 
within the temporal cortex. We generated Visium datasets from adult (31-year-old) and 137 
paediatric (15-year-old) temporal cortex samples (two sections each; Extended Data Table 1; 138 
Extended Data Fig. 4). The four Visium libraries were sequenced to a median depth of 87,178 139 
reads per spot (median of 5,878 UMIs and 2,745 genes per spot) (Extended Data Table 4).  140 
 141 
Using cell2location26, we calculated cell type abundance estimates for each Visium spot, with 142 
our annotated snRNA-seq dataset as a reference. Oligodendrocytes were the most common 143 
cell type, while Exc_L2_LAMP5_LTK was the most abundant neuronal cell type (Extended Data 144 
Fig. 5a). The annotated cell types mapped to their expected cortical layer locations across all 145 
tissue sections (Fig. 2a; Extended Data Fig. 5b), matching the spatial expression of known 146 
cortical layer marker genes1,27,28 (Fig. 2b). These layered expression patterns were verified for 147 
a subset of layer-specific marker genes using in situ hybridisation (Extended Data Fig. 6).  148 

To examine the co-location of cell types within the layered structure of the temporal cortex, 149 
non-negative matrix factorization (NMF) was performed resulting in 15 cellular 150 
compartments, which were visualised across the Visium samples, revealing their spatial 151 
distribution (Fig. 2c-d, Extended Data Fig. 5c). In both the paediatric and adult datasets, there 152 
was clear co-location of the expected neuronal cell types within overlapping compartments 153 
across the cortical layers. Layer 2 was dominated by Exc_L2_LAMP5_LTK (factor_11) and 154 
Exc_L2-3_LINC00507_FREM (factor_5), layer 3 by Exc_L3-4_RORB_CARM1P1 (factor_13), 155 
layer 4 by the RORB excitatory neuron subtypes (factor_12), layer 5 by the THEMIS excitatory 156 
neuron subtypes (factor_10) and layer 6 by the FEZF2 excitatory neuron subtypes (factor_14 157 
and factor_1), with the latter extending into the white matter. Inhibitory neurons were 158 
primarily associated with factors 6 and 2, which were more widely spread across the layers. 159 
Interestingly, these factors were more strongly associated with layers 5/6 in the adult than in 160 
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the paediatric samples. The two astrocyte subtypes were confirmed to have distinct 161 
distribution profiles, with Astro_L1-2_FGFR3_GFAP (factor_4) located primarily in layer 1 and 162 
the white matter, and Astro_L1-6_FGFR3_SLC14A1 (factor_9) more widely distributed. The 163 
remaining non-neuronal cell types were largely associated with factors located in layer 1 and 164 
the white matter.  165 

Overall, our spatial transcriptomic analyses provide support for our annotation approach, 166 
showing the expected spatial distribution of annotated cell types, and revealing a largely 167 
similar tissue cytoarchitecture in adult and paediatric temporal cortex tissue.  168 

 169 

A machine learning approach identifies new temporal cortex cell type markers 170 
 171 
To establish a standardized approach for defining cell types, it has been proposed to use the 172 
minimum combination of gene markers that can classify a cell type and distinguish it from 173 
other cell types29,30. Towards achieving this, Aevermann et al. (2021)29 developed the machine 174 
learning tool, NS-Forest V2.0, which they applied to the MTG cell atlas. Ideally, these MTG 175 
minimal markers would be conserved in similar datasets to facilitate accurate comparisons 176 
across different studies31. Indeed, we found that the majority of MTG cell atlas minimal 177 
markers29 (~94%) are expressed at significantly higher levels in the expected cell types than 178 
in other cell types (Extended Data Fig. 7, Extended Data Table 5).  179 
 180 
Application of the NS-Forest V2.029 algorithm to our down-sampled snRNA-seq datasets (see 181 
Methods) revealed 202 paediatric and 196 adult minimal marker genes (Fig. 3; Extended Data 182 
Table 5). The median F-beta score per cell type (the measure of the discriminative power of a 183 
given combination of marker genes; paediatric=0.55; adult=0.6) and  the average binary 184 
expression score (a measure of an individual gene’s classification power; paediatric=0.9; 185 
adult=0.89) were comparable across age groups and only slightly lower than that obtained 186 
for the MTG cell atlas (0.68 and 0.94 respectively)29. 47 paediatric (23.3%) and 45 adult 187 
(23.0%) minimal markers overlapped with existing markers29 (Fig. 3; Extended Data Table 5). 188 
However, there was a greater overlap in minimal markers between the paediatric and adult 189 
datasets, with 68 markers (~34%) present in both lists. MERFISH32 spatial transcriptomic 190 
analysis of a subset of minimal makers that were shared between paediatric and adult 191 
datasets confirmed their co-expression with previously described minimal markers29 in adult 192 
(31-year-old) and paediatric (15-year-old) temporal cortex samples (Extended Data Fig. 8). 193 
 194 
Our minimal marker analysis revealed improved markers for some cell types when compared 195 
to the reference MTG cell atlas. In our datasets, the long non-coding RNA, LINC01331, is a 196 
minimal marker for Exc_L2-3_LINC00507_FREM3 with a beta score of 1, indicating high 197 
specificity. In contrast, one of the existing markers for this cell type, PALMD, is more highly 198 
expressed in endothelial cells in our datasets (Fig. 3; Extended Data Fig. 9a-b). This 199 
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discrepancy is likely due to the lower percentage of endothelial cells in the MTG cell atlas 200 
compared to our datasets (0.06% vs 0.9%)1. Similarly,  one of the existing MTG cell atlas 201 
markers for Exc_L5-6 _THEMIS_CRABP1, OLFML2B, is more highly expressed in other layer 202 
5/6 neurons in our dataset, whereas our minimal marker, POSTN, shows greater specificity 203 
(Fig. 3; Extended Data Fig. 9c-d). Additionally, UMAP analysis of our annotated datasets using 204 
our minimal marker gene list for each age group, in comparison to an equivalent number of 205 
random genes, resulted in better grouping of the cell subtypes into clusters, similar to the 206 
original UMAP plot (compare Fig. 1a and Fig. 4 a-b). This analysis reveals that our shortlists of 207 
~200 marker genes capture much of the underlying transcriptomic diversity in our datasets.  208 
 209 
Gene ontology (GO) analysis of our minimal marker gene lists revealed significant enrichment 210 
of GO terms related to development, cell signalling, extracellular matrix and synapse 211 
organisation, when considering the paediatric and adult datasets individually or together 212 
(Extended Data Table 6). These results suggest that genes involved in neuronal development 213 
and signalling are key to neuronal identity as the brain matures and in adult life. To further 214 
assess the difference in cell type markers between our paediatric and adult datasets, we 215 
expanded our analysis to include all genes with a high NS-Forest binary expression score (> 216 
0.7)29. For most cell types, the majority of these top markers (>18 genes) were shared 217 
between our paediatric and adult datasets (Fig. 4c; Extended Data Tables 7-8). The 218 
oligodendrocytes showed the highest number of shared marker genes (53), as well as the 219 
second highest number of paediatric-specific markers (22). Exc_L3-4_RORB_CARM1P1 had 220 
the highest number of adult-specific marker genes (30), while Exc_L2-4_LINC00507_GLP2R 221 
had no shared markers.  GO analysis of the shared oligodendrocyte marker genes revealed 222 
driver terms related to oligodendrocyte structure and function, including “structural 223 
constituent of myelin sheath”, while the top driver terms for the paediatric-specific markers 224 
were “oligodendrocyte differentiation” and “myelination” (Extended Data Table 6). Overall, 225 
our expanded marker gene analysis suggests that neuronal cell types show greater 226 
dissimilarity between their paediatric and adult states than non-neuronal cells. It is likely that 227 
more diversity in the non-neuronal marker gene profiles could be revealed with subdivision 228 
into further subtypes.  229 
 230 
 231 
Differential gene expression analysis highlights enriched expression of genes associated 232 
with neurodevelopment in paediatric samples. 233 
 234 
To identify genes that were upregulated in the paediatric cell populations and thus might be 235 
involved in brain maturation, we conducted cell type-specific differential gene expression 236 
analysis with DESeq233.  In total, we detected 165 significantly differentially expressed genes 237 
(DEGs) across 21 cell types (123 upregulated in paediatric samples and 42 downregulated), 238 
with some DEGs associated with multiple cell types (Fig. 5a; Extended Data Table 9-10).  For 239 
all DEGs, the change in expression was accompanied by a corresponding change in the 240 
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percentage of nuclei expressing the gene (Extended Data Table 10). BayesSpace34 analysis of 241 
a subset of DEGs in our Visium datasets confirmed that the genes were expressed at higher 242 
levels in the 15-year-old compared to the 31-year-old (Extended Data Fig. 10).  243 
 244 
Many of the excitatory neuron subtypes shared DEGs that are known to be developmentally 245 
regulated in the mammalian brain (Fig. 5b-e,h). LAMC3, a subunit of the extracellular matrix 246 
protein laminin, was upregulated in three paediatric subtypes (Exc_L3-5_RORB_ESR1, Exc_L2-247 
3_LINC00507_FREM3, Exc_L4-5_RORB_FOLH1B) (Fig. 5b-d,h). LAMC3 plays a role in cortical 248 
lamination in the mouse35 and mutations are implicated in human brain heterotopias and 249 
gyration defects36,37. Similarly, S0X11, a transcription factor that plays a role in embryonic and 250 
adult neurogenesis in the mouse brain38 and decreases in expression in the cerebral cortex 251 
during development39,40, was upregulated in paediatric Exc_L3-5_RORB_ESR1 and Exc_L2-252 
3_LINC00507_FREM3 (Fig. 5b-c,h). FNBP1L (TOCA-1) was upregulated in Exc_L2-253 
3_LINC00507_FREM3 and Exc_L2_LAMP5_LTK (Fig. 5c,e,h). FNBP1L promotes actin 254 
polymerisation, regulating neurite outgrowth, and declines in expression over the course of 255 
brain maturation in the rat41. Two genes, STEAP2, a metalloreductase, and the TNF receptor 256 
TNFRSF25 (DR3), were higher in adult Exc_L3-5_RORB_ESR1 and Exc_L4-5_RORB_FOLH1B 257 
subtypes (Fig. 5b,d,h). STEAP2 increases in expression during post-natal hippocampal 258 
maturation in mice42. TNFRSF25 is activated post-natally in the mouse brain, where it may 259 
play a role in retention of motor control during aging43. These findings indicate that previously 260 
reported expression dynamics for these genes in mammalian models are conserved in the 261 
human temporal cortex. Importantly, our analysis reveals these patterns are specific to 262 
groups of excitatory neuron subtypes. 263 
 264 
The majority of the DEGs were not shared across the cell types. For example, FGF13 (FHF2) 265 
and TENM1 were upregulated in paediatric Exc_L3-5_RORB_ESR1 (Fig. 5b). FGF13 decreases 266 
in expression with age in the mouse brain, where it regulates post-natal neurogenesis44 and 267 
axonal formation45. TENM1 is a member of the teneurin transmembrane protein family that 268 
regulates cytoskeletal organisation and neurite outgrowth, as well as shaping synaptic 269 
connections46-48. KCNG1, a voltage gated-potassium channel (Kv6.1), was upregulated in 270 
paediatric Exc_L2-3_LINC00507_FREM3 neurons (Fig. 5c), while MYO16 (MYR8), an 271 
unconventional myosin protein, was upregulated in the Exc_L2_LAMP5_LTK subtype (Fig. 5e). 272 
Both of these genes decrease in expression with age in the mammalian brain49,50.  273 
 274 
In line with our minimal marker analyses, fewer genes were differentially expressed in non-275 
neuronal cells (Fig. 5f-g, Extended Data Table 10). In Astro_L1-6_FGFR3_SLC14A1, PIK3R3 was 276 
upregulated in paediatric samples, while PFKFB2 was downregulated. PIK3R3 is involved in 277 
the PI3K-AKT growth signalling pathway, which is implicated in brain growth disorders51. 278 
PFKFB2 is a bifunctional kinase/phosphatase that controls glycolysis. In contrast to our 279 
findings, PFKFB2 expression is higher in juvenile rat hippocampal astrocytes than in adults, 280 
where it may support energy demands during learning52. In oligodendrocytes, NOTCH2 and 281 
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RRAS2 were both upregulated in paediatric samples. Notch2 expression decreases in the rat 282 
cortex with age53 and is proposed to regulate glial differentiation54. These results provide new 283 
molecular candidates to expand our understanding of the mechanisms of astrocyte and 284 
oligodendrocyte maturation. 285 
 286 
To explore the trajectories of DEG expression, we employed psupertime pseudotime 287 
trajectory analysis55, focussing on the four excitatory neuron sub-types with the highest 288 
number of DEGs. In support of our DESeq2 findings, several of the identified DEGs had non-289 
zero psupertime coefficients  and therefore represent genes that are relevant to the ordering 290 
of the cells in pseudotime55 (Fig. 5i; Exc_L3-5_RORB_ESR1: 13/47 [28%], Exc_L2-291 
3_LINC00507_FREM3: 16/38 [42%], Exc_L4-5_RORB_FOLH1B 3/27 [11%] and 292 
Exc_L2_LAMP5_LTK: 5/18 [28%]; Extended Data Table 11). When considering the pseudotime 293 
trajectories for all DEGS in these excitatory neuron subtypes, the direction of the expression 294 
matched the DESeq2 results (Supplementary Fig. 2-5). The pseudotime trajectories revealed 295 
subtle expression dynamics within the analysed sample groups, showing that the majority of 296 
DEGs  gradually increase in expression with age from childhood to adolescence, followed by 297 
a decrease in expression towards late adulthood.  298 
 299 
Genes associated with intelligence quotient (IQ) and educational attainment (EA), as well as 300 
those associated with accelerated evolution in humans, have recently been shown to be 301 
enriched in adult temporal lobe cortical neurons, especially the Exc_L2-3_LINC00507_FREM3 302 
subtype56. Since childhood is a key period of cognitive development57, we explored whether 303 
the same genes were found amongst our DEGs. Of the 149 DEGs found in at least one cell 304 
type, 20 (13.42%, p=0.02) are known to be significantly associated with EA58, 6 (4.02%, p=0.7) 305 
with IQ59 and 30 (20.13%, p=3.89E-07) with accelerated evolution in humans60. These 306 
included several genes that are upregulated in paediatric samples, such as MYO16, KCNG1, 307 
FGF13 and SOX11 (Extended Data Table 10). 308 
 309 
Overall, we highlight several genes that are upregulated in children/adolescents which have 310 
known roles in brain development and have been associated with cognitive ability. Our 311 
analysis builds on previous knowledge by implicating specific cell subtypes and provides new 312 
candidate genes that likely contribute to cell type-specific maturation processes. 313 
 314 
Gene pathways involved in cellular respiration and synaptic functioning are enriched in 315 
paediatric cell types  316 
 317 
We next used gene set enrichment analysis (GSEA) to conduct a broad analysis of the gene 318 
pathways that are differentially regulated across all brain cell types during brain maturation.  319 
2,006 GOBP terms where enriched in the paediatric samples compared to the adults, while 320 
866 were depleted (p<0.01 and q<0.1) (Extended Data Table 12). When focussing on the 25 321 
most frequently enriched terms, the majority (10 terms) were associated with cellular 322 
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respiration pathways (Fig. 6; Extended Data Table 12). Six were associated with intra-cellular 323 
transport, including transport of neurotransmitters, while five were linked to 324 
neurotransmitter release and synaptic plasticity. Three terms, including the top enriched 325 
term, were associated with protein translation and modification. The majority of depleted 326 
terms (10 terms) were associated with synaptic processes (Fig. 6). A further six depleted terms 327 
were connected to neuronal morphogenesis, including axon and dendrite morphogenesis. 328 
Two of the top depleted terms were associated with axon ensheathment. Interestingly, 329 
neither of these terms were significantly enriched in oligodendrocytes or OPCs, while they 330 
were associated with neuronal sub types, and microglia. 331 
 332 
Overall, our GSEA analysis points towards putative genetic pathways that may drive 333 
maturation in the paediatric brain. Cellular respiration processes needed to support the 334 
higher metabolic rates in the brain during childhood61 may be enriched. Additionally, 335 
pathways related to strengthening synapses through neurotransmitter release may be 336 
enhanced. On the other hand, as synaptic pruning is underway62, pathways that promote 337 
synaptic growth may need to be suppressed.  338 
 339 
Cell type-specific expression of site-of-disease TBM biomarkers 340 
 341 
The PCA aims to create reference atlases that can be used to improve our understanding of 342 
cell type-specific responses to disease in children17. Here, we used our snRNA-seq datasets to 343 
interrogate the cell type-specific expression of putative genetic biomarkers for TBM23. These 344 
biomarkers are enriched in the ventricular cerebrospinal fluid from children with TBM in 345 
comparison to controls with meningitis caused by other brain infections23.  346 
 347 
66 of the 76 TBM biomarkers were expressed in our dataset, with similar expression across 348 
the two age groups, and genes clearly clustering according to their relative expression across 349 
the broad cell type categories (Extended Data Fig. 11). The genes with the highest relative 350 
expression in our data were expressed by non-neuronal cell types, which is in line with the 351 
view that immunological activity of supporting cells and their intercellular signalling 352 
interactions are important drivers of the immune response to TBM63. Several of these 353 
biomarkers (e.g. FADS2, AMOT and ALDH6A1) were enriched in the two astrocyte subtypes, 354 
potentially pointing towards a prominent role for astrocytes in the host response to TBM.  355 
 356 
Our analyses also clearly revealed subsets of biomarkers that are more highly expressed by 357 
neuronal subtypes than non-neuronal cell types. This included biomarkers that were 358 
associated with Exc_L2_LAMP5_LTK, Exc_L2-4_LINC00507_GLP2R and Exc_L5-359 
6_THEMIS_C1QL3 (LYNX1, FAIM2, MAP1A, TUBB4A). This is line with the finding that neuronal 360 
excitotoxicity is elevated in TBM23 and suggests that specific excitatory neuron subtypes may 361 
be contributing to this signal. 362 
 363 
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Interestingly, the two most enriched genes in the TBM biomarker dataset, CXCL9 and CXCL11, 364 
were either completely absent from our datasets (CXCL11) or expressed by very few nuclei 365 
(CXCL9). The absence of these interferon-inducible chemokines in our datasets from 366 
uninfected tissue, supports the proposition that they are indeed biomarkers from the site-of-367 
disease64 in both adults and children with TBM, and could also reflect the contribution of 368 
peripheral immune cells recruited to the brain during infection. 369 
 370 
 371 
Discussion 372 
 373 
The brain is the most complex organ in the human body, which continuously changes as we 374 
mature. Here, we begin to unmask the molecular mechanisms guiding these processes in the 375 
temporal cortex, using single cell and spatial transcriptomics to compare similar cell types 376 
between paediatric and adult datasets.  377 
 378 
To facilitate accurate comparisons of cell types across age groups, we used the existing Allen 379 
Brain Map MTG cell atlas1 to annotate our datasets. This demonstrated that the reference 380 
atlas, generated from adult snRNA-seq datasets, is indeed generalisable31, and can be used 381 
to classify cell types from samples of different ages. This generalisability is essential for 382 
healthy human reference atlases to serve as a baseline to improve our understanding of 383 
human development and disease3. Our samples and those in the reference MTG cell atlas 384 
include neurosurgical tissue from donors with epilepsy, and while the analysed tissue is not 385 
from the site of pathology, it is important to view our findings in light of the patient diagnosis. 386 
Previous research comparing gene expression between the neurosurgical and post-mortem 387 
samples used in the reference MTG cell atlas found a strong correlation of expression 388 
between cell types across conditions1. In addition, a comparison of samples from 45 adult 389 
donors with epilepsy to the post-mortem samples from the reference MTG cell atlas found a 390 
similar number of genes and similar cell abundance per cell subclass across tissue sources, 391 
however they did find more variation for these parameters in neurosurgical samples65. As 392 
more paediatric MTG samples of post-mortem and neurosurgical origin become available, it 393 
will be important to conduct similar analyses to determine if these findings hold for the 394 
paediatric temporal cortex.  395 
 396 
Our machine-learning marker gene analysis shows that while the cell type classifications, 397 
which are based on the expression of thousands of genes, can be transferred onto new 398 
datasets, the minimal markers that define the cell types do vary across datasets. Only a 399 
quarter of our NS-Forest minimal markers overlap with the existing MTG cell atlas minimal 400 
markers29. The differences in the single cell transcriptomics technologies used to generate 401 
our dataset and the MTG cell atlas may account for much of this discrepancy. Nonetheless, 402 
our analyses suggest that some of our markers may provide better discrimination between 403 
cell types than existing markers. These results highlight a challenge that the HCA faces to 404 
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revise cell type markers as more datasets are made available to ensure that the cell type 405 
classification is as widely applicable as possible.  406 
 407 
Similar to analyses of aging in the mouse66, our analyses show there is little change in cell type 408 
composition within the temporal cortex during human brain maturation. However, our 409 
differential expression analysis highlights differences in cell states between specific paediatric 410 
and adult cell subtypes. Recently, the supragranular excitatory pyramidal neurons in the MTG 411 
have been shown to have high transcriptional diversity1,67, large arborisations68 and 412 
electrophysiological properties that impact signal integration and encoding69-72 in ways that 413 
may contribute to cognition. Since cognitive ability is a key feature that is established during 414 
childhood68, our analysis offers an opportunity to explore how cell type-specific gene 415 
expression dynamics contribute to cognitive development. Interestingly, two of the 21 416 
highlighted cell types were the layer 2/3 excitatory neurons, Exc_L2_LAMP5_LTK and Exc_L2-417 
3_LINC00507_FREM3, that have recently been associated with human cognition56. In line with 418 
these findings, several of the DEGS associated with these cell types, including FNBP1L73 and 419 
SOX1174, have been implicated in cognitive ability and intelligence. Overall, our data points 420 
towards genes that may play roles in cognitive development specifically within these 421 
excitatory neurons. 422 
 423 
The relatively low number of genes implicated in our differential expression analysis in 424 
comparison to similar studies in mouse66 suggests that the difference between the paediatric 425 
and adult brain are subtle. However, the inherent high variability in human gene expression 426 
data may mask some of the differential gene expression in our limited sample. Nonetheless, 427 
our pseudotime trajectory analyses reveals some of the expression dynamics that may be 428 
occurring during childhood, with many genes rising in expression towards adolescence and 429 
dropping off in adulthood.  As the HCA database for the human temporal cortex expands, it 430 
will be important to build on these analyses with more samples.  Binning of samples of similar 431 
age will provide a higher resolution analysis of cell type-specific gene expression trajectories 432 
over the course of brain maturation.  433 
 434 
Finally, we have provided the first single nucleus gene expression datasets for the brain that 435 
includes data from black Southern African donors, thus increasing the diversity of the HCA 436 
database. We demonstrate how this resource can be used to deconvolute site-of-disease 437 
biomarker analyses for TBM, pinpointing which cell types may be driving altered gene 438 
expression profiles in the brain.  Importantly, these investigations have the potential to 439 
contribute to the development of effective treatments, that are tailored to specific needs of 440 
both adult and paediatric patients.    441 
 442 
 443 

Methods  444 
 445 
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Human samples 446 
Ethical approval was granted for the collection and use of paediatric and adult human brain 447 
tissue by the University of Cape Town Human Research Ethics Committee (UCT HREC REF 448 
016/2018; sub-studies 146/2022 and 147/2022). The human brain tissue samples used to 449 
generate new datasets were obtained by informed consent for studies during temporal lobe 450 
surgical resections to treat epilepsy and/or cancer performed at the Red Cross War Memorial 451 
Children’s Hospital and Constantiaberg Mediclinic in Cape Town, South Africa. The samples 452 
used in this study were of temporal cortex origin and represent radiologically 453 
and macroscopically normal neocortex within the pathological context (details in Extended 454 
Data Table 1). Race was recorded by the clinical teams based on their knowledge of the 455 
donors. The category “black South African” includes both black and mixed race ancestries. 456 
Upon resection, samples were placed in carbogenated ice-cold artificial cerebral spinal fluid 457 
(aCSF) containing in (mM): 110 choline chloride, 26 NaHCO3, 10 D-glucose, 11.6 sodium 458 
ascorbate, 7 MgCl2, 3.1 sodium pyruvate, 2.5 KCl, 1.25 NaH2PO4, and 0.5 CaCl2 (300 mOsm) 459 
and immediately transported to the laboratory (~20 minutes). Tissue blocks containing the 460 
full span from pia to white matter were prepared and either flash frozen in liquid nitrogen or 461 
embedded in optimal cutting temperature compound (OCT) and stored at -80°C. The OCT-462 
embedded samples were flash frozen in a 10×10 mm2 cryomold which was either frozen 463 
directly in liquid nitrogen or placed in a container of isopentane (Merck) which was in turn 464 
placed in liquid nitrogen at the same level as the isopentane. The publicly available snRNA-465 
seq datasets24, generated from samples obtained during elective surgeries performed at 466 
Universitair Ziekenhuis Leuven, Belgium, were downloaded from the Sequence Read Archive 467 
database. 468 
 469 
Nuclei isolation for snRNA-seq  470 
Nuclei were isolated according to a protocol adapted from Habib et al. (2017)75 and the 10X 471 
Genomics nuclei isolation protocol (CG000124, User Guide Rev E). Frozen brain tissue was 472 
homogenised in a dounce-homogeniser containing 2 ml ice-cold lysis solution (Nuclei EZ Lysis 473 
Buffer [Sigma-Aldrich, NUC101] or Nuclei PURE Lysis buffer [Sigma-Aldrich, NUC201] with 1 474 
mM dithiothreitol [DTT, Promega, P1171, US] and 0.1% Triton X-100 [Sigma-Aldrich, NUC201-475 
1KT, US]). Homogenisation was done 20 times with the loose pestle A followed by 20 times 476 
with the tight pestle B. An additional 2 ml lysis solution was added, and the sample was 477 
incubated for 5 minutes on ice. The sample was centrifuged at 500 x g for 5 minutes at 4°C 478 
after which the supernatant was discarded and the nuclei resuspended in 3 ml ice cold nuclei 479 
suspension buffer (1x phosphate-buffered saline [PBS, Sigma-Aldrich, P4417-50TAB, US]), 480 
0.01% bovine serum albumin [BSA, Sigma-Aldrich, A2153-10G, US], and 0.2 U/µl RNAsin Plus 481 
RNase inhibitor [Promega, N2615, US]). Resuspended nuclei were passed through a 40 µm 482 
filter and centrifuged at 900 x g for 10 minutes at 4°C. The supernatant was discarded and 483 
pelleted nuclei were resuspended in 3 ml blocking buffer (1xPBS [Sigma-Aldrich, P4417-484 
50TAB, US], 1% BSA [Sigma-Aldrich, A2153-10G, US], 0.2 U/µl RNAsin Plus RNase inhibitor 485 
[Promega, N2615, US]).  486 
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 487 
To remove myelin debris, 30 µl of myelin removal beads [Miltenyi Biotec. 130-096-733, US] 488 
was added to the solution which was mixed by gently pipetting 5 times. The sample was 489 
incubated for 15 minutes at 4°C after which it was mixed with 3 ml blocking buffer and 490 
centrifuged at 300 x g for 5 minutes at 4°C. The supernatant was removed and the nuclei were 491 
resuspended in 2 ml clean blocking buffer. The sample was transferred to a 2 ml tube and 492 
placed on a Dynamag magnet for 15 minutes at 4°C. The supernatant was transferred to a 493 
new tube and stored on ice. An aliquot of trypan blue stained nuclei was counted using a 494 
haemocytometer to determine the nuclei concentration and the volume to use in snRNA-seq 495 
library preparation.  496 

 497 
10X Genomics snRNA-seq library preparation 498 
snRNA-seq library preparation was carried out using the 10x Genomics Chromium Next Gem 499 
Single Cell 3’ Reagent Kit (v3.1) according to manufacturer’s protocols (CG000204, User Guide 500 
Rev D), targeting 10,000 nuclei per sample. At step 2.2d and 3.5e, the libraries were amplified 501 
using 11 cycles and 13 cycles, respectively. Library quality and concentration was assessed 502 
using either the TapeStation or Bioanalyser (Agilent) and Qubit (Invitrogen) at the Central 503 
Analytical Facility (CAF, University of Stellenbosch). cDNA libraries were sequenced by 504 
Novogene (Singapore) on either the Illumina HiSeq or NovaSeq system using the Illumina High 505 
Output kits (150 cycles).  506 
 507 
snRNA-seq read alignment and gene expression quantification 508 

Fastq files were aligned to the human reference transcriptome (GRCh38) and quantified using 509 
the count function from the 10X Genomics Cell Ranger v6.1.1 software (Cell Ranger, RRID 510 
SCR_017344) (Code availability: script 1). The inclusion of introns was specified in the count 511 
function. An automatic filtering process was performed to remove barcodes corresponding 512 
to background noise which have very low UMI counts.  513 
 514 
snRNA-seq quality control 515 
The resulting count matrices were processed using a pipeline adapted from the Harvard Chan 516 
Bioinformatics Core (https://hbctraining.github.io/scRNA-seq_online/). The filtered gene 517 
barcode matrix for each sample was imported into R (V.4.2.0) using the Read10X function 518 
from the Seurat (v.2.0)25. Nuclei-level filtering was performed to remove poor quality nuclei 519 
according to their number of UMIs (nUMIs) detected, number of genes detected (nGene), 520 
number of genes detected per UMI (log10GenesPerUMI), and the fraction of mitochondrial 521 
read counts to total read counts (mitoRatio) (Code availability: script 2). Nuclei that met the 522 
following criteria were retained: nUMI > 500, nGene > 250, log10GenesPerUMI > 0.8 and 523 
mitoRatio < 0.2. Gene-level filtering was performed to remove genes that had zero counts in 524 
all nuclei, remove genes expressed in fewer than 10 nuclei, and remove mitochondrial genes 525 
from the gene by cell counts matrix. Three doublet removal tools namely 526 
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DoubletFinder76(Code availability: script 3), DoubletDecon77 (Code availability: script 4), and 527 
Scrublet77 (Code availability: script 5,6) were used to identify doublets for each dataset 528 
individually. The sample-specific parameters of each of the tools were adjusted according to 529 
the specified guidelines. To achieve a balance between the false positive and false negative 530 
rate of the different doublet detection tools, all doublets identified by DoubletFinder as well 531 
as the intersection of the doublets identified by DoubletDecon and Scrublet, were removed77.  532 
 533 

snRNA-seq data normalization, integration and clustering 534 
Principal component analysis was performed to evaluate known sources of within-sample 535 
variation between nuclei, namely the mitoRatio and cell cycle phase (Code availability: script 536 
7). The UMI counts of the 3000 most variable features were normalised and scaled on a per 537 
sample basis by applying Seurat’s SCTransform function with mitoRatio regressed out. A 538 
Uniform Manifold Approximation and Projection (UMAP) analysis was performed on the 539 
merged object to assess whether integration was necessary. The datasets were subsequently 540 
integrated using Seurat’s SelectIntegrationFeatures, PrepSCTIntegration, 541 
FindIntegrationAnchors, and IntegrateData functions (Code availability: script 7). To cluster 542 
the datasets following integration, dimensionality reduction was first performed using UMAP 543 
embedding, specifying 40 dimensions (Code availability: script 8). The Seurat FindClusters 544 
function was then applied at a resolution of 0.8.  545 

 546 
snRNA-seq cluster annotation 547 
Two levels of annotation were performed. Clusters were initially annotated as one of the 548 
major brain cell types (level 1 annotation) based on the expression of known markers genes 549 
(Code availability: script 9). Label transfer was then performed using Seurat’s TransferData 550 
function with Allen Brain Map MTG atlas1 as a reference dataset (level 2 annotation) (Code 551 
availability: scripts 10-11). This resulted in each barcode in the query dataset receiving a 552 
predicted annotation based on a similarity score to an annotated cell type in the reference. 553 
Barcodes were then filtered to remove those with discordant level 1 and level 2 annotations 554 
(e.g. barcodes with “oligodendrocyte” level 1 annotation and “Exc_L4-5_RORB_FOLH1” level 555 
2 annotawon) (Code availability: script 12). To validate the annotation, the expression of 556 
known marker genes was assessed. Cosine similarity scores were computed to compare the 557 
transcriptomic similarity of each of the annotated query cell types to the 75 reference MTG 558 
cell types using the SCP package (https://github.com/zhanghao-njmu/SCP) (Code availability: 559 
script 13). This was achieved by computing cosine similarity scores for each pair of query and 560 
reference cell types using the expression of the top 2000 shared highly variable features 561 
between the query and reference datasets. The log normalised expression counts were used 562 
for this purpose (RNA assay, data slot). To assess the difference between the paediatric and 563 
adult datasets relative to the reference, the above cosine similarity analysis was repeated on 564 
the paediatric and adult datasets individually (Code availability: script 13). 565 
 566 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2024. ; https://doi.org/10.1101/2023.09.29.560114doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.560114
http://creativecommons.org/licenses/by-nc-nd/4.0/


NS-Forest machine learning marker analysis of snRNA-seq datasets 567 
The NS-Forest tool (v2.0)29,30 was used to identify combinations of marker genes uniquely 568 
defining each annotated cell type (Code availability: script 14-15) in the paediatric and adult 569 
datasets separately. The number of nuclei per sample was randomly down-sampled to that 570 
of the sample with the fewest nuclei (n=4,865). A random-forest model was used to select a 571 
maximum of 15 marker genes per cell type based on them being both highly expressed as 572 
well as uniquely expressed within a cell type compared to other cell types (i.e., the top Gini 573 
Index ranked features with positive expression values). The number of trees chosen for this 574 
model was 30,000, the cluster median expression threshold was set to the default value of 575 
zero, the number of genes used to rank permutations of genes by their F-beta-score was 6, 576 
and the beta weight of the F score was set to 0.5. The aforementioned parameters were set 577 
according to the parameters described in Aevermann et al. (2021)29, allowing the outputs to 578 
be directly compared to their markers and to the Allen Brain Map MTG atlas minimal 579 
markers1. To assess the relevance of these markers in terms of their capacity to distinguish 580 
different cell types in a UMAP analysis, the SCT and integration methods were repeated using 581 
either a random set of genes or the NS-Forest markers as anchors29 (Code availability: script 582 
16).  583 
 584 
 585 

DESeq2 age-dependent differential gene expression analysis of snRNA-seq datasets 586 
DESeq233 was used to identify genes that were differentially expressed with age (Code 587 
availability: script 17). The unnormalized counts were aggregated across all nuclei for each 588 
cluster and sample to generate a ‘pseudobulk’ counts matrix with the counts from technical 589 
replicates collapsed to the level of biological replicates. Genes were filtered to only include 590 
those expressed in more than 10% of nuclei for a given cell type. Principal component analysis 591 
was performed on each cell type separately in order to assess the variation between samples 592 
and determine which variables were contributing most to inter-sample variation from a set 593 
of possible variables. The collapsed counts served as input into DESeq2’s 594 
DESeqDataSetFromMatrix function in which the design formula ~single_cell_chemistry + 595 
age_group was specified to treat the age_group (paediatric vs adult) as the variable of interest 596 
while the effect of single_cell_chemistry (version2 vs version3 chemistry) was regressed out. 597 
A hypothesis test was performed using the Wald test. The null hypothesis for each gene was 598 
that there is no difference in gene expression between the sample groups (i.e Log2Fold 599 
Change = 0). A Wald test statistic was determined for each gene together with the associated 600 
p-value after which the p-values were adjusted for multiple testing using the Benjamini-601 
Hochberg method. Positive log2 Fold Changes represent genes which are upregulated in 602 
paediatric samples compared to adult samples (padj <0.05). 603 
 604 
Pseudotime trajectory analysis with psupertime 605 
 606 
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To validate the differentially expressed genes identified with DESeq2, a pseudotime trajectory 607 
analysis was performed for a subset of excitatory neuron subtypes using the psupertime 608 
package55 (Code availability: script 18). Psupertime is a supervised approach that uses time-609 
series labels as input to improve the identification of time-varying genes. Each cell type of 610 
interest (Exc L3-5 RORB ESR1, Exc L2 LAMP5 LTK, Exc L4-5 RORB FOLH1B, Exc L2-3 LINC00507 611 
FREM3) was individually sub-setted from the Seurat object after which a single cell 612 
experiment (sce) object was generated using the log normalized counts (RNA assay, data slot). 613 
The donor age (4, 5, 7, 9, 15, 20, 24, 26, 31, 41, 50) was included as metadata in the object. 614 
The psupertime function was applied to the sce object with the sel_genes argument 615 
specifying all genes to be used. An automatic filtering step was performed to remove genes 616 
expressed in fewer than 10% of cells for each cell type. As an output of the function, the beta 617 
coefficients for the association of each gene with pseudotime were extracted and plots were 618 
generated showing the expression trajectories of the DESeq2 DEGs with pseudotime. 619 
Additionally, the overlap between the DESeq2 DEGs and genes changing as a function of 620 
pseudotime (Psupertime-relevant genes) was determined.  621 
 622 
Pathway enrichment analysis of snRNA-seq datasets 623 
GO analysis of NS-Forest marker genes was performed on the gProfiler web server78 using 624 
default settings (padj <0.05) with “highlight diver terms in GO” selected.  625 
 626 
DEGs identified by DESeq2 (see Extended Data Table 10) that were associated with EA and IQ, 627 
as well as those associated with accelerated evolution in humans (HARs), were determined 628 
by comparing the list of neuronal DEGS to the EA, IQ and HAR gene lists used by Driessens et 629 
al. (2023)56, which were subsets of the lists from Lee et al. (2018)58, Savage et al. (2018)59 and 630 
Doan et al. (2016)60 respectively. A hypergeometric test was performed to test the 631 
significance of the results relative to chance (Code availability: script 19). 632 
 633 
GSEA on the DESeq2 output for all genes was performed using the Broad Institute’s GSEA 634 
software (https://www.gsea-msigdb.org/gsea/msigdb) (Code availability: script 20). GSEA 635 
aggregates the information from many genes to identify enriched functional pathways, 636 
allowing us to interrogate the gene signature changes across all cell types, including those 637 
that did not show any significant DEGs66. The gene lists for each cell type were queried against 638 
the C5 GO Biological Processes collection comprising of gene sets derived from the GO 639 
Biological Process ontology. The input lists of genes were ranked according to the -log(p-640 
value)*log2FoldChange for each gene. The parameters specified to the GSEA function 641 
included number of permutations (nperm)=1000, minimum gene set size (set_min=15), 642 
maximum gene set size (set_max=200), excludes genes that have no gene symbols (collapse)= 643 
No_Collapse, value to use for the single identifier that will represent all identifiers for the 644 
gene (mode)=Max_probe, normalised enrichment score method (norm)= meandiv, weighted 645 
scoring scheme (scoring_scheme) = classic. Positive Normalised Enrichment Scores (NES) 646 
represent genes that were upregulated in the paediatric population compared to the adult 647 
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population (p<0.01 and q<0.1). To visualise the output of universally enriched pathways 648 
across multiple cell types, the top 25 most frequently appearing positively and negatively 649 
associated terms were plotted. Additionally, for five cell types of interest [which had DEGs 650 
meeting the threshold of p<0.05 and abs(log2FC)>0.1], the top 5 positively associated terms 651 
were plotted.  652 
 653 
Analysis of site-of-disease TBM markers 654 
 655 
The dittoheatmap function from the dittoSeq package79 was used to generate heatmaps for 656 
the expression of the TBM biomarkers (upregulated genes listed in Rohlwink et al. 2019, 657 
Supplementary Table 523) across cell types in the paediatric and adult datasets individually. 658 
Additionally, Seurat’s dotplot function25 was used to visualize the level of expression and 659 
proportion of nuclei expressing the markers across cell types (Code availability: script 21). 660 
Prior to generating the plots, the TBM marker genes were filtered to remove those expressed 661 
in 15 nuclei or fewer across all cell types.  Gene counts for each marker were aggregated 662 
across cell types and scaled. The markers were clustered according to their expression profiles 663 
using dittoheatmap’s default hierarchical clustering method (Euclidean, complete). The 664 
clustering order and dendrogram from this output for the peaditaric datasets were used to 665 
generate dotplots for both peaditaric and adult datasets (Code availability: script 21). 666 
 667 
snRNA-seq data plots 668 
Plots were produced with Seurat25, ggplot280, ShinyCell81 and Microsoft Excel. 669 
 670 
10x Genomics Visium library preparation 671 
Frozen OCT embedded temporal cortex tissue samples were scored using a pre-chilled razor 672 
blade to fit in the Spatial Gene Expression slide capture areas. 10 μm-thick sections were cut 673 
using a cryostat (Leica CM1860/CM1950) and collected onto the Spatial Gene Expression slide 674 
capture areas. Two replicate sections of the 15-year-old (10 μm apart) and two replicate 675 
sections of 31-year-old (40 μm apart) were collected. The spatial Gene Expression slides with 676 
tissue sections were stored in a sealed container at -80°C. Captured sections were 677 
Haematoxylin and Eosin (H&E) stained according to the 10x Genomics Demonstrated Protocol 678 
Guide (CG000160, Rev B). Brightfield images of the stained sections were captured using an 679 
EVOS M5000 microscope (Thermo Fisher Scientific) at 20x magnification without 680 
coverslipping. Overlapping images of the sections including the fiducial frame were stitched 681 
together using Image Composite Editor-2.0.3 (Microsoft). Visium libraries were prepared 682 
from the stained tissue sections following the Visium Spatial Gene Expression Reagents Kit 683 
User Guide (CG000239, Rev D). At Step 1.1 the tissue was permeabilised for 12 minutes as 684 
determined using the Visium Spatial Gene Expression Tissue Optimisation User Guide 685 
(CG000238, Rev D). At Step 3.2, cDNA was amplified using 20 cycles. Library quality and 686 
concentration was assessed using TapeStation (Agilent) and Qubit (Invitrogen) at the Central 687 
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Analytical Facility (CAF, University of Stellenbosch). Libraries were sequenced by Novogene 688 
(Singapore) on the Illumina NovaSeq system using the Illumina High Output kits (150 cycles).  689 
 690 

Visium read alignment and gene expression quantification 691 
The H&E images were processed using the 10X Genomics Loupe Browser V4.0 Visium Manual 692 
Alignment Wizard. 10X Genomics Space Ranger count (10X Space Ranger V1.3.0) was used to 693 
perform alignment of FASTQ files to the human reference transcriptome (GRCh38), tissue 694 
detection, fiducial detection and barcode/UMI counting.  695 
 696 
cell2location analysis of Visium datasets 697 
The average number of nuclei per Visium spot was determined using Vistoseg82 (Code 698 
availability: script 22). Cell2location (version 0.7a0)26 was used to spatially map the brain cell 699 
types by integrating the Visium data count matrices (Space Ranger output) with the 700 
annotated snRNAseq datasets (Code availability: script 23). To avoid mapping artifacts, 701 
mitochondrial genes were removed from the Visium datasets prior to spatial mapping. 702 
Reference signatures of the 75 annotated cell populations were derived using a negative 703 
binomial regression model using the default values (Code availability: script 24). 704 
Unnormalized and untransformed snRNA-seq mRNA counts were used as input in the 705 
regression model for estimating the reference signatures (Code availability: script 24. The 706 
snRNA-seq mRNA counts were filtered to 14,209  genes and 144,438 cells. The cell2location 707 
model for estimating the spatial abundance of cell populations was filtered to 14,197 genes 708 
and 14,324 cells that were shared in both the snRNA-seq and Visium data. The following 709 
cell2location parameters were used: training iterations = 30,000 cell per location, N^ = 7 710 
(estimated using Vistoseg segmentation results), Normalization (ys) alpha prior = 20 (Code 711 
availability: script 25). To visualise the cell abundance in spatial coordinates 5 % quantile of 712 
the posterior distribution was used, which represents the value of cell abundance that the 713 
model has high confidence in (Code availability: script 26). Cell2location’s Non-negative 714 
Matrix Factorization (NMF) was used to identify cellular compartments and cell types that co-715 
locate from the cell type abundance estimates. NMF was tested using a range of factors (5 to 716 
30) for the “n_fact” parameter (Code availability: script 26). n_fact=15 was chosen as it clearly 717 
grouped the oligodendrocyte, astrocyte and excitatory neuron cell sub-types into known 718 
tissue zones i.e. the layers of the cortex (Code availability: script 27). 719 
 720 
BayesSpace analysis of Visium datasets 721 
The raw gene expression counts from Space Ranger were normalized, log transformed and 722 
principal component analysis was performed on the top 2000 highly variable genes. To obtain 723 
high-resolution gene expression for selected genes, the principal component values were 724 
mapped back to their original log-transformed gene expression space (spot level) using the 725 
default BayesSpace34 regression (Code availability: script 28). To do this the principal 726 
components from the original data were used as predictors in training the model for each 727 
gene, in which the results were the measured gene expression at the spot level. The trained 728 
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model was then used to predict the gene expression at sub spot level using high resolution 729 
PCs. The high-resolution model was trained using default values except for the following 730 
parameters: 7 PCs, Number of clusters = 8, nrep = 100,000, burn-in = 10,000. The BayesSpace 731 
outputs for each sample were quantified for spots with expression level > 0 and displayed as 732 
boxplots (Code availability: script 29). 733 
 734 
In situ Hybridisation Chain Reaction (HCR) on frozen human tissue sections 735 
10 μm thick frozen sections were collected on Histobond+ slides (Marienfeld) and stored at -736 
20°C. The In situ HCR protocol was carried out on tissue sections as detailed in Choi et al. 737 
(2016)83 using reagents, probes and hairpins purchased from Molecular Instruments. Probes 738 
were ordered for the following genes: RELN (NM_005045.4), FABP7 (CR457057.1), AQP4 739 
(NM_001650.5), RORB (NM_006914.4), CLSTN2 (NM_022131.3) and TSHZ2 (NM_173485.6). 740 
When necessary to quench lipofuscin autofluorescence, sections were rinsed after HCR in 1x 741 
PBS and treated with 200 μl TrueBlack (Biotium) for 30 sec. Slides were rinsed in PBS, stained 742 
with Hoescht (Thermofisher) and mounted using SlowFade Gold Antifade Reagent 743 
(Invitrogen). Sections were imaged using the LSM 880 Airyscan confocal microscope (Carl 744 
Zeiss, ZEN SP 2 software) using the 40X or 60X objective. 745 
 746 
MERFISH analysis on frozen temporal cortex tissue sections 747 

10 μm thick frozen sections were cut from frozen OCT embedded temporal cortex tissue 748 
samples using a cryostat (Leica CM1950). Sections from a peaditaric and adult sample were 749 
collected onto the same MERSCOPE coverslip (VIZGEN 2040003), fixed and stored in 70% 750 
ethanol following the instructions in the VIZGEN protocol (Fresh & Fixed Frozen Tissue 751 
Sectioning & Shipping Procedure Rev A, Doc. number 91600107). The slide was processed on 752 
the VIZGEN MERSCOPE system by the MRC Weatherall Institute of Molecular Medicine Single 753 
Cell Facility (University of Oxford) within 1 month of storage. Sections were photobleached 754 
for 10 hours at 4°C and then washed in 5 ml Sample Prep Wash Buffer (VIZGEN 20300001) in 755 
a 5 cm petri dish. Sections were incubated in 5 ml Formamide Wash Buffer (VIZGEN 756 
20300002) at 37°C for 30 min and hybridized at 37°C for 36 to 48 hours by using 50 μl of 757 
VIZGEN-supplied custom Gene Panel Mix according to the manufacturer’s instructions. 758 
Following hybridization, sections were washed twice in 5 ml Formamide Wash Buffer for 30 759 
min at 47°C. Sections were then embedded in acrylamide by polymerizing VIZGEN Embedding 760 
Premix (VIZGEN 20300004) according to the manufacturer’s instructions. Following 761 
embedding, sections were digested in Digestion Pre-Mix (VIZGEN 20300005) and RNase 762 
inhibitor (New England Biolabs M0314L) for 3 h at 37°C and then cleared for 16 to 24 hours 763 
with a mixture of VIZGEN Clearing Solution (VIZGEN 20300003) and Proteinase K (New 764 
England Biolabs P8107S) according to the Manufacturer’s instructions. Following clearing, 765 
sections were washed twice for 5 min in Sample Prep Wash Buffer (PN 20300001) and then 766 
stained with VIZGEN DAPI and PolyT Stain (PN 20300021) for 15 min followed by a 10 min 767 
wash in Formamide Wash Buffer. Formamide Wash Buffer was removed and sections were 768 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2024. ; https://doi.org/10.1101/2023.09.29.560114doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.560114
http://creativecommons.org/licenses/by-nc-nd/4.0/


washed with Sample Prep Wash Buffer during MERSCOPE imaging set up. A mixture of 100 769 
ml of RNAse Inhibitor (New England BioLabs M0314L) and 250 ml of Imaging Buffer Activator 770 
(PN 203000015) was added to the cartridge activation port to a prethawed and mixed 771 
MERSCOPE Imaging cartridge (VIZGEN PN1040004). 15 ml mineral oil (Millipore-Sigma 772 
m5904-6X500ML) was added on top of the activation port and the MERSCOPE fluidics system 773 
was primed according to VIZGEN instructions. The flow chamber was assembled with the 774 
section coverslip according to VIZGEN specifications and the imaging session was initiated 775 
after collection of a 10X mosaic DAPI image and selection of the 1cm2 imaging area.  MERFISH 776 
data was visualised using the VIZGEN MERSCOPE Vizualizer software (version 2.3.3330.0).  777 
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 999 
Data Availability 1000 
All scripts used to analyse the data are indicated in the methods section and are available in 1001 
the supplementary material. A description of the raw and analysed data files will be made 1002 
available on the University of Cape Town’s ZivaHub data sharing platform on publication. As 1003 
the data is from living donors, access to the data will be mediated through contact with the 1004 
corresponding author. A ShinyApp will be made publicly available on publication for 1005 
exploration of the annotated snRNA-seq data.  1006 
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 1042 

Fig. 1: Annota-on of nuclei by label transfer iden-fies 75 cell types across the 23 datasets. a, Data integra+on 1043 
shows alignment of nuclei across the technical (T) and biological (B) replicates from donors ranging in age from 1044 
4 to 50 years. b, UMAP plot annotated to show the 75 cell types from the Allen Brain Map MTG atlas aGer filtering 1045 
to retain nuclei with high confidence annota+ons. Each cell type is annotated with 1) a major cell class (e.g. Exc 1046 
for excitatory neuron), 2) the cor+cal layer the cell is associated with (e.g. L2 for layer 2), 3) a subclass marker 1047 
gene and 4) a cluster-specific marker gene. c, Stacked barplot showing the propor+on of nuclei per cell type for 1048 
each age category out of the total number of nuclei for each group. The cell types are coloured as in b. See 1049 
Extended Data Table 3 for details of sta+s+cal tests performed. d, Valida+on of the high-resolu+on cell type 1050 
annota+ons shows a high degree of correspondence in the expression of known cell type-specific marker genes 1051 
(x axis) with their expected cell type (y axis) (leG). The number of nuclei per cell type is shown on the right. e, 1052 
Correla+on plot showing the cosine similarity scores assessing similarity between the annotated cell types in our 1053 
dataset (y axis as in d) and the MTG reference dataset (x axis) based on the log normalized expression counts of 1054 
the top 2000 shared highly variable features between query and reference datasets.  1055 
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1056 
Fig. 2: Visium spa-al transcriptomics in the adult and paediatric temporal cortex validates snRNA-seq annota-on. 1057 
a, Es+mated cell type abundances (colour intensity) in the 31-year-old and 15-year-old temporal cortex +ssue 1058 
sec+ons for a selec+on of cell types including non-neuronal cell types, excitatory neurons (top row) and inhibitory 1059 
neurons (boXom row). b, Visium gene expression profiles (colour intensity) for a selec+on of known cor+cal layer 1060 
marker genes in the 31-year-old and 15-year-old temporal cortex +ssue sec+ons including AQP4 (layer 1), LAMP5 1061 
(layer 2), RORB (layer 4) and CLSTN2 (layer 5-6). c,d, Iden+fica+on of co-loca+ng cell types using NMF. The dot plot 1062 
(c) shows the NMF weights of the cell types (rows) across each of the NMF factors (columns), which correspond to 1063 
+ssue compartments. Block boxes indicate cell types that co-locate within the indicated compartments. Spa+al plots 1064 
show (d) show the NMF weights for selected NMF factor/+ssue compartment across the 31-year-old and 15-year-1065 
old temporal cortex +ssue sec+ons. Panels are displayed in the same order as the dotplot in (c), with the dominant 1066 
cell types for each factor indicated in brackets. Dashed white lines and numbers indicate es+mated cor+cal layer 1067 
boundaries as indicated in the first two panels of b and d. WM: white maXer. See also Extended Data Figs 4-6. 1068 
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 1069 

Fig. 3: NS-Forest iden-fies minimal marker genes dis-nguishing the cell types in the paediatric and adult 1070 
temporal cortex snRNA-seq datasets. a,b, Heatmap showing the scaled average normalised expression counts 1071 
of the NS-Forest minimal marker genes (y-axis) iden+fied for 75 cor+cal cell types (x-axis) across the six adult (a) 1072 
and six paediatric (b) datasets. As input into NS-Forest, the nuclei of each sample were randomly down-sampled 1073 
to the size of the sample with the fewest nuclei. Heatmaps show gene expression values for the down-sampled 1074 
datasets. The minimal marker genes are annotated (colour codes on the y-axes) according to whether they are 1075 
unique to a given cell type, whether they are coding/non-coding genes, whether they are unique to the indicated 1076 
age group, whether they overlap with exis+ng MTG minimal marker gene sets for the same cell type, and 1077 
according to the cell type they define. 1078 
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 1086 

 1087 

Fig. 4: Valida-on of NS-Forest minimal markers and assessment of the top NS-forest markers. a,b, Annotated 1088 
UMAP plots following data integra+on using either the minimal marker genes (leG) or the equivalent number of 1089 
a random set of genes (right) as anchors for the adult (a) and paediatric (b) datasets. The colour scheme for the 1090 
cell types is in accordance with the MTG cell taxonomy. c, Overlap of the paediatric and adult NS-Forest markers 1091 
with a high binary expression score (> 0.7) per cell type. The bar plot shows the number of shared markers 1092 
between paediatric and adult datasets (blue), the number of markers unique to the paediatric datasets (orange), 1093 
and the number of markers unique to the adult datasets (grey) for each cell type.  1094 
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1101 
Fig. 5: Differen-al expression analysis reveals genes guiding temporal cortex matura-on. a, 21 cell types with 1102 
DEGS. b-g, Volcano plots showing log2FoldChange (x axis) and -log10padj values (y axis) for all DESeq2-tested 1103 
genes in Exc_L3-5_RORB_ESR1, Exc L2-3_LINC00507_FREM3, Exc_L4-5_RORB_FOLH1B, Exc_L2_LAMP5_LTK, 1104 
Astro_L1-6_FGFR3_SLC14A1 and Oligo L1-6 OPALIN. Red dots indicate genes that were significantly upregulated 1105 
or downregulated in paediatric samples (padj<0.05 & abs(log2FoldChange)>10%) and selected genes are 1106 
labelled. Red labels indicate DEGs shared between neuronal cell types. Magenta labels indicate DEGS not shared 1107 
between cell types that are discussed in the text. Blue dots indicate non-significant genes (padj>0.05 or 1108 
abs(log2FoldChange)<10%). h, Dot plot showing the scaled average normalised expression across samples for 1109 
DEGS shared between Exc_L3-5_RORB_ESR1, Exc L2-3_LINC00507_FREM3, Exc_L4-5_RORB_FOLH1B, 1110 
Exc_L2_LAMP5_LTK, Exc_L3-4_RORB_CARM1P1 and Exc_L3-5_RORB_FILIP1L. i, psuper+me gene expression 1111 
trajectories for selected DEGs in the indicated cell types. The x-axis is the calculated psupertime value for each 1112 
cell, coloured by sample of origin. The black lines are smoothened curves fit by geom_smooth in the R package 1113 
ggplot2. 1114 
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 1119 

Fig. 6: Pathways that are enriched or depleted across mul-ple cell types in paediatric samples. GSEA heatmap 1120 
showing the top 25 most frequently enriched (top 25 rows) or depleted (boXom 25 rows) terms appearing across 1121 
all cell types. Abbrevia+ons in bold indicate the following categories as referred to in the text: AE, axon 1122 
ensheathment; CR, cellular respira+on; ICT, intracellular transport; NM, neuronal morphogenesis; NR/SP, 1123 
neurotransmiXer release/synap+c plas+city; PT/M, protein transla+on/modifica+on. Only significantly (p < 0.01 1124 
and q < 0.1) terms are shown. NES value represents the normalized enrichment scores. Grey indicates that the 1125 
term was not significantly enriched or depleted in the indicted cell type. See also Extended Data Table 12. 1126 
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 1136 

Extended Data Fig. 1: Nuclei quality control (QC) and clustering. a, Number of doublets iden+fied across all 23 1137 
datasets by DoubletDecon, DoubletFinder, and Scrublet. Red outline indicates the subset of barcodes called as 1138 
doublets that were removed. b, Total number of nuclei per dataset before (yellow) and aGer (green) QC. c, Mean 1139 
number of reads per nucleus (y axis) by dataset before QC split by age group (x axis). p value determined by two-1140 
tailed Welch's t-test. d, Number of nuclei (y axis) by sample aGer QC split by age group (x axis). p value 1141 
determined by Brunnermunzel permuta+on test. e, Violin plots showing the number of unique molecular 1142 
iden+fiers (UMIs) (top) and the number of genes detected (boXom) per nucleus per sample aGer QC. Black dots 1143 
indicate the median value. Error bars show 95% confidence intervals. f,g, Median number of UMIs (2,263 1144 
paediatric and 2,011 adult) (f) and the median number of genes (1,372 paediatric and 1,226 adult) (g) detected 1145 
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per nucleus (y axes) by sample aGer QC split by age group (x axis). p values determined by two-tailed 1146 
Brunnermunzel permuta+on test. h, UMAP plot for the 23 datasets prior to integra+on. i, UMAP plot showing 1147 
the resul+ng clusters determined by the shared nearest neighbour algorithm. Data in all box plots represent 1148 
mean ± sem for six paediatric and six adult samples. No significant differences were detected between paediatric 1149 
and adult samples. B, biological replicate; NS, not significant; T, technical replicate. See also Extended Data Table 1150 
2.  1151 

 1152 

 1153 

 1154 

Extended Data Fig. 2: Annota-on and assessment of cell composi-on across datasets. a, UMAP plot showing 1155 
cluster annota+on at the level of major brain cell types (level 1 annota+on). b, Examina+on of known cell type-1156 
specific marker genes (x axis) aGer label transfer classify each nucleus according to the Allen Brain Map MTG 1157 
atlas1 (level 2 annota+on) (y axis) (leG). Off-target gene expression is evident in several cell types (marked in red), 1158 
which is likely due to mul+plets or nuclei contaminated with ambient mRNA.  c-d, Stacked barplots aGer filtering 1159 
to retain nuclei with high confidence annota+ons showing the propor+on of nuclei per cell type (y axis) for each 1160 
technical replicate (c) or biological replicate (d) (x axis) out of the total number of nuclei for each group. Samples 1161 
with technical replicates showed high degrees of similarity in cell composi+on between their replicates (c). 1162 
Technical replicates from each donor were merged to allow comparisons between the 12 samples (d).  1163 
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 1167 

Extended Data Fig. 3: Assessment of the sequencing metrics for the annotated cell types. a, Violin plots showing 1168 
the distribu+on of the number of genes (leG) and transcripts (right) detected per nucleus per cell type across all 1169 
datasets. Black dots indicate the median value. Error bars show 95% confidence intervals. b,c, Boxplots showing 1170 
the number of genes (b) and the number of UMIs (c) (y axis) detected per cell type per sample (x axis) split by 1171 
age group (red: adult, grey: paediatric). Data in all box plots represent mean ± sem for six paediatric and six adult 1172 
samples for each cell type. No significant differences were detected (i.e. padj > 0.05). See Extended Data Table 3 1173 
for details of sta+s+cal tests performed.  1174 
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 1177 

Extended Data Fig. 4: Visium Spa-al Gene Expression samples. a,b, 31-year-old (a) and 15-year-old (b) temporal 1178 
cortex +ssue blocks embedded in OCT. Black dashed boxes outline the regions collected onto the Visium Spa+al 1179 
Gene Expression slide. c-f, H&E stained technical replicate +ssue sec+ons used to generate Visium Spa+al Gene 1180 
Expression libraries for the 31-year-old (c,e) and 15-year-old (d,f) +ssue samples. T, technical replicate.  1181 
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 1189 

Extended Data Fig. 5: Spatial mapping of cell types in the human temporal cortex.  a, Estimated cell abundance 1190 
of 75 cell types across all Visium samples. Shown is a heatmap with the colour indicating the relative cell 1191 
abundance of cell types (rows) across the different samples (columns). b, Estimated cell type abundances (colour 1192 
intensity) in the technical replicate 31-year-old and 15-year-old temporal cortex tissue sections for a selection 1193 
of cell types including non-neuronal cell types, excitatory neurons (top row) and inhibitory neurons (bottom 1194 
row). d, Spatial plots show of the NMF weights for selected NMF factor/tissue compartment across the 31-year-1195 
old and 15-year-old temporal cortex tissue sections. Panels are displayed in the same order as the dotplot in Fig. 1196 
2c, with the dominant cell types for each factor indicated in brackets. T, technical replicate. 1197 
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 1199 

 1200 

 1201 

Extended Data Fig. 6: In situ HCR analysis of selected cor-cal layer marker genes. Expression of a, layer 1 1202 
markers AQP4, FABP7 and RELN and b, layer 4-6 markers RORB, CLSTN2 and TSHZ2 in frozen temporal cortex 1203 
+ssue sec+ons from the same 31-year-old and 15-year-old donor +ssue used for Visium. High magnifica+on views 1204 
of layer 1 in a indicate AQP4/RELN-posi+ve cells (yellow arrowheads) and FABP7 posi+ve cells (green arrowhead).  1205 
In high magnifica+on views of layer 4 in b in the 31-year-old +ssue sec+on, RORB/CLSTN2-posi+ve (white 1206 
arrowhead) and RORB/TSHZ2-posi+ve cells (green arrowhead) are indicated. In high magnifica+on views of layer 1207 
4 in b in the 15-year-old +ssue sec+on RORB/CLSTN2/TSHZ2-posi+ve cells (white arrowheads) are indicated. 1208 
Dashed white lines indicate layer boundaries. Solid white line indicates +ssue edge. Scale bars are 100 µm in low 1209 
magnifica+on views (+le scan at 40x) and 20 µm in high magnifica+on views (63x).  1210 
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 1213 

 1214 

Extended Data Fig. 7: Expression of the reference MTG atlas minimal markers. Heatmap showing the scaled 1215 
average normalised expression counts of the NS-Forest minimal marker genes iden+fied for the reference MTG 1216 
cell atlas dataset (y-axis) in each of the 75 query cor+cal cell types iden+fied in the combined adult and paediatric 1217 
snRNA-seq datasets (x-axis).  The minimal marker genes are annotated (colour codes on the y-axes) according to 1218 
the cell type they define. 1219 
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 1226 

 1227 

 1228 

Extended Data Fig. 8: MERFISH spa-al transcriptomics analysis of selected NS-forest markers. a, b Low 1229 
magnifica+on views of the 31-year-old (a) and 15-year-old (b) MERFISH datasets showing the expression of 1230 
known layer maker genes in the expected layers as valida+on of the MERFISH experiment. c-p, High magnifica+on 1231 
views of 31-year-old (c,e,g,I,k,m,o) and 15-year-old (d,f,h,j,l,n,p) MERFISH datasets showing the overlap of new 1232 
NS-Forest minimal markers (green) with published NS-Forest minimal markers (magenta) in indicated cells 1233 
(arrowheads). The cell type that the NS-Forest markers are associated with is indicated in the top leG corner. 1234 
Scale bars: 100 µm. 1235 
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 1236 

Extended Data Fig. 9: Evalua-on of NS-Forest minimal marker gene expression across cell types in comparison 1237 
to MTG cell taxonomy markers. a-d, Boxplots showing the normalised expression counts for LINC01331 (a), 1238 
PALMD (b), POSTN (c) and OLFML2B (d) in paediatric (top) and adult (boXom) datasets. The cell types expressing 1239 
the markers at high levels are indicated in bold.   1240 
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 1249 

Extended Data Fig. 10: BayesSpace analysis of differen-ally expressed genes. High resolu+on Visium spa+al 1250 
gene expression profiles for selected DEGs using BayesSpace analysis to compare sub-spot level expression 1251 
intensi+es between 31-year-old and 15-year-old temporal cortex +ssue sec+ons. Barplots show the average gene 1252 
gene expression (log-counts) across technical replicate (T) samples for the indicated genes for spots with gene 1253 
expression levels > 0. In all cases, average gene expression is higher in the 15-year-old samples than in the 31-1254 
year-old samples.  1255 
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 1256 

 1257 

Extended Data Fig. 11: Cell type-specific expression of puta-ve TBM biomarkers. a. Hierarchical clustering of TBM biomarker genes across the 75 cell types iden+fied in the peaditaric snRNA-seq dataset 1258 
reveals clusters of genes that are expressed by specific groups of cell types. b.  Analysis of the same genes across the adult snRNA-seq dataset, using the gene order in (a) reveals very similar paXerns of 1259 
cell type-specific expression across the age-groups. Dashed boxes highlight gene clusters, with associated cell types indicated on the leG and right of the right diagram1260 
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 1261 

Supplementary Fig. 1: Violin plots showing the expression of known cell type marker genes across the Seurat 1262 
clusters. These data were used for level 1 annota+on of each cluster as one of the indicated major brain cell types 1263 
(see also Extended Data Table 3). 1264 
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 1266 

 1267 

Supplementary Fig. 2: psuper+me gene expression trajectories for all DEGs in Exc_L3-5_RORB_ESR1. The x-axis 1268 
is the calculated psupertime value for each cell, coloured by sample of origin. The black lines are smoothened 1269 
curves fit by geom_smooth in the R package ggplot2. 1270 
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 1271 

Supplementary Fig. 3: psuper+me gene expression trajectories for all DEGs in Exc L2-3_LINC00507_FREM3. The 1272 
x-axis is the calculated psupertime value for each cell, coloured by sample of origin. The black lines are 1273 
smoothened curves fit by geom_smooth in the R package ggplot2. 1274 
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 1275 

Supplementary Fig. 4: psuper+me gene expression trajectories for all DEGs in Exc_L4-5_RORB_FOLH1B. The x-1276 
axis is the calculated psupertime value for each cell, coloured by sample of origin. The black lines are 1277 
smoothened curves fit by geom_smooth in the R package ggplot2. 1278 
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 1279 

Supplementary Fig. 5: psuper+me gene expression trajectories for all DEGs in Exc_L2_LAMP5_LTK. The x-axis is 1280 
the calculated psupertime value for each cell, coloured by sample of origin. The black lines are smoothened 1281 
curves fit by geom_smooth in the R package ggplot2. 1282 
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Extended data Tables: 1296 

 1297 

Extended Data Table 1: Summary of snRNA-seq, Visium and MERFISH sample metadata. Samples are ordered 1298 
by age. The eight “P00” datasets were generated in the Hockman laboratory while the four “Nuc” datasets were 1299 
generated by Thrupp et al. (2020)24. 1300 

 1301 

Extended Data Table 2: Summary of average quality control metrics for snRNA-seq datasets across nuclei for 1302 
each sample before and a^er filtering. Several measures for quality control were evaluated on a per sample 1303 
basis including the sequencing satura+on, the mean number of reads per nucleus, the number of barcodes, the 1304 
median number of genes detected per nucleus, the median number of UMIs detected per nucleus, and the 1305 
number of doublets removed.  1306 

 1307 

Extended Data Table 3: Label transfer annota-on of snRNA-seq datasets using the Allen Brain Map MTG atlas 1308 
as a reference. Sheet 1, Manual annota+on of clusters into major cell types (level 1 annota+on). Sheet 2, Number 1309 
of nuclei per level 1 annota+on category per sample. Sheet 3, Number of nuclei per MTG cell type per sample. 1310 
The number of barcodes corresponding to each MTG cell type and sample is shown. Addi+onally, the total, 1311 
minimum, and maximum number of nuclei per cell type and sample was computed. The number of cell types 1312 
represented per sample was also determined. Sheet 4, Number of removed nuclei per level 1 annota+on 1313 
category per sample. Sheet 5, Number of removed nuclei per MTG cell type per sample. Sheet 6, Subtrac+on 1314 
matrix comparing cosine similarity scores (i.e. similarity score for each cell subtype compared to the MTG cell 1315 
Atlas as in Fig. 1d) for paediatric dataset to the adult dataset. Values are the paediatric scores minus the adult 1316 
scores. Sheet 7, p-values, tests performed for each cell type and padj values (Benjamini-Hochberg method) when 1317 
comparing the propor+on of nuclei between male and female samples. Sheet 8-10, p-values, tests performed 1318 
for each cell type and padj values (Benjamini-Hochberg method) when comparing the propor+on of nuclei (sheet 1319 
8), number of genes (sheet 9; see Extended Data Fig. 3b) and number of UMIs (sheet 10; see Extended Data Fig. 1320 
3c) for each cell type between paediatric and adult samples shown.  1321 

 1322 

Extended Data Table 4: Summary of average quality control metrics for Visium datasets. Several measures for 1323 
quality control were evaluated on a per sample basis including the sequencing satura+on, the percentage of read 1324 
mapped to the transcriptome, the number of spots under the +ssue, the average number of nuclei per spot 1325 
determined by Vistoseg analysis, the mean reads detected per spot, the median genes detected per spot, the 1326 
total number of genes detected, the median UMI Counts per Spot and the total number of nuclei.  1327 

 1328 

Extended Data Table 5: NS-Forest minimal marker analysis. Sheet 1, Sta+s+cal tests evalua+ng the expression 1329 
of Aevermann et al. (2021)29 minimal markers (see their Supplementary Tables 1-2) in our datasets. Sheets 2-3, 1330 
Metadata for each feature iden+fied by NS-Forest marker in the down-sampled paediatric (sheet 2) and down-1331 
sampled adult (sheet 3) datasets describing the cell type, the F-beta score for each marker gene, overlap with 1332 
Aevermann et al. (2021) and Hodge et al. (2019), uniqueness to the age group of interest, coding status, and 1333 
uniqueness to the associated cell type as shown in Fig. 3. As input to NS-Forest, all datasets (six paediatric and 1334 
six adult) were randomly down-sampled such that the total number of nuclei per sample was equal to the sample 1335 
with the fewest number of nuclei. 1336 

 1337 

Extended Data Table 6: gProfiler analysis of NS-forest markers.  Sheet1-3, Significantly enriched GO terms 1338 
associated with the paediatric (sheet1), adult (sheet2) and paediatric plus adult minimal marker genes iden+fied 1339 
by NS-forest. Sheet3-5, Significantly enriched GO terms associated with shared (i.e associated with both adult 1340 
and paediatric samples) or paediatric-specific minimal marker genes with a binary expression score (> 0.7)  for 1341 
Oligo L1-6 OPALIN. Terms for which “highlighted” is true are driver terms. 1342 

 1343 

Extended Data Table 7: Summary of metadata for NS-Forest markers with a binary expression score (> 0.7) per 1344 
cell type across the paediatric and adult datasets. The number of shared markers, the number of markers 1345 
unique to paediatric samples, and the number of markers unique to adult samples is shown for each cell type. 1346 
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The number of nuclei per cell type is shown for the combined paediatric and adult down-sampled datasets, the 1347 
down-sampled paediatric datasets, and down-sampled adult datasets.  1348 

 1349 

Extended Data Table 8: Overlap NS-Forest markers with a binary expression score (> 0.7) per cell type between 1350 
the paediatric and adult datasets. NS-Forest markers with a binary expression score (> 0.7)  per cell type were 1351 
extracted for the down-sampled paediatric and down-sampled adult datasets. Each sheet represents 1 of 75 1352 
cor+cal cell types and the NS-Forest features which were shared (intersect) between the paediatric and adult 1353 
datasets, unique to paediatric datasets, or unique to adult datasets are shown.  1354 

 1355 

Extended Data Table 9: DESeq2 output of all genes tested for differen-al expression between paediatric and 1356 
adult brains per cell type. Sheet 1-75, Differen+al expression analysis was performed using DESeq2’s Wald Test 1357 
for each cell type separately.  Genes were filtered prior to tes+ng to only include those expressed in > 10% of 1358 
nuclei for that cell type across all paediatric and adult datasets. The associated log2FoldChanges, p-adjusted 1359 
values (padj, Benjamini-Hochberg method), and descrip+on of each feature are shown. Posi+ve log2FoldChanges 1360 
represent genes upregulated in paediatrics versus adults. See DESeq2 documenta+on for explana+on of NA 1361 
values (hXps://bioconductor.org/packages/release/bioc/vigneXes/DESeq2/inst/doc/DESeq2.html#why-are-1362 
some-p-values-set-to-na). 1363 

 1364 

Extended Data Table 10: DESeq2 output of significant DEGs only between paediatric and adult brains in a 1365 
subset of cell types. Sheet 1-21, Significant DEGs (padj < 0.05) for cell types shown in Fig. 5a. The associated 1366 
log2FoldChanges, p-adjusted values (padj), descrip+on, percentage of paediatric nuclei expressing the gene, 1367 
percentage of adult nuclei expressing the gene, average normalised expression across paediatric nuclei, and 1368 
average normalised expression across adult nuclei are shown. The difference in the peaditaric and adult values 1369 
for percentage of nuclei and average normalised expression is also shown. Posi+ve log2FoldChanges represent 1370 
genes upregulated in paediatric versus adults datasets. See DESeq2 documenta+on for explana+on of NA values 1371 
(hXps://bioconductor.org/packages/release/bioc/vigneXes/DESeq2/inst/doc/DESeq2.html#why-are-some-p-1372 
values-set-to-na). Sheet 22-24, EA (sheet 6), IQ (sheet7) and HAR (sheet8) associated DEGs and their associated 1373 
cell types. 1374 

 1375 

Extended Data Table 11: psuper-me coefficients. The calculated psuper+me coefficients for each gene for 1376 
indicated excitatory neuron subtypes that showed the highest number of DEGs. Genes with non-zero psuper+me 1377 
coefficients represent genes that are relevant to the ordering of the cells in pseudo+me. 1378 

 1379 

Extended Data Table 12: GSEA terms associated with each cell type showing enriched or depleted pathways in 1380 
paediatric versus adult samples. GSEA was performed using DESeq2’s output gene lists for each cell type ranked 1381 
according to the log2FoldChange*-log2(padj) for each gene. All DESeq2-tested genes served as input into GSEA 1382 
(genes were expressed in > 10% of nuclei for the cell type of interest). Matrix shows the corresponding posi+ve 1383 
(sheet 1) and nega+ve (sheet 2) NES values for each GSEA term (y axis) and cell type (x axis) based on the analysis 1384 
using the ranked list of genes for each cell type. Terms were filtered to only include significantly associated terms 1385 
(p<0.01, q<0.1). Posi+ve NES values indicate pathways that are enriched in paediatric versus adult samples; 1386 
nega+ve NES values indicate pathways that are depleted in paediatric versus adult samples. The total number of 1387 
terms per cell type and the total number of cell types associated with a given term are shown.  1388 
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