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Abstract
Background: The	significance	of	liver	metastasis	(LM)	in	increasing	the	risk	of	
death	for	postoperative	colorectal	cancer	(CRC)	patients	necessitates	innovative	
approaches	to	predict	LM.
Aim: Our	study	presents	a	novel	and	significant	contribution	by	developing	an	in-
terpretable	fusion	model	that	effectively	integrates	both	free-	text	medical	record	
data	and	structured	laboratory	data	to	predict	LM	in	postoperative	CRC	patients.
Methods: We	used	a	robust	dataset	of	1463	patients	and	leveraged	state-	of-	the-	art	
natural	language	processing	(NLP)	and	machine	learning	techniques	to	construct	
a	two-	layer	fusion	framework	that	demonstrates	superior	predictive	performance	
compared	to	single	modal	models.	Our	innovative	two-	tier	algorithm	fuses	the	re-
sults	from	different	data	modalities,	achieving	balanced	prediction	results	on	test	
data	and	significantly	enhancing	the	predictive	ability	of	the	model.	To	increase	
interpretability,	we	employed	Shapley	additive	explanations	to	elucidate	the	con-
tributions	of	free-	text	clinical	data	and	structured	clinical	data	to	the	final	model.	
Furthermore,	 we	 translated	 our	 findings	 into	 practical	 clinical	 applications	 by	
creating	 a	 novel	 NLP	 score-	based	 nomogram	 using	 the	 top	 13	 valid	 predictors	
identified	in	our	study.
Results: The	proposed	fusion	models	demonstrated	superior	predictive	perfor-
mance	with	an	accuracy	of	80.8%,	precision	of	80.3%,	recall	of	80.5%,	and	an	F1	
score	of	80.8%	in	predicting	LMs.
Conclusion: This	fusion	model	represents	a	notable	advancement	in	predicting	
LMs	 for	 postoperative	 CRC	 patients,	 offering	 the	 potential	 to	 enhance	 patient	
outcomes	and	support	clinical	decision-	making.
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1 	 | 	 INTRODUCTION

Colorectal	cancer	(CRC)1	is	the	third	most	common	ma-
lignancy	worldwide	(10.0%)	and	the	second	most	common	
cause	 of	 cancer-	related	 deaths	 (9.4%).	With	 the	 ongoing	
research	 on	 molecular	 mechanisms	 of	 cancer	 and	 the	
joint	development	of	various	omics	studies,	an	increasing	
number	of	 treatment	options	are	now	available	 for	 local	
lesions	 and	 advanced	 diseases,	 thereby	 improving	 indi-
vidualized	diagnosis,	treatment,	and	precision	medicine.2	
Current	treatments	for	CRC	include	endoscopic	and	sur-
gical	 local	excision,	downstaging	preoperative	 radiother-
apy	and	systemic	therapy,	extensive	surgery	for	local	and	
metastatic	disease,	local	ablation	of	metastases,	palliative	
chemotherapy,	 targeted	 therapy,	 and	 immunotherapy.	
These	 treatments,	alone	or	 in	combination,	 significantly	
improve	the	survival	of	CRC	patients.	The	liver	is	the	most	
common	site	of	postsurgery	metastasis,	involved	in	25%–	
50%	of	CRC	patients	during	the	follow-	up	period.3	Liver	
metastatic	 lesions	 detected	 in	 the	 early	 stage	 can	 be	 re-
moved	by	surgery,	resulting	in	a	better	overall	prognosis.	
However,	only	25%	of	the	patients	are	suitable	for	first-	line	
therapy	at	the	time	of	CRC	liver	metastasis	(LM)	diagno-
sis,4	owing	to	the	rapid	metastases.	As	a	result,	most	pa-
tients	receive	second-	line	chemotherapy	as	an	alternative,	
associated	 with	 greater	 toxicity	 and	 a	 worse	 prognosis.	
Therefore,	it	has	always	been	a	challenge	to	predict	LM	in	
patients	with	CRC.

Radiological	 techniques	 are	 the	 most	 promising	 for	
the	 surveillance	 of	 LMs	 in	 CRC	 patients.	 Experts	 have	
developed	standards	 for	evaluating	 liver	 lesions,	 such	as	
the	Liver	Reporting	&	Data	System	(LI-	RADS®).	However,	
the	frequency	at	which	imaging	tests	should	be	performed	
to	 prevent	 postoperative	 recurrence	 has	 been	 controver-
sial.	Although	recent	studies	have	shown	that	16%–	26%	of	
liver	lesions	are	too	small	to	be	identified	or	excluded	as	
benign	 lesions,5	 invasive	 physical	 examinations,	 such	 as	
needle	biopsies,	are	not	recommended	because	their	ben-
efits	may	not	outweigh	the	risk	and	cost	 to	 the	patients.	
Moreover,	 repeated	 CT	 scanning	 may	 increase	 the	 risk	
of	 tumor	 mutation	 and	 progression,	 especially	 consid-
ering	 the	 aggressive	 nature	 of	 CRC	 metastasis.6	 Thus,	 a	
valid	analytical	 strategy	 for	assessing	and	predicting	LM	
in	postoperative	CRC	patients,	through	which	physicians	
can	 gain	 more	 confidence	 in	 determining	 whether	 a	 ra-
diology	examination	should	be	scheduled	for	personalized	
surveillance	of	LM,	can	be	attractive	in	clinical	scenarios.	

In	addition,	 such	strategy	would	promote	more	efficient	
use	of	imaging	techniques	and	improve	the	overall	well-	
being	of	CRC	patients.

With	 the	 rapid	 development	 of	 artificial	 intelligence	
(AI)	 and	 big	 data,	 medical	 multimodal	 big-	data-	driven	
algorithms	have	achieved	remarkable	breakthroughs.	Ra-
diomics	and	pathomics7–	9	have	successfully	predicted	the	
prognosis	and	assessed	the	risk	of	metastasis	in	CRC	pa-
tients.10	In	a	retrospective	study	by	Li	et	al.	on	data	from	
766	patients	undergoing	LM	resection,	a	neural	network	
model	was	developed	to	predict	the	overall	survival	(OS)	
more	 accurately	 than	 the	 Cox	 regression	 model.11	 More	
recently,	 Wang	 et	 al.12	 reported	 a	 multiomics	 model	 by	
combining	pathomics,	radiomic	features,	immune	scores,	
and	clinical	factors	into	a	novel	nomogram	with	outstand-
ing	performance	 in	predicting	OS	 (area	under	 the	curve	
[AUC]	0.860)	and	disease-	free	survival	(AUC	0.875).	These	
breakthroughs	inspire	future	research	to	develop	more	ad-
vanced	 AI	 techniques	 to	 improve	 the	 overall	 efficacy	 of	
CRC	treatment.

Despite	significant	success	in	predicting	LMs	using	the	
multiomic	 approach,	 unneglectable	 barriers	 hinder	 the	
clinical	application	of	those	models.	For	example,	the	data	
quality	must	meet	the	unified	standard	set	by	the	model-	
builder	to	ensure	the	consistency	of	model	input,	which	is	
difficult	to	satisfy	in	real-	world	clinical	scenarios	owing	to	
the	variation	in	data	acquisition	techniques	and	a	lack	of	
comprehensive	 quality	 assessment	 method.13	 Moreover,	
many	patients	may	not	choose	to	visit	 the	same	hospital	
during	 follow-	up,	 which	 indicates	 that	 multiomic	 data	
may	not	be	available	to	the	physicians	in	terms	of	original	
electronic	profiles	during	subsequent	visits,	mainly	owing	
to	 legal	 obstacles	 associated	 with	 transferring	 between	
electronic	 health	 record	 (EHR)	 systems	 across	 different	
hospitals.14	In	this	regard,	the	clinical	history	can	offer	im-
portant	evidence	such	as	the	duration	of	the	disease,	treat-
ment	records,	changes	in	symptoms,	and	comprehensive	
summarization	 made	 by	 the	 previous	 physician,	 which	
provides	a	full	review	of	the	patients	in	unstructured	texts.	
It	is	highly	attractive	to	develop	novel	approaches	to	use	
these	informatic	data	in	AI	models	to	prompt	computer-	
aided	diagnosis.

Natural	 language	 processing	 (NLP)	 is	 an	 essential	
branch	 of	 AI	 technology	 that	 aims	 to	 convert	 natural	
language	into	a	computable	digital	form	to	achieve	text-	
level	 understanding	 and	 calculation.	 In	 the	 medical	
domain,	 the	 mainstream	 of	 NLP	 focuses	 on	 extracting	
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clinically	 meaningful	 entities	 or	 classifying	 subgroups	
using	 EHRs,	 radiology	 reports,	 or	 drug	 instructions.	
Moreover,	studies	utilizing	deep	learning	from	free	text	
to	 predict	 patient	 outcomes	 deserve	 further	 attention.	
More	 recently,	 Causa	 Andrieu	 et	 al.15	 developed	 an	
NLP-	based	 radiology	 report	 analysis	 model	 to	 identify	
clinically	 meaningful	 CRC	 metastatic	 phenotypes	 and	
demonstrated	a	correlation	between	the	phenotypes	and	
overall	clinical	survival.	Our	previous	study	established	
a	domain-	specific	 transfer	 learning	pipeline	to	 identify	
patients	with	clinically	meaningful	pathogenesis	related	
to	 tinnitus.16	 However,	 the	 integration	 of	 multimodal	
data,	 such	 as	 free	 text,	 genomics,	 and	 radiomics,	 and	
structured	data	has	always	been	a	critical	 challenge	 in	
modeling.

This	study	aimed	to	effectively	quantify	the	risk	of	LM	
in	CRC	patients	using	EHRs	and	laboratory	data	by	con-
structing	a	novel	fusion	framework.	The	highlights	of	this	
study	are	listed	as	follows:

1.1	 |	 Highlights of this study

1.	 A	 two-	tier	 fusion-	based	 framework	 is	 proposed	 to	
predict	 LMs	 in	 CRC	 patients.	 A	 total	 of	 18	 struc-
tured	 clinical	 factors	 including	 age,	 gender,	 the	 most	
recent	 laboratory	 tests	 associated	 with	 liver	 function,	
and	 cancer	 metastasis,	 in	 addition	 to	 clinical	 history,	
intraoperative	findings,	and	pathology	phenotypes	from	
original	medical	record,	have	been	manually	extracted	
and	numerized.	Moreover,	deep	learning-	based	textual	
features	based	on	the	most	recent	medical	record	have	
been	 modeled	 as	 free-	text	 representative	 features	 and	
included	 in	 the	 modeling.

2.	 We	have	established	a	novel	NLP	and	clinical	factors-	
based	nomogram	for	the	practical	application	of	our	
fusion	model.	As	clinical	texts	are	the	most	common	
and	 essential	 data	 collected	 during	 the	 follow-	up	
of	 CRC	 patients,	 this	 nomogram	 may	 have	 broader	
applications.

3.	 We	 evaluated	 the	 contribution	 of	 each	 data	 module	
to	the	prediction	accuracy	during	the	fusion	process,	
thus	 improving	 the	 interpretability	 of	 this	 complex	
model.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Study overview

This	 study	 consisted	 of	 four	 parts.	 In	 Part	 1,	 we	 built	
the	 machine	 learning	 (ML)	 and	 NLP	 models	 using	
structured	clinical	factors	and	free-	text	medical	history	

to	evaluate	their	accuracy	in	predicting	LMs.	In	Part	2,	
we	used	two	advanced	fusions,	namely	stacking	and	en-
sembling	 methods.	 Thus,	 a	 fusion	 learning	 framework	
was	established	to	realize	the	joint	prediction	of	LM	by	
ML	and	NLP	models.	In	the	third	part,	the	model	perfor-
mance	was	evaluated	in	terms	of	accuracy,	precision,	re-
call,	F1,	 receiver	operating	characteristic	 (ROC)	curve,	
AUC,	 and	 Shapley	 additive	 explanations	 (SHAP)	 val-
ues	to	improve	the	interpretability	of	the	model.	In	the	
fourth	part,	we	constructed	a	novel	nomogram	based	on	
clinical	factors	and	NLP	scores	to	provide	a	valuable	tool	
for	clinical	applications.	Figure 1	presents	the	workflow	
of	this	study.

The	study	was	conducted	according	to	the	Declaration	
of	 Helsinki.	 It	 was	 approved	 by	 the	 Beijing	 Friendship	
Hospital	 Ethics	 Committee,	 Capital	 Medical	 University	
(Research	 Application	 System	 number	 2021-	P2-	144-	01),	
and	 “Ethical	 Review	 of	 Biomedical	 Research	 Involving	
People,”	the	Ministry	of	Public	Health	of	China.

2.2	 |	 Data collection and label definition

We	retrospectively	collected	EHR	data	from	a	tertiary	hos-
pital	 in	 Beijing,	 China,	 including	 the	 data	 of	 1463	 CRC	
patients	 admitted	 for	 surgery	 and	 followed-	up	 between	
2019	 and	 2022.	 All	 authors	 discussed	 the	 inclusion	 and	
exclusion	criteria.	All	definitions	and	details	are	listed	in	
Table S1	in	Data S1.

All	structured	clinical	data	were	derived	from	the	Hos-
pital	 Information	 System	 (HIS),	 including	 general	 infor-
mation,	 laboratory	 test	 results,	 surgical	 record	 findings,	
and	 pathology	 results.	 Clinical	 free-	text	 medical	 history	
was	defined	as	admission	history	at	 the	most	 recent	 fol-
low-	up	visit,	and	follow-	up	time	was	defined	as	the	time	
between	the	initial	surgery	and	the	most	recent	follow-	up	
visit.	We	used	two	independent	sample	t-	tests	to	analyze	
the	differences	between	the	groups.

The	clinical	notes	used	in	this	study	were	not	annotated	
and	 acquired	 from	 the	 patients'	 most	 recent	 visits.	 These	
notes	 offer	 a	 comprehensive	 record	 of	 the	 patients'	 entire	
medical	 journey	 since	 the	 onset	 of	 the	 disease,	 encapsu-
lating	 primary	 symptoms,	 duration,	 treatment	 process,	
and	 other	 pertinent	 information.	 An	 example	 is	 shown	 in		
Figure 2.	Note	that	this	contextual	information	was	processed	
by	the	NLP	model	without	additional	labeling.	A	sample	of	
clinical	notes	used	in	our	study	is	provided	in	Data	S2.

All	patients	underwent	standard	procedures	 for	LM	
screening	on	admission:	a	CT	scan	of	the	upper	abdomen	
with	 contrast	 or	 an	 MRI	 with	 contrast.	The	 diagnostic	
criteria	for	LMs	were	determined	using	the	LI-	RADS@	
criteria	defined	by	the	American	College	of	Radiology.17	
Based	on	the	imaging	features,	liver	lesions	are	scored	as	
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LR-	1	(100%	benign),	LR-	2	(probably	benign),	LR-	3	(in-
termediate	probability	for	HCC),	LR-	4	(probably	HCC),	
and	LR-	5	(100%	definite	HCC).	As	per	the	diagnostic	cri-
teria	of	recent	international	large-	scale	clinical	trials,18	
This	 study	 defined	 “No	 metastasis”	 as	 the	 following	
three	conditions:	no	nodules	detected,	presence	of	LR-	1	
lesions,	 or	 the	 presence	 of	 LR-	2	 lesions.	 “Metastasis”	
was	 defined	 as	 detection	 of	 at	 least	 one	 LR-	3	 to	 LR-	5	
lesion.	Table 1	compares	the	basic	statistics	between	the	
two	groups.

General	 information	 and	 laboratory	 test	 results	 were	
obtained	 directly	 from	 the	 HIS.	 Clinical	 history,	 intra-
operative	 findings,	 and	 pathological	 information	 were	

manually	 extracted	 from	 semi-	structured	 electronic	
reports.

2.3	 |	 Establishing the two- tier 
fusion framework

2.3.1	 |	 Stage	I:	Individual	models

ML models
Several	ML-	based	models	for	cancer	prognosis	have	been	
developed.	 Chen	 et	 al.	 recently	 developed	 an	 eXtreme	
gradient	boosting	(XGBoost)-	based	framework	to	identify	

F I G U R E  1  Study	workflow	of	this	study:	in	Stage	I,	machine	learning	(ML)	and	natural	language	processing	(NLP)	models	were	trained	
respectively;	in	Stage	II,	two	fusion	approaches	were	used	to	combine	and	integrate	the	prediction	information	of	each	model;	then,	ROC,	
Shapley	additive	explanations	(SHAP),	and	nomograms	were	used	as	evaluation	and	explanation	tools;	finally,	we	propose	the	utilization	of	
the	proposed	model	by	quantifying	the	liver	metastasis	(LM)	risk	of	colorectal	cancer	(CRC)	postoperative	patients.
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patients	with	early-	stage	pancreatic	cancer	using	clinical	
data	from	EHRs.18	Wu	et	al.19	established	a	support	vec-
tor	machine	(SVM)	model	to	classify	metastatic	and	non-	
metastatic	 osteosarcoma	 patients.	 A	 risk-	scoring	 model	
was	developed	to	quantify	the	risk	by	extracting	and	clas-
sifying	 independent	prognostic	genes.	 In	 this	 study,	 five	
mainstream	ML	models,	including	SVM,	K-	nearest	neigh-
bors	(KNN),	decision	tree	(DT),	random	forest	(RF),	and	
extra	 trees	 were	 fine-	tuned	 and	 comprehensively	 evalu-
ated	for	their	performance	in	predicting	the	risk	of	LMs.

NLP models
NLP	 models	 are	 pretrained	 models	 that	 have	 achieved	
great	 success,	 and	 the	 bidirectional	 encoder	 representa-
tions	from	transformer	(BERT)	architecture	proposed	by	
Google	researchers	is	the	most	representative.	By	applying	
an	 attention-	based	 two-	layer	 transformer	 architecture,	
BERT19	makes	the	model	parameters	 fit	 the	text	context	
through	 unsupervised	 learning.	 Central	 to	 its	 design	 is	
the	 [CLS]	 token,	 which,	 influenced	 by	 all	 tokens	 in	 the	
input	sequence	owing	to	the	self-	attention	mechanism	of	
BERT,	captures	a	comprehensive	representation	of	the	en-
tire	 input	sequence.	This	feature	is	critical	 for	tasks	that	
require	the	entire	context	to	be	understood	in	our	study.	

In	 this	 study,	 a	 Chinese	 BERT	 model	 based	 on	 Chinese		
super-	large	 prediction	 was	 adopted	 and	 fine-	tuned	 to	
evaluate	 the	 model's	 performance	 in	 predicting	 LMs	 in	
patients	 using	 Chinese-	text	 medical	 records.	 Figure  3		
illustrates	the	framework	for	fine-	tuning	the	BERT	model	
used	in	this	study.

2.3.2	 |	 Stage	II:	Fusion	models

The	feature	data	from	a	single	modality	are	not	sufficient	
to	assess	the	patient's	condition.	For	example,	laboratory	
tests	provide	information	about	the	quantitative	changes	
in	 tumor	 markers,	 but	 only	 for	 a	 certain	 period,	 while	
free-	text	medical	 records	document	 the	 long-	term	medi-
cal	 experience	 of	 patients.	 Therefore,	 this	 study	 strived	
to	 integrate	and	utilize	heterogeneous	data	by	establish-
ing	effective	fusion	frameworks.	We	used	two	of	the	most	
commonly	used	 fusion	schemes	 to	evaluate	 the	effect	of	
different	data	fusion	methods	comprehensively.

Early fusion (EF) model (BERT- clinical EF model)
In	Stage	I	of	our	model,	we	separately	 trained	ML	mod-
els	 on	 structured	 clinical	 data	 and	 the	 BERT	 model	 on	

F I G U R E  2  Example	of	an	original	clinical	note	in	Chinese	(upper	right	corner).	Typically,	each	note	provides	six-	dimensional	
information,	including	positive	symptoms,	negative	symptoms,	laboratory	results,	imaging	test	results	(e.g.,	ultrasound	and	colorectal	
endoscopy),	the	initial	diagnosis,	and	a	summary	of	the	general	condition.	Below	the	original	note,	an	English	translation	of	the	clinical	note	
is	provided.
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T A B L E  1 	 Structured	and	semi-	structured	data	on	18	characteristics	for	1463	colorectal	cancer	patients	were	included	in	this	study.

No metastasis group
n = 854

Metastasis group
n = 609 p- Value

General	
information

Age	(year) 67.18	±	11.798 67.73	±	11.661 0.378

Sex

Male 502	(0.587) 397	(0.651) 0.013

Female 352	(0.412) 212	(0.348)

Laboratory	
information

AST	(U/L) 17.63	±	6.983 19.87	±	10.933 <	0.001

ALT	(U/L) 13.91	±	9.080 16.41	±	13.592 <	0.001

AFP	(IU/mL) 3.04	±	5.218 3.15	±	6.049 0.705

CEA	(ng/mL) 11.07	±	35.728 55.21	±	177.338 <0.001

CA199	(ku/L) 26.7	2	±	78.864 114.55	±	344.838 <0.001

Clinical	history Smoking

No 583	(68.27%) 379	(62.23%) 0.016

Yes 271	(31.73%) 230	(37.77%)

Drinking

No 620	(72.60%) 419	(68.80%) 0.115

Yes 234	(27.40%) 190	(31.20%)

Weight	loss

No 544	(63.70%) 366	(60.10%) 0.162

Yes 310	(36.30%) 243	(39.90%)

Cancer	History

No 750	(87.82%) 538	(88.34%) 0.763

Yes 104	(12.18%) 71	(11.66%)

Family	History

No 822	(96.25%) 590	(96.88%) 0.519

Yes 32	(3.75%) 19	(3.12%)

Intraoperative	
findings

Diameter	(cm) 4.78	±	2.163 5.04	±	2.205 0.023

Invasion	Range	(%) 0.74	±	0.263 0.76	±	0.254 0.075

Location

Lower	rectum 76	(8.90%) 44	(7.22%) 0.079

Middle	rectum 139	(16.28%) 90	(14.78%)

Upper	rectum 149	(17.45%) 112	(18.39%)

Sigmoid	colon 263	(30.80%) 184	(30.21%)

Descending	colon 61	(7.14%) 40	(6.57%)

Transverse	colon 33	(3.86%) 22	(3.61%)

Ascending	colon 133	(15.57%) 117	(19.21%)

Pathological	
information

Pathology	Type

Uplift 244	(28.57%) 185	(30.38%) 0.428

Ulcer 603	(70.61%) 420	(68.97%)

Infiltration 7	(0.82%) 4	(0.66%)

Differentiation

Poor 110	(12.88%) 90	(14.78%) 0.514

Medium 694	(81.26%) 481	(78.98%)

High 50	(5.85%) 38	(6.24%)

Follow-	up	
information

Visiting	time	postsurgery	
(Month)

10.49	±	7.98 8.86	±	7.27 0.345
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free-	text	clinical	notes	to	maximize	the	utilization	of	both	
clinical	and	text	features,	aiming	to	obtain	the	best	models	
to	fit	the	predicted	LM	status.	For	early	fusion	(EF),	we	in-
tegrated	the	vector	from	the	last	layer	of	the	BERT	model	
and	the	features	from	the	best	model	into	a	single	feature	
vector.	 This	 combined	 feature	 vector	 was	 then	 used	 to	
train	a	 final	XGBoost	model	 for	 further	prediction	 tasks	
(Figure 1;	Stage	II	EF).	The	XGBoost	classifier	is	a	power-
ful	ensemble	model	based	on	a	tree	structure	and	an	opti-
mized	version	of	the	gradient	boosting	tree	method	which	
incorporates	 an	 improved	 second-	order	 derivative	 loss	
function,	 regularization	 term	 to	 prevent	 overfitting,	 and	
parallel	 computing	 for	 block	 storage	 optimization.	 The	
formula	for	the	XGBoost	model	is	shown	in	Equation 1.

where	L	 is	 the	 loss	 function,	y	 is	 the	actual	value,	ŷ	 is	 the	
predicted	value,	l	is	the	logistic	loss	function,	and	Ω(f)	is	the	
regularization	term.

Late fusion (LF) model (BERT- clinical LF model)
In	the	late	fusion	(LF)	model,	we	use	the	predictions	gen-
erated	by	the	models	trained	in	Stage	I	to	reach	the	final	

decision	(Figure 1;	Stage	II	LF).	These	predictions,	which	
are	 derived	 from	 the	 output	 of	 the	 models	 in	 Stage	 I,		
are	 then	 fused	 using	 an	 aggregation	 function	 to	 yield	
a	 final	 result.	 The	 aggregation	 can	 be	 achieved	 using	
methods	such	as	averaging,	majority	voting,	or	weighted	
voting.	 The	 formula	 for	 weighted	 voting	 is	 shown	 in	
Equation 2.

where	 ŷ	 is	 the	 final	 prediction,	 wᵢ	 is	 the	 weight	 of	 each	
model,	and	pᵢ	is	the	prediction	of	each	model.

In	our	LF	model,	the	weights	assigned	to	each	model	
for	the	weighted	voting	method	were	determined	based	
on	the	performance	of	the	respective	models	during	the	
training	phase.	Specifically,	the	weights	were	computed	
as	the	reciprocal	of	the	error	rate	observed	in	the	cross-	
validation	of	each	model.	Hence,	models	demonstrating	
lower	error	rates	 (indicating	higher	performance)	were	
assigned	 greater	 weights.	 This	 method	 of	 weight	 as-
signment	ensures	that	models	with	higher	performance	
have	a	more	substantial	 impact	on	the	final	prediction.	
The	detailed	equations	and	explanations	are	provided	in	
Data	S3.

(1)L =
∑n

i=1
l
(

yi, ŷi
)

+Ω(f )

(2)ŷ =

∑

wi ⋅ pi
∑

wi

F I G U R E  3  BERT	model	framework	applied	in	the	study.	BERT	stands	for	bidirectional	encoder	representations	from	transformer.	The	
figure	illustrates	the	flow	of	information	from	the	input	sequence,	through	the	stacked	transformer	encoder	blocks,	and	finally	to	the	fully	
connected	layer	for	prediction.
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The	advantage	of	the	LF	approach	lies	in	its	ability	to	
integrate	 independent	 predictions	 from	 multiple	 models	
and	 establish	 a	 threshold	 based	 on	 the	 number	 of	 ac-
curately	 predicted	 models.	 Considering	 the	 number	 of	
models	 in	our	study	and	recent	research	focusing	on	LF	
models,	we	chose	the	weighted	voting	method	as	the	al-
gorithm	for	LF,	offering	a	more	informed	and	robust	final	
prediction.

2.4	 |	 Visualization and explanation

SHAP	analysis	is	a	method	to	address	model	interpret-
ability.20	It	is	based	on	Shapley	values,	a	game-	theoretic	
concept	developed	by	economist	Lloyd	Shapley	to	deter-
mine	the	importance	of	individuals	by	calculating	their	
contributions	to	cooperation.	This	method	has	received	
much	attention	 in	AI	 interpretability	research	and	has	
contributed	significantly	to	advancing	the	clinical	appli-
cations	of	models.21,22	The	Shapley	value	interpretation	
is	an	additive	feature	attribution	method	that	interprets	
a	model's	predicted	value	as	a	linear	function	of	a	binary	
variable.

where	g	is	the	explanatory	model	(3a),	z	is	the	coalition	vec-
tor,	M	is	the	maximum	coalition	size	(3b),	and	ϕ j	∈	R	is	the	
feature	attribution	of	feature	j.

In	 this	 study,	 we	 employed	 SHAP	 analysis	 to	 visual-
ize	 and	 evaluate	 the	 importance	 of	 each	 feature	 in	 the	
EF	model	and	the	 final	decision	step	to	screen	the	most	
predictive	 features.	The	 identified	 features	 were	 used	 to	
improve	the	model's	interpretability.

2.5	 |	 Nomogram modeling

A	 quantifiable	 and	 practical	 clinical	 assistance	 tool	 is	
needed	to	help	clinicians	identify	patients	at	high	risk	of	
developing	 LMs	 and	 implement	 individualized	 screen-
ing	and	diagnosis	strategies.	Therefore,	we	constructed	a	
nomogram	based	on	the	13	compelling	predictive	features	
identified	by	the	SHAP	analysis.	The	nomogram	was	con-
structed	using	the	Python	system's	“rpy”	and	“rms”	pack-
ages	(Python	Software	Foundation,	version	3.1.1).

3 	 | 	 RESULTS

3.1	 |	 Evaluation method

The	 performance	 of	 each	 method	 was	 evaluated	 using	
the	ROC	curve,	along	with	 the	accuracy,	precision,	re-
call,	 and	 F1	 scores.	 Furthermore,	 true	 positive	 (TP)	
and	 false	 positive	 (FP)	 are	 the	 numbers	 of	 correctly	
and	 incorrectly	 predicted	 positive	 cases,	 respectively,	
while	true	negative	(TN)	and	false	negative	(FN)	are	the	
numbers	of	correctly	and	incorrectly	predicted	negative	
cases,	respectively.	Equations 4a–	4d	describe	the	perfor-
mance	metrics.

3.2	 |	 Two- tier fusion framework

3.2.1	 |	 Stage	I:	Individual	models

ML models
To	explore	the	potential	of	predicting	the	risk	of	LM	using	
only	 clinical	 indicators,	 five	 different	 ML	 models	 were	
first	 built	 using	 structured	 or	 semi-	structured	 clinical	
data,	and	 the	parameters	were	optimized.	Features	with	
significant	correlations	were	excluded	using	Pearson	cor-
relation	analysis.	None	of	the	18	clinical	features	showed	
linear	 correlations	 using	 Pearson's	 coefficient	 (Data	 S1;	
Figure  S1);	 hence,	 they	 were	 incorporated	 into	 the	 ML	
model.

The	 ROC	 curves	 and	 AUC	 values	 of	 the	 five	 ML	
algorithm-	building	 models	 on	 the	 test	 set	 are	 shown	 in	
Figure 4,	and	the	accuracy,	precision,	recall,	and	F1	values	
are	listed	in	Table 2.	Overall,	the	performance	of	each	ML	
algorithm	 in	 the	validation	group	was	 similar	and	mod-
erate;	SVM	showed	the	highest	average	AUC	(0.640)	and	
accuracy	(0.640),	while	the	KNN	and	DT	had	high	recall	
(0.950)	 and	 precision	 (1.00).	 However,	 the	 F1	 values	 of	
these	 two	 models	 were	 lower	 than	 their	 optimal	 metric	
(0.230	and	0.685),	suggesting	a	potential	deficiency	in	ro-
bustness.	Therefore,	SVM	is	considered	the	preferred	opti-
mal	ML	algorithm	and	is	included	in	the	EF	of	the	second	
stage.

(3a)g
(

z�
)

= �0 +

M
∑

j=1

�jz
�
j

(3b)z� ∈ {0,1}M

(3c)�j ∈ R

(4a)Accuracy =
TP + TN

TP + TN + FP + FN

(4b)Precision =
TP

TP + FP

(4c)Recall =
TP

TP + FN

(4d)F1 − score =
2(precision∗ recall)

1

precision
+

1

recall



   | 19345LI et al.

NLP model
As	the	NLP	model,	we	used	the	BERT	model	with	a	bi-
directional	 transformer	 structure,	 which	 has	 received	
sufficient	attention	and	recognition	 in	medical	natural	
language	research.	After	training,	the	BERT	model	ob-
tained	a	precision	of	0.617,	 recall	of	0.613,	accuracy	of	
0.636	(Table 3),	and	AUC	of	0.676	(Figure 5).	The	BERT	
model	had	a	more	balanced	prediction	ability	 for	posi-
tive	and	negative	samples	than	the	ML	model.	However,	
the	effect	was	insignificant	compared	to	the	ML	model,	

suggesting	 that	 the	 text	 features	 may	 be	 valuable	 for	
predicting	 LM	 but	 need	 to	 be	 supplemented	 by	 other	
features.

3.2.2	 |	 Stage	II:	Fusion	models

In	 Stage	 II,	 we	 explored	 two	 fusion	 approaches	 to	 in-
tegrate	the	ML	and	NLP	models	from	Stage	I.	Early	fu-
sion	concatenated	the	feature	vectors	from	the	ML	and	

F I G U R E  4  ROC	curve	and	AUC	
values	of	machine	learning	models.	
AUC,	area	under	the	curve;	ROC,	
receiver	operating	characteristic;	SVM,	
support	vector	machine;	KNN,	K-	nearest	
neighbors.

Model Accuracy Recall Precision F1

Support	vector	machine 0.640 0.620 0.620 0.620

K-	nearest	neighbors 0.558 0.950 0.131 0.230

Decision	tree 0.589 0.521 1.000 0.685

Random	forest 0.613 0.727 0.447 0.554

Extra	trees 0.613 0.388 0.776 0.518

Note:	The	peak	of	each	index	is	shown	in	bold.

T A B L E  2 	 Comparison	of	metrics	in	
machine	learning	models.

Accuracy Precision Recall F1

BERT-	fine-	tune 0.636 0.617 0.613 0.624

BERT-	Clinical-	EF-	SVM 0.808 0.803 0.805 0.808

BERT-	Clinical-	LF 0.666 0.666 0.645 0.643

Note:	The	peak	of	each	index	is	shown	in	bold.

T A B L E  3 	 Comparison	of	metrics	in	
the	BERT	and	two	fusion	models.
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NLP	 models	 into	 a	 single	 vector	 to	 train	 an	 XGBoost	
classifier.	 Late	 fusion	 aggregated	 the	 predictions	 from	
each	model	using	weighted	voting,	with	weights	based	
on	 cross-	validation	 performance.	 The	 aim	 was	 to	 fuse	
the	complementary	structured	clinical	and	free-	text	in-
formation	to	 improve	predictive	ability	over	 individual	
models.

3.3	 |	 SHAP analysis

Based	on	the	above	results,	we	performed	SHAP	analy-
sis	to	evaluate	and	interpret	the	impact	of	different	fea-
tures	in	the	BERT-	clinical-	EF	model	for	predicting	CRC	
liver	 metastases.	 As	 shown	 in	 the	 SHAP	 summary	 plot	
(Figure  6A),	 four	 laboratory	 markers	 were	 the	 strong-
est	 predictors	 of	 LMs.	 These	 included	 two	 oncological	
biomarkers	 (CA199	 and	 CEA)	 and	 two	 liver	 enzymatic	
parameters	 (ALT	and	AST),	consistent	with	most	clini-
cal	 studies	 predicting	 LMs.	 It	 is	 worth	 noting	 that	 the	
importance	of	the	“NLP	score”	is	second	only	to	labora-
tory	 data,	 indicating	 that	 complex	 clinical	 text	 features	
provide	essential	decision-	making	information,	although	
this	 information	 is	 not	 yet	 fully	 utilized.	 In	 the	 SHAP	
summary	 plot	 (Figure  6B),	 all	 eigenvalues	 are	 repre-
sented	 in	 blue	 (low)	 or	 red	 (high),	 and	 the	 distance	 of	
each	point	from	0	(SHAP	value)	represents	its	contribu-
tion	(different	degrees)	to	the	outcomes,	with	increasing	
values	 favoring	 the	 negative	 (no	 LM)	 or	 positive	 (LM)	
classes,	respectively.

3.4	 |	 Nomogram construction

Based	 on	 the	 top	 13	 valid	 predictors	 identified	 by	 the	
SHAP	 analysis,	 a	 nomogram	 was	 developed	 to	 predict	
the	risk	of	LMs.	As	shown	in	the	nomogram	presented	in	
Figure  7,	 the	 effect	 of	 each	 feature	 on	 the	 outcome	 was	
consistent	with	its	importance	ranking	determined	by	the	
SHAP	analysis.

3.5	 |	 Nomogram model validation

To	validate	the	predictive	performance	of	the	nomogram,	
an	 external	 dataset	 of	 102	 cases	 was	 collected	 from	 the	
Aerospace	Center	Hospital.	Two	physicians,	Liu	Wenjuan	
and	Lv	Han,	who	have	at	least	10-	year	experience	in	CRC	
diagnosis,	were	blinded	to	the	dataset	and	participated	si-
multaneously	in	the	validation	process.

In	this	external	validation,	the	nomogram	demonstrated	
superior	 performance	 compared	 to	 the	 two	 physicians	
across	key	predictive	performance	metrics,	 reinforcing	 its	
potential	 utility	 in	 predicting	 the	 risk	 of	 LMs	 in	 clinical	
practice.	 The	 ROC	 curve	 of	 the	 nomogram,	 presented	 in	
Figure 8,	yielded	an	AUC	of	0.782,	indicating	a	strong	dis-
criminative	ability	of	the	model.	Compared	with	the	perfor-
mance	of	the	physicians,	represented	by	two	points	on	the	
ROC	curve,	the	nomogram	achieved	a	higher	TP	rate	for	a	
given	FP	rate	across	a	range	of	threshold	probabilities.

Table  4	 presents	 a	 summary	 of	 the	 key	 performance	
metrics	 for	 the	 nomogram	 and	 the	 two	 physicians.	 The	

F I G U R E  5  ROC	curve	and	
AUC	values	of	the	BERT	and	two	
fusion	models.	AUC,	area	under	the	
curve;	BERT,	bidirectional	encoder	
representations	from	transformer;	CI,	
confidence	interval;	ROC,	receiver	
operating	characteristic.
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nomogram	 consistently	 demonstrated	 higher	 perfor-
mance	across	all	metrics,	underscoring	its	potential	util-
ity	 in	 a	 clinical	 setting.	 These	 results	 provide	 evidence	

supporting	 the	 application	 of	 the	 nomogram	 in	 clinical	
decision-	making	while	also	highlighting	areas	for	poten-
tial	improvement	in	future	iterations	of	the	model.

F I G U R E  6  (A)	The	summary	bar	plot	shows	the	global	importance	of	each	feature	in	the	early	fusion	model.	(B)	The	summary	bee-	
swarm	plot	shows	the	global	importance	of	each	feature	and	the	distribution	of	effect	sizes	in	the	whole	test	dataset.

F I G U R E  7  Nomogram	of	features	established	by	the	BERT-	clinical-	early-	fusion	model.
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4 	 | 	 DISCUSSION

Considering	the	escalating	global	incidence	of	CRC,	there	
is	 an	 urgent	 need	 for	 tools	 capable	 of	 quantifying	 the	
risk	of	disease	progression,	ultimately	enhancing	overall	
patient	outcomes.	A	significant	clinical	challenge	 lies	 in	
accurately	determining	the	risk	of	CRC-	related	LMs	and	
conducting	 timely	 imaging	 screening.21	 Numerous	 stud-
ies	employing	ML	and	AI	technology22	have	contributed	
to	the	improved	prognosis	of	CRC	patients	with	remark-
able	results.	However,	the	majority	of	these	studies	rely	on	
costly	high-	throughput	sequencing	genetic	data	or	high-	
quality	imaging	or	pathology	data.23	By	contrast,	medical	
free	texts,24	representing	the	most	prevalent	and	effective	
data	indicative	of	patient	disease	progression,	have	been	
largely	 overlooked.	 With	 advances	 in	 NLP	 technologies	
such	as	BERT,25	computers	are	increasingly	adept	at	un-
derstanding	 human	 language,	 and	 medical	 free	 text	 is	
poised	to	become	another	major	branch	of	omics	research.

In	this	pioneering	study,	we	introduced	a	fusion	mod-
eling	approach	that	combines	textual	and	clinical	data	to	
predict	the	risk	of	LMs	in	patients.	Notably,	to	the	best	of	
our	knowledge,	 this	 is	 the	 first	 study	 to	merge	NLP	and	
classical	ML	prediction	methods	in	the	oncology	domain.	
In	the	first	stage,	we	employed	five	classic	ML	models	to	
predict	LMs	but	observed	suboptimal	results,	 suggesting	

that	 laboratory	 tests	 alone	 were	 insufficient	 for	 the	 pre-
diction.26	In	the	second	stage,	we	experimented	with	two	
levels	 of	 data	 fusion	 between	 the	 trained	 NLP	 and	 ML	
models.	 We	 found	 that	 the	 EF	 of	 models	 proved	 more	
effective	 than	 LF.	This	 could	 be	 attributed	 to	 the	 ability	
of	 EF	 to	 preserve	 and	 incorporate	 the	 information	 from	
textual	 data	 into	 the	 decision	 model	 at	 an	 earlier	 stage,	
allowing	for	a	more	integrated	and	comprehensive	repre-
sentation	of	the	data.	By	contrast,	LF,	which	combines	the	
predictions	 from	 individual	models	at	a	 later	 stage,	may	
not	 fully	 leverage	 the	 interactions	 between	 the	 different	
types	of	data.

A	 critical	 barrier	 to	 the	 clinical	 application	 of	 deep	
learning	is	the	“black	box”	nature	of	AI	models.27	To	ad-
dress	this	issue,	we	assessed	feature	importance	in	model	
decision-	making	 using	 the	 state-	of-	the-	art	 SHAP	 algo-
rithm.28	 In	 the	 top-	performing	 EF	 models,	 tumor	 bio-
markers	and	 liver	enzymes	emerged	as	 the	most	crucial	
factors	for	decision-	making	compared	with	other	indica-
tors,	 aligning	 with	 previous	 CRC	 clinical	 study	 conclu-
sions.29–	31	Furthermore,	these	findings	are	consistent	with	
existing	 clinical	 evidence32	 and	 perspectives33	 on	 CRC,	
underscoring	the	value	of	these	indicators.	Notably,	both	
the	SHAP	interpretation	map	and	the	nomogram	map	re-
vealed	that	the	clinical	text	features	(NLP	score)	processed	
by	NLP	technology	played	a	relatively	significant	role	 in	
decision-	making.	 By	 contrast,	 medical	 free	 texts,34	 the	
most	common	and	effective	data	reflecting	patient	disease	
progression,	 have	 been	 underappreciated.	 With	 break-
throughs	 in	NLP	 technologies	 such	as	BERT,	computers	
will	 further	 improve	their	ability	to	comprehend	human	
language,	 leading	to	medical	 free	text	becoming	another	
vital	branch	of	omics	research.35,36

This	study	has	several	limitations	that	warrant	further	
investigation.	 Most	 importantly,	 due	 to	 technical	 con-
straints	 and	 hardware	 resources,	 we	 used	 a	 fine-	tuned	

F I G U R E  8  Comparison	of	the	ROC	
curve	of	the	nomogram	and	the	results	of	
two	physicians.

T A B L E  4 	 Comparison	of	evaluation	metrics	of	the	nomogram	
and	two	physicians.

Accuracy Precision Recall F1

Nomogram 0.760 0.763 0.906 0.829

Physician	1 0.658 0.697 0.820 0.754

Physician	2 0.640 0.670 0.860 0.753

Note:	The	peak	of	each	index	is	shown	in	bold.
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version	 of	 the	 BERT	 model	 rather	 than	 more	 advanced	
methods,	such	as	domain	pretraining.	Consequently,	the	
model	 may	 have	 limitations	 in	 understanding	 free-	text	
medical	records.	Additionally,	the	data	scale	in	this	study	
was	 relatively	 small	 compared	 to	 similar	 studies,	 which	
may	 introduce	biases	 that	could	affect	 the	 robustness	of	
the	model.	We	also	acknowledge	that	while	the	SHAP	al-
gorithm	provides	some	level	of	interpretability,	it	does	not	
fully	explain	the	“black	box”	nature	of	our	model,	high-
lighting	 the	need	 for	caution	 in	 interpreting	 the	conclu-
sions	drawn	from	the	SHAP	analysis	in	our	study.	Finally,	
we	believe	 the	model	architecture	still	has	 room	for	 im-
provement,	 such	 as	 adopting	 the	 BioBERT	 architecture	
proposed	by	Lee	et	al.37	or	the	Siamese	network	architec-
ture	suggested	by	Bajaj	et	al.38	Exploring	data	fusion	meth-
ods	 will	 enable	 the	 development	 of	 efficient	 prognostic	
models	for	multimodal	data	to	improve	human	health	in	
the	oncology	field.

5 	 | 	 CONCLUSIONS

We	 developed	 a	 fusion	 framework	 based	 on	 NLP	 and	
clinical	 data	 to	 predict	 the	 risk	 of	 postoperative	 me-
tastasis	 in	 CRC	 patients.	 Our	 EF	 model	 outperformed	
standalone	ML-		and	NLP-	based	models.	In	addition,	we	
utilized	 the	 SHAP	 method	 to	 verify	 the	 interpretabil-
ity	 of	 clinical	 and	 textual	 data	 and	 demonstrated	 their	
critical	role	 in	the	final	decision-	making.	We	also	built	
a	quantitative	nomogram	map	for	clinical	practice	based	
on	our	model.	We	believe	our	findings	will	promote	the	
application	of	NLP	and	data	fusion	techniques	in	oncol-
ogy	to	improve	clinical	decision-	making	and	overall	pa-
tient	outcomes.
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