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Abstract
Background: The significance of liver metastasis (LM) in increasing the risk of 
death for postoperative colorectal cancer (CRC) patients necessitates innovative 
approaches to predict LM.
Aim: Our study presents a novel and significant contribution by developing an in-
terpretable fusion model that effectively integrates both free-text medical record 
data and structured laboratory data to predict LM in postoperative CRC patients.
Methods: We used a robust dataset of 1463 patients and leveraged state-of-the-art 
natural language processing (NLP) and machine learning techniques to construct 
a two-layer fusion framework that demonstrates superior predictive performance 
compared to single modal models. Our innovative two-tier algorithm fuses the re-
sults from different data modalities, achieving balanced prediction results on test 
data and significantly enhancing the predictive ability of the model. To increase 
interpretability, we employed Shapley additive explanations to elucidate the con-
tributions of free-text clinical data and structured clinical data to the final model. 
Furthermore, we translated our findings into practical clinical applications by 
creating a novel NLP score-based nomogram using the top 13 valid predictors 
identified in our study.
Results: The proposed fusion models demonstrated superior predictive perfor-
mance with an accuracy of 80.8%, precision of 80.3%, recall of 80.5%, and an F1 
score of 80.8% in predicting LMs.
Conclusion: This fusion model represents a notable advancement in predicting 
LMs for postoperative CRC patients, offering the potential to enhance patient 
outcomes and support clinical decision-making.
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1   |   INTRODUCTION

Colorectal cancer (CRC)1 is the third most common ma-
lignancy worldwide (10.0%) and the second most common 
cause of cancer-related deaths (9.4%). With the ongoing 
research on molecular mechanisms of cancer and the 
joint development of various omics studies, an increasing 
number of treatment options are now available for local 
lesions and advanced diseases, thereby improving indi-
vidualized diagnosis, treatment, and precision medicine.2 
Current treatments for CRC include endoscopic and sur-
gical local excision, downstaging preoperative radiother-
apy and systemic therapy, extensive surgery for local and 
metastatic disease, local ablation of metastases, palliative 
chemotherapy, targeted therapy, and immunotherapy. 
These treatments, alone or in combination, significantly 
improve the survival of CRC patients. The liver is the most 
common site of postsurgery metastasis, involved in 25%–
50% of CRC patients during the follow-up period.3 Liver 
metastatic lesions detected in the early stage can be re-
moved by surgery, resulting in a better overall prognosis. 
However, only 25% of the patients are suitable for first-line 
therapy at the time of CRC liver metastasis (LM) diagno-
sis,4 owing to the rapid metastases. As a result, most pa-
tients receive second-line chemotherapy as an alternative, 
associated with greater toxicity and a worse prognosis. 
Therefore, it has always been a challenge to predict LM in 
patients with CRC.

Radiological techniques are the most promising for 
the surveillance of LMs in CRC patients. Experts have 
developed standards for evaluating liver lesions, such as 
the Liver Reporting & Data System (LI-RADS®). However, 
the frequency at which imaging tests should be performed 
to prevent postoperative recurrence has been controver-
sial. Although recent studies have shown that 16%–26% of 
liver lesions are too small to be identified or excluded as 
benign lesions,5 invasive physical examinations, such as 
needle biopsies, are not recommended because their ben-
efits may not outweigh the risk and cost to the patients. 
Moreover, repeated CT scanning may increase the risk 
of tumor mutation and progression, especially consid-
ering the aggressive nature of CRC metastasis.6 Thus, a 
valid analytical strategy for assessing and predicting LM 
in postoperative CRC patients, through which physicians 
can gain more confidence in determining whether a ra-
diology examination should be scheduled for personalized 
surveillance of LM, can be attractive in clinical scenarios. 

In addition, such strategy would promote more efficient 
use of imaging techniques and improve the overall well-
being of CRC patients.

With the rapid development of artificial intelligence 
(AI) and big data, medical multimodal big-data-driven 
algorithms have achieved remarkable breakthroughs. Ra-
diomics and pathomics7–9 have successfully predicted the 
prognosis and assessed the risk of metastasis in CRC pa-
tients.10 In a retrospective study by Li et al. on data from 
766 patients undergoing LM resection, a neural network 
model was developed to predict the overall survival (OS) 
more accurately than the Cox regression model.11 More 
recently, Wang et al.12 reported a multiomics model by 
combining pathomics, radiomic features, immune scores, 
and clinical factors into a novel nomogram with outstand-
ing performance in predicting OS (area under the curve 
[AUC] 0.860) and disease-free survival (AUC 0.875). These 
breakthroughs inspire future research to develop more ad-
vanced AI techniques to improve the overall efficacy of 
CRC treatment.

Despite significant success in predicting LMs using the 
multiomic approach, unneglectable barriers hinder the 
clinical application of those models. For example, the data 
quality must meet the unified standard set by the model-
builder to ensure the consistency of model input, which is 
difficult to satisfy in real-world clinical scenarios owing to 
the variation in data acquisition techniques and a lack of 
comprehensive quality assessment method.13 Moreover, 
many patients may not choose to visit the same hospital 
during follow-up, which indicates that multiomic data 
may not be available to the physicians in terms of original 
electronic profiles during subsequent visits, mainly owing 
to legal obstacles associated with transferring between 
electronic health record (EHR) systems across different 
hospitals.14 In this regard, the clinical history can offer im-
portant evidence such as the duration of the disease, treat-
ment records, changes in symptoms, and comprehensive 
summarization made by the previous physician, which 
provides a full review of the patients in unstructured texts. 
It is highly attractive to develop novel approaches to use 
these informatic data in AI models to prompt computer-
aided diagnosis.

Natural language processing (NLP) is an essential 
branch of AI technology that aims to convert natural 
language into a computable digital form to achieve text-
level understanding and calculation. In the medical 
domain, the mainstream of NLP focuses on extracting 
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clinically meaningful entities or classifying subgroups 
using EHRs, radiology reports, or drug instructions. 
Moreover, studies utilizing deep learning from free text 
to predict patient outcomes deserve further attention. 
More recently, Causa Andrieu et al.15 developed an 
NLP-based radiology report analysis model to identify 
clinically meaningful CRC metastatic phenotypes and 
demonstrated a correlation between the phenotypes and 
overall clinical survival. Our previous study established 
a domain-specific transfer learning pipeline to identify 
patients with clinically meaningful pathogenesis related 
to tinnitus.16 However, the integration of multimodal 
data, such as free text, genomics, and radiomics, and 
structured data has always been a critical challenge in 
modeling.

This study aimed to effectively quantify the risk of LM 
in CRC patients using EHRs and laboratory data by con-
structing a novel fusion framework. The highlights of this 
study are listed as follows:

1.1  |  Highlights of this study

1.	 A two-tier fusion-based framework is proposed to 
predict LMs in CRC patients. A total of 18 struc-
tured clinical factors including age, gender, the most 
recent laboratory tests associated with liver function, 
and cancer metastasis, in addition to clinical history, 
intraoperative findings, and pathology phenotypes from 
original medical record, have been manually extracted 
and numerized. Moreover, deep learning-based textual 
features based on the most recent medical record have 
been modeled as free-text representative features and 
included in the modeling.

2.	 We have established a novel NLP and clinical factors-
based nomogram for the practical application of our 
fusion model. As clinical texts are the most common 
and essential data collected during the follow-up 
of CRC patients, this nomogram may have broader 
applications.

3.	 We evaluated the contribution of each data module 
to the prediction accuracy during the fusion process, 
thus improving the interpretability of this complex 
model.

2   |   MATERIALS AND METHODS

2.1  |  Study overview

This study consisted of four parts. In Part 1, we built 
the machine learning (ML) and NLP models using 
structured clinical factors and free-text medical history 

to evaluate their accuracy in predicting LMs. In Part 2, 
we used two advanced fusions, namely stacking and en-
sembling methods. Thus, a fusion learning framework 
was established to realize the joint prediction of LM by 
ML and NLP models. In the third part, the model perfor-
mance was evaluated in terms of accuracy, precision, re-
call, F1, receiver operating characteristic (ROC) curve, 
AUC, and Shapley additive explanations (SHAP) val-
ues to improve the interpretability of the model. In the 
fourth part, we constructed a novel nomogram based on 
clinical factors and NLP scores to provide a valuable tool 
for clinical applications. Figure 1 presents the workflow 
of this study.

The study was conducted according to the Declaration 
of Helsinki. It was approved by the Beijing Friendship 
Hospital Ethics Committee, Capital Medical University 
(Research Application System number 2021-P2-144-01), 
and “Ethical Review of Biomedical Research Involving 
People,” the Ministry of Public Health of China.

2.2  |  Data collection and label definition

We retrospectively collected EHR data from a tertiary hos-
pital in Beijing, China, including the data of 1463 CRC 
patients admitted for surgery and followed-up between 
2019 and 2022. All authors discussed the inclusion and 
exclusion criteria. All definitions and details are listed in 
Table S1 in Data S1.

All structured clinical data were derived from the Hos-
pital Information System (HIS), including general infor-
mation, laboratory test results, surgical record findings, 
and pathology results. Clinical free-text medical history 
was defined as admission history at the most recent fol-
low-up visit, and follow-up time was defined as the time 
between the initial surgery and the most recent follow-up 
visit. We used two independent sample t-tests to analyze 
the differences between the groups.

The clinical notes used in this study were not annotated 
and acquired from the patients' most recent visits. These 
notes offer a comprehensive record of the patients' entire 
medical journey since the onset of the disease, encapsu-
lating primary symptoms, duration, treatment process, 
and other pertinent information. An example is shown in 	
Figure 2. Note that this contextual information was processed 
by the NLP model without additional labeling. A sample of 
clinical notes used in our study is provided in Data S2.

All patients underwent standard procedures for LM 
screening on admission: a CT scan of the upper abdomen 
with contrast or an MRI with contrast. The diagnostic 
criteria for LMs were determined using the LI-RADS@ 
criteria defined by the American College of Radiology.17 
Based on the imaging features, liver lesions are scored as 
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LR-1 (100% benign), LR-2 (probably benign), LR-3 (in-
termediate probability for HCC), LR-4 (probably HCC), 
and LR-5 (100% definite HCC). As per the diagnostic cri-
teria of recent international large-scale clinical trials,18 
This study defined “No metastasis” as the following 
three conditions: no nodules detected, presence of LR-1 
lesions, or the presence of LR-2 lesions. “Metastasis” 
was defined as detection of at least one LR-3 to LR-5 
lesion. Table 1 compares the basic statistics between the 
two groups.

General information and laboratory test results were 
obtained directly from the HIS. Clinical history, intra-
operative findings, and pathological information were 

manually extracted from semi-structured electronic 
reports.

2.3  |  Establishing the two-tier 
fusion framework

2.3.1  |  Stage I: Individual models

ML models
Several ML-based models for cancer prognosis have been 
developed. Chen et al. recently developed an eXtreme 
gradient boosting (XGBoost)-based framework to identify 

F I G U R E  1   Study workflow of this study: in Stage I, machine learning (ML) and natural language processing (NLP) models were trained 
respectively; in Stage II, two fusion approaches were used to combine and integrate the prediction information of each model; then, ROC, 
Shapley additive explanations (SHAP), and nomograms were used as evaluation and explanation tools; finally, we propose the utilization of 
the proposed model by quantifying the liver metastasis (LM) risk of colorectal cancer (CRC) postoperative patients.
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patients with early-stage pancreatic cancer using clinical 
data from EHRs.18 Wu et al.19 established a support vec-
tor machine (SVM) model to classify metastatic and non-
metastatic osteosarcoma patients. A risk-scoring model 
was developed to quantify the risk by extracting and clas-
sifying independent prognostic genes. In this study, five 
mainstream ML models, including SVM, K-nearest neigh-
bors (KNN), decision tree (DT), random forest (RF), and 
extra trees were fine-tuned and comprehensively evalu-
ated for their performance in predicting the risk of LMs.

NLP models
NLP models are pretrained models that have achieved 
great success, and the bidirectional encoder representa-
tions from transformer (BERT) architecture proposed by 
Google researchers is the most representative. By applying 
an attention-based two-layer transformer architecture, 
BERT19 makes the model parameters fit the text context 
through unsupervised learning. Central to its design is 
the [CLS] token, which, influenced by all tokens in the 
input sequence owing to the self-attention mechanism of 
BERT, captures a comprehensive representation of the en-
tire input sequence. This feature is critical for tasks that 
require the entire context to be understood in our study. 

In this study, a Chinese BERT model based on Chinese 	
super-large prediction was adopted and fine-tuned to 
evaluate the model's performance in predicting LMs in 
patients using Chinese-text medical records. Figure  3 	
illustrates the framework for fine-tuning the BERT model 
used in this study.

2.3.2  |  Stage II: Fusion models

The feature data from a single modality are not sufficient 
to assess the patient's condition. For example, laboratory 
tests provide information about the quantitative changes 
in tumor markers, but only for a certain period, while 
free-text medical records document the long-term medi-
cal experience of patients. Therefore, this study strived 
to integrate and utilize heterogeneous data by establish-
ing effective fusion frameworks. We used two of the most 
commonly used fusion schemes to evaluate the effect of 
different data fusion methods comprehensively.

Early fusion (EF) model (BERT-clinical EF model)
In Stage I of our model, we separately trained ML mod-
els on structured clinical data and the BERT model on 

F I G U R E  2   Example of an original clinical note in Chinese (upper right corner). Typically, each note provides six-dimensional 
information, including positive symptoms, negative symptoms, laboratory results, imaging test results (e.g., ultrasound and colorectal 
endoscopy), the initial diagnosis, and a summary of the general condition. Below the original note, an English translation of the clinical note 
is provided.
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T A B L E  1   Structured and semi-structured data on 18 characteristics for 1463 colorectal cancer patients were included in this study.

No metastasis group
n = 854

Metastasis group
n = 609 p-Value

General 
information

Age (year) 67.18 ± 11.798 67.73 ± 11.661 0.378

Sex

Male 502 (0.587) 397 (0.651) 0.013

Female 352 (0.412) 212 (0.348)

Laboratory 
information

AST (U/L) 17.63 ± 6.983 19.87 ± 10.933 < 0.001

ALT (U/L) 13.91 ± 9.080 16.41 ± 13.592 < 0.001

AFP (IU/mL) 3.04 ± 5.218 3.15 ± 6.049 0.705

CEA (ng/mL) 11.07 ± 35.728 55.21 ± 177.338 <0.001

CA199 (ku/L) 26.7 2 ± 78.864 114.55 ± 344.838 <0.001

Clinical history Smoking

No 583 (68.27%) 379 (62.23%) 0.016

Yes 271 (31.73%) 230 (37.77%)

Drinking

No 620 (72.60%) 419 (68.80%) 0.115

Yes 234 (27.40%) 190 (31.20%)

Weight loss

No 544 (63.70%) 366 (60.10%) 0.162

Yes 310 (36.30%) 243 (39.90%)

Cancer History

No 750 (87.82%) 538 (88.34%) 0.763

Yes 104 (12.18%) 71 (11.66%)

Family History

No 822 (96.25%) 590 (96.88%) 0.519

Yes 32 (3.75%) 19 (3.12%)

Intraoperative 
findings

Diameter (cm) 4.78 ± 2.163 5.04 ± 2.205 0.023

Invasion Range (%) 0.74 ± 0.263 0.76 ± 0.254 0.075

Location

Lower rectum 76 (8.90%) 44 (7.22%) 0.079

Middle rectum 139 (16.28%) 90 (14.78%)

Upper rectum 149 (17.45%) 112 (18.39%)

Sigmoid colon 263 (30.80%) 184 (30.21%)

Descending colon 61 (7.14%) 40 (6.57%)

Transverse colon 33 (3.86%) 22 (3.61%)

Ascending colon 133 (15.57%) 117 (19.21%)

Pathological 
information

Pathology Type

Uplift 244 (28.57%) 185 (30.38%) 0.428

Ulcer 603 (70.61%) 420 (68.97%)

Infiltration 7 (0.82%) 4 (0.66%)

Differentiation

Poor 110 (12.88%) 90 (14.78%) 0.514

Medium 694 (81.26%) 481 (78.98%)

High 50 (5.85%) 38 (6.24%)

Follow-up 
information

Visiting time postsurgery 
(Month)

10.49 ± 7.98 8.86 ± 7.27 0.345
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free-text clinical notes to maximize the utilization of both 
clinical and text features, aiming to obtain the best models 
to fit the predicted LM status. For early fusion (EF), we in-
tegrated the vector from the last layer of the BERT model 
and the features from the best model into a single feature 
vector. This combined feature vector was then used to 
train a final XGBoost model for further prediction tasks 
(Figure 1; Stage II EF). The XGBoost classifier is a power-
ful ensemble model based on a tree structure and an opti-
mized version of the gradient boosting tree method which 
incorporates an improved second-order derivative loss 
function, regularization term to prevent overfitting, and 
parallel computing for block storage optimization. The 
formula for the XGBoost model is shown in Equation 1.

where L is the loss function, y is the actual value, ŷ is the 
predicted value, l is the logistic loss function, and Ω(f) is the 
regularization term.

Late fusion (LF) model (BERT-clinical LF model)
In the late fusion (LF) model, we use the predictions gen-
erated by the models trained in Stage I to reach the final 

decision (Figure 1; Stage II LF). These predictions, which 
are derived from the output of the models in Stage I, 	
are then fused using an aggregation function to yield 
a final result. The aggregation can be achieved using 
methods such as averaging, majority voting, or weighted 
voting. The formula for weighted voting is shown in 
Equation 2.

where ŷ is the final prediction, wᵢ is the weight of each 
model, and pᵢ is the prediction of each model.

In our LF model, the weights assigned to each model 
for the weighted voting method were determined based 
on the performance of the respective models during the 
training phase. Specifically, the weights were computed 
as the reciprocal of the error rate observed in the cross-
validation of each model. Hence, models demonstrating 
lower error rates (indicating higher performance) were 
assigned greater weights. This method of weight as-
signment ensures that models with higher performance 
have a more substantial impact on the final prediction. 
The detailed equations and explanations are provided in 
Data S3.

(1)L =
∑n

i=1
l
(

yi, ŷi
)

+Ω(f )

(2)ŷ =

∑

wi ⋅ pi
∑

wi

F I G U R E  3   BERT model framework applied in the study. BERT stands for bidirectional encoder representations from transformer. The 
figure illustrates the flow of information from the input sequence, through the stacked transformer encoder blocks, and finally to the fully 
connected layer for prediction.



19344  |      LI et al.

The advantage of the LF approach lies in its ability to 
integrate independent predictions from multiple models 
and establish a threshold based on the number of ac-
curately predicted models. Considering the number of 
models in our study and recent research focusing on LF 
models, we chose the weighted voting method as the al-
gorithm for LF, offering a more informed and robust final 
prediction.

2.4  |  Visualization and explanation

SHAP analysis is a method to address model interpret-
ability.20 It is based on Shapley values, a game-theoretic 
concept developed by economist Lloyd Shapley to deter-
mine the importance of individuals by calculating their 
contributions to cooperation. This method has received 
much attention in AI interpretability research and has 
contributed significantly to advancing the clinical appli-
cations of models.21,22 The Shapley value interpretation 
is an additive feature attribution method that interprets 
a model's predicted value as a linear function of a binary 
variable.

where g is the explanatory model (3a), z is the coalition vec-
tor, M is the maximum coalition size (3b), and ϕ j ∈ R is the 
feature attribution of feature j.

In this study, we employed SHAP analysis to visual-
ize and evaluate the importance of each feature in the 
EF model and the final decision step to screen the most 
predictive features. The identified features were used to 
improve the model's interpretability.

2.5  |  Nomogram modeling

A quantifiable and practical clinical assistance tool is 
needed to help clinicians identify patients at high risk of 
developing LMs and implement individualized screen-
ing and diagnosis strategies. Therefore, we constructed a 
nomogram based on the 13 compelling predictive features 
identified by the SHAP analysis. The nomogram was con-
structed using the Python system's “rpy” and “rms” pack-
ages (Python Software Foundation, version 3.1.1).

3   |   RESULTS

3.1  |  Evaluation method

The performance of each method was evaluated using 
the ROC curve, along with the accuracy, precision, re-
call, and F1 scores. Furthermore, true positive (TP) 
and false positive (FP) are the numbers of correctly 
and incorrectly predicted positive cases, respectively, 
while true negative (TN) and false negative (FN) are the 
numbers of correctly and incorrectly predicted negative 
cases, respectively. Equations 4a–4d describe the perfor-
mance metrics.

3.2  |  Two-tier fusion framework

3.2.1  |  Stage I: Individual models

ML models
To explore the potential of predicting the risk of LM using 
only clinical indicators, five different ML models were 
first built using structured or semi-structured clinical 
data, and the parameters were optimized. Features with 
significant correlations were excluded using Pearson cor-
relation analysis. None of the 18 clinical features showed 
linear correlations using Pearson's coefficient (Data S1; 
Figure  S1); hence, they were incorporated into the ML 
model.

The ROC curves and AUC values of the five ML 
algorithm-building models on the test set are shown in 
Figure 4, and the accuracy, precision, recall, and F1 values 
are listed in Table 2. Overall, the performance of each ML 
algorithm in the validation group was similar and mod-
erate; SVM showed the highest average AUC (0.640) and 
accuracy (0.640), while the KNN and DT had high recall 
(0.950) and precision (1.00). However, the F1 values of 
these two models were lower than their optimal metric 
(0.230 and 0.685), suggesting a potential deficiency in ro-
bustness. Therefore, SVM is considered the preferred opti-
mal ML algorithm and is included in the EF of the second 
stage.

(3a)g
(

z�
)

= �0 +

M
∑

j=1

�jz
�
j

(3b)z� ∈ {0,1}M

(3c)�j ∈ R

(4a)Accuracy =
TP + TN

TP + TN + FP + FN

(4b)Precision =
TP

TP + FP

(4c)Recall =
TP

TP + FN

(4d)F1 − score =
2(precision∗ recall)

1

precision
+

1

recall
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NLP model
As the NLP model, we used the BERT model with a bi-
directional transformer structure, which has received 
sufficient attention and recognition in medical natural 
language research. After training, the BERT model ob-
tained a precision of 0.617, recall of 0.613, accuracy of 
0.636 (Table 3), and AUC of 0.676 (Figure 5). The BERT 
model had a more balanced prediction ability for posi-
tive and negative samples than the ML model. However, 
the effect was insignificant compared to the ML model, 

suggesting that the text features may be valuable for 
predicting LM but need to be supplemented by other 
features.

3.2.2  |  Stage II: Fusion models

In Stage II, we explored two fusion approaches to in-
tegrate the ML and NLP models from Stage I. Early fu-
sion concatenated the feature vectors from the ML and 

F I G U R E  4   ROC curve and AUC 
values of machine learning models. 
AUC, area under the curve; ROC, 
receiver operating characteristic; SVM, 
support vector machine; KNN, K-nearest 
neighbors.

Model Accuracy Recall Precision F1

Support vector machine 0.640 0.620 0.620 0.620

K-nearest neighbors 0.558 0.950 0.131 0.230

Decision tree 0.589 0.521 1.000 0.685

Random forest 0.613 0.727 0.447 0.554

Extra trees 0.613 0.388 0.776 0.518

Note: The peak of each index is shown in bold.

T A B L E  2   Comparison of metrics in 
machine learning models.

Accuracy Precision Recall F1

BERT-fine-tune 0.636 0.617 0.613 0.624

BERT-Clinical-EF-SVM 0.808 0.803 0.805 0.808

BERT-Clinical-LF 0.666 0.666 0.645 0.643

Note: The peak of each index is shown in bold.

T A B L E  3   Comparison of metrics in 
the BERT and two fusion models.
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NLP models into a single vector to train an XGBoost 
classifier. Late fusion aggregated the predictions from 
each model using weighted voting, with weights based 
on cross-validation performance. The aim was to fuse 
the complementary structured clinical and free-text in-
formation to improve predictive ability over individual 
models.

3.3  |  SHAP analysis

Based on the above results, we performed SHAP analy-
sis to evaluate and interpret the impact of different fea-
tures in the BERT-clinical-EF model for predicting CRC 
liver metastases. As shown in the SHAP summary plot 
(Figure  6A), four laboratory markers were the strong-
est predictors of LMs. These included two oncological 
biomarkers (CA199 and CEA) and two liver enzymatic 
parameters (ALT and AST), consistent with most clini-
cal studies predicting LMs. It is worth noting that the 
importance of the “NLP score” is second only to labora-
tory data, indicating that complex clinical text features 
provide essential decision-making information, although 
this information is not yet fully utilized. In the SHAP 
summary plot (Figure  6B), all eigenvalues are repre-
sented in blue (low) or red (high), and the distance of 
each point from 0 (SHAP value) represents its contribu-
tion (different degrees) to the outcomes, with increasing 
values favoring the negative (no LM) or positive (LM) 
classes, respectively.

3.4  |  Nomogram construction

Based on the top 13 valid predictors identified by the 
SHAP analysis, a nomogram was developed to predict 
the risk of LMs. As shown in the nomogram presented in 
Figure  7, the effect of each feature on the outcome was 
consistent with its importance ranking determined by the 
SHAP analysis.

3.5  |  Nomogram model validation

To validate the predictive performance of the nomogram, 
an external dataset of 102 cases was collected from the 
Aerospace Center Hospital. Two physicians, Liu Wenjuan 
and Lv Han, who have at least 10-year experience in CRC 
diagnosis, were blinded to the dataset and participated si-
multaneously in the validation process.

In this external validation, the nomogram demonstrated 
superior performance compared to the two physicians 
across key predictive performance metrics, reinforcing its 
potential utility in predicting the risk of LMs in clinical 
practice. The ROC curve of the nomogram, presented in 
Figure 8, yielded an AUC of 0.782, indicating a strong dis-
criminative ability of the model. Compared with the perfor-
mance of the physicians, represented by two points on the 
ROC curve, the nomogram achieved a higher TP rate for a 
given FP rate across a range of threshold probabilities.

Table  4 presents a summary of the key performance 
metrics for the nomogram and the two physicians. The 

F I G U R E  5   ROC curve and 
AUC values of the BERT and two 
fusion models. AUC, area under the 
curve; BERT, bidirectional encoder 
representations from transformer; CI, 
confidence interval; ROC, receiver 
operating characteristic.
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nomogram consistently demonstrated higher perfor-
mance across all metrics, underscoring its potential util-
ity in a clinical setting. These results provide evidence 

supporting the application of the nomogram in clinical 
decision-making while also highlighting areas for poten-
tial improvement in future iterations of the model.

F I G U R E  6   (A) The summary bar plot shows the global importance of each feature in the early fusion model. (B) The summary bee-
swarm plot shows the global importance of each feature and the distribution of effect sizes in the whole test dataset.

F I G U R E  7   Nomogram of features established by the BERT-clinical-early-fusion model.
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4   |   DISCUSSION

Considering the escalating global incidence of CRC, there 
is an urgent need for tools capable of quantifying the 
risk of disease progression, ultimately enhancing overall 
patient outcomes. A significant clinical challenge lies in 
accurately determining the risk of CRC-related LMs and 
conducting timely imaging screening.21 Numerous stud-
ies employing ML and AI technology22 have contributed 
to the improved prognosis of CRC patients with remark-
able results. However, the majority of these studies rely on 
costly high-throughput sequencing genetic data or high-
quality imaging or pathology data.23 By contrast, medical 
free texts,24 representing the most prevalent and effective 
data indicative of patient disease progression, have been 
largely overlooked. With advances in NLP technologies 
such as BERT,25 computers are increasingly adept at un-
derstanding human language, and medical free text is 
poised to become another major branch of omics research.

In this pioneering study, we introduced a fusion mod-
eling approach that combines textual and clinical data to 
predict the risk of LMs in patients. Notably, to the best of 
our knowledge, this is the first study to merge NLP and 
classical ML prediction methods in the oncology domain. 
In the first stage, we employed five classic ML models to 
predict LMs but observed suboptimal results, suggesting 

that laboratory tests alone were insufficient for the pre-
diction.26 In the second stage, we experimented with two 
levels of data fusion between the trained NLP and ML 
models. We found that the EF of models proved more 
effective than LF. This could be attributed to the ability 
of EF to preserve and incorporate the information from 
textual data into the decision model at an earlier stage, 
allowing for a more integrated and comprehensive repre-
sentation of the data. By contrast, LF, which combines the 
predictions from individual models at a later stage, may 
not fully leverage the interactions between the different 
types of data.

A critical barrier to the clinical application of deep 
learning is the “black box” nature of AI models.27 To ad-
dress this issue, we assessed feature importance in model 
decision-making using the state-of-the-art SHAP algo-
rithm.28 In the top-performing EF models, tumor bio-
markers and liver enzymes emerged as the most crucial 
factors for decision-making compared with other indica-
tors, aligning with previous CRC clinical study conclu-
sions.29–31 Furthermore, these findings are consistent with 
existing clinical evidence32 and perspectives33 on CRC, 
underscoring the value of these indicators. Notably, both 
the SHAP interpretation map and the nomogram map re-
vealed that the clinical text features (NLP score) processed 
by NLP technology played a relatively significant role in 
decision-making. By contrast, medical free texts,34 the 
most common and effective data reflecting patient disease 
progression, have been underappreciated. With break-
throughs in NLP technologies such as BERT, computers 
will further improve their ability to comprehend human 
language, leading to medical free text becoming another 
vital branch of omics research.35,36

This study has several limitations that warrant further 
investigation. Most importantly, due to technical con-
straints and hardware resources, we used a fine-tuned 

F I G U R E  8   Comparison of the ROC 
curve of the nomogram and the results of 
two physicians.

T A B L E  4   Comparison of evaluation metrics of the nomogram 
and two physicians.

Accuracy Precision Recall F1

Nomogram 0.760 0.763 0.906 0.829

Physician 1 0.658 0.697 0.820 0.754

Physician 2 0.640 0.670 0.860 0.753

Note: The peak of each index is shown in bold.
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version of the BERT model rather than more advanced 
methods, such as domain pretraining. Consequently, the 
model may have limitations in understanding free-text 
medical records. Additionally, the data scale in this study 
was relatively small compared to similar studies, which 
may introduce biases that could affect the robustness of 
the model. We also acknowledge that while the SHAP al-
gorithm provides some level of interpretability, it does not 
fully explain the “black box” nature of our model, high-
lighting the need for caution in interpreting the conclu-
sions drawn from the SHAP analysis in our study. Finally, 
we believe the model architecture still has room for im-
provement, such as adopting the BioBERT architecture 
proposed by Lee et al.37 or the Siamese network architec-
ture suggested by Bajaj et al.38 Exploring data fusion meth-
ods will enable the development of efficient prognostic 
models for multimodal data to improve human health in 
the oncology field.

5   |   CONCLUSIONS

We developed a fusion framework based on NLP and 
clinical data to predict the risk of postoperative me-
tastasis in CRC patients. Our EF model outperformed 
standalone ML- and NLP-based models. In addition, we 
utilized the SHAP method to verify the interpretabil-
ity of clinical and textual data and demonstrated their 
critical role in the final decision-making. We also built 
a quantitative nomogram map for clinical practice based 
on our model. We believe our findings will promote the 
application of NLP and data fusion techniques in oncol-
ogy to improve clinical decision-making and overall pa-
tient outcomes.
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