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Abstract

Over the last years, the use of peripheral blood–derived big
datasets in combination with machine learning technology has
accelerated the understanding, prediction, and management of
pulmonary and critical care conditions. The goal of this article
is to provide readers with an introduction to the methods
and applications of blood omics and other multiplex-based
technologies in the pulmonary and critical care medicine setting
to better appreciate the current literature in the field. To
accomplish that, we provide essential concepts needed to

rationalize this approach and introduce readers to the types of
molecules that can be obtained from the circulating blood to
generate big datasets; elaborate on the differences between bulk,
sorted, and single-cell approaches; and the basic analytical
pipelines required for clinical interpretation. Examples of
peripheral blood–derived big datasets used in recent literature are
presented, and limitations of that technology are highlighted to
qualify both the current and future value of these methodologies.
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Precisionmedicine, which is the development
of diagnostic and therapeutic strategies that
account for interindividual variability, has
recently been expanded by the emergence
of combined omic technologies; powerful
methods to characterize an individual’s
molecular landscape, such as proteomics,
metabolomics, and transcriptomics; and the
creation of bioinformatic tools to analyze
large datasets (1). The field of pulmonary
and critical care medicine has seen
substantial progress using nucleic acid and
protein sequencing and other multiplex-
based platforms to interrogate various
patients’ samples, and we focus in this
perspective article on the use of peripheral
blood samples to apply these tools. Although
the peripheral blood provides indirect
information that covaries with surrogates
of healthy and diseased organs, it also entails

a powerful and relatively easy way to gain
access to processes superseding a single
organ or taking place at an inaccessible or
otherwise distant tissue.

The goal of this article is to provide the
reader with an introduction to the methods
and applications of peripheral blood omic-
and other multiplex-based technologies in
the setting of pulmonary and critical care
medicine to better appreciate the current
literature in the field. As we elaborate later
in the text, these applications currently exist
at various technology readiness levels (2).
Indeed, although some of them involve
readily available clinical data in combination
with relatively accessible cytokine
concentration determinations, some others
require less accessible technologies, such as
RNA-sequencing analyses. The recent
expansion of machine learning systems

anticipates an acceleration in these tools’
development, and we hope that readers
will improve their familiarity with an area
that is likely to gain more relevance in
coming years.

It is important to clarify that peripheral
blood omic- and othermultiplex-based
technologies involve the identification
ofmultiple, sometimes in the order of
thousands, differentmolecules per patient.
The clinical relevance of thesemolecules is
typically unknown at themoment of their
initial determination, and their association
with a specific outcome requires bioinformatic
tools, as we explain later in the article. For
these reasons, these approaches should not be
confused with the “liquid biopsy,”which is
the use of next-generation sequencing to
detect tissue-specificmolecules previously
known to be associated with a diagnosis or an
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outcome, such as in the case of tumor-
specific circulating cell-free DNA (cfDNA)
sequences that can be obtained from the
plasma of patients with lung cancer (3).
These circulating cell-free DNA fragments
correspond to cancer-specific sequences
coding for somatic mutations not expressed
by any other tissue except for the
transformed one.

We introduce big data essential concepts
needed to understand the rationale of this
approach, provide general examples of its
applications, describe the types of molecules
that are obtained from the circulating blood
to generate big datasets, introduce the
analytical pipeline essentials, and feature
recent articles that illustrate the topic. The
featured articles only provide examples of
peripheral blood–derived big datasets used
in pulmonary and critical care medicine and
are not meant to discuss their content or
implications exhaustively. Finally, we outline
the limitations of thesemethodologies to
provide readerswith a balancedunderstanding
of their current value, andwe suggest future
directions thatwe believe could accelerate the
massive and efficient use of them.

Big Data Essential Concepts

Samples from the circulatory compartment
can be processed to generate large, complex
datasets that need special software and
bioinformatic expertise for analysis.
“Big data” defines these large and complex

datasets, whereas the term “omics”
combined with a prefix descriptor defines
the molecular source of big data: genomics
for DNA-sequencing data, transcriptomics
for RNA transcript data, and so forth
(Figure 1). Although the term “omics”
generally applies to sequencing or otherwise
unbiased large-scale studies, for simplicity,
in this article, we describe omics together
with other targeted data collection methods
such as cytokine multiplex panels and
microarrays, which are likewise used to
generate datasets from blood samples and
investigate pulmonary and critical care
medicine processes (Figure 2).

Individual datapoints, such as nucleotides
or transcripts, are defined as features, and
features frommultiple sources, such as RNA
and protein sequencing datasets, can be
correlated to producemultiomic feature
associations, which sometimesmay suggest
causality (4–6). For example, the upregulation
of both the RNA transcript and its
corresponding protein product and their
correlationwith a clinical outcomemay
suggest a relatively higher functional relevance
of these features for that outcome than the
elevation of the RNA transcript alone.Most of
the time, given the inaccessibility of target
organswith these technologies, causality
cannot be corroborated using blood-derived
features. An exception to that rule is the
potential use of circulating leukocyte genomic
DNA to conduct a genome-wide association
study (GWAS) that fulfills the following
criteria: 1) identifies a gene abnormality coding

for an aberrant protein; 2) that protein
executes its function in the circulation; and 3)
thatmalfunction leads to an adverse
pulmonary outcome. An illustrative example
of that exceptional case is the factorV Leiden,
which consists of a genetic polymorphism in
the coagulation factor V that increases its
clotting activity because of deficient binding to
the anticoagulant proteinC, which is both
present in the circulation and is causally related
to venous thromboembolismdevelopment (7).
It is important to clarify that a polymorphism is
a variation in theDNAnucleotide sequence
that is present in all the cells of an organism
including the germ cells, and thus can be
identified by analysis of any cell’s DNA, such as
circulating leukocytes. By contrast, a somatic
mutation associatedwith a disease process
such as lung cancer is an abnormal nucleotide
sequence only present in the transformed cell’s
DNA, and thus requires for its identification
the sequencing of circulating cell-freeDNA
fragments produced by the abnormal tissue, or
liquid biopsy, asmentioned before.

Althoughmedicine has traditionally
operatedwith a rule-based system inwhich
the predictions aremade from previously
established knowledge (8), big datasets are
frequently processed without knowing a priori
how the constituent features will associate
with the investigated outcome. In other
words, because of the large number of features
in big datasets, their interactions and effects
on clinical outcomes are complex and
unpredictable. Eventually, complex feature
combinations can generate predictable

Figure 1. Common terms used in the big data and omics literature.
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signatures that are replicated by independent
cohorts showing consistent correlations with
an outcome of interest. However, even if a
collection of features forms a signature that
demonstrates a consistent associationwith
an outcome, a constituent feature of that
signature could be combinedwith other,
different features and be associated with an
opposite outcome, and thus the predictive
effects ofmultiple feature combinations are
impossible to anticipate with the use of
preestablished rules (8). Tomaximize the
power of this complexity, big datasets are
typically, although not always, processed with
machine learning technology, which uses
software that learns how tomake predictions
from features input into the system and not
from previously known rules (8). These
individualized predictions often require a
training process that the software conducts
with a subset of the input data. Importantly,
although in classic biostatistics it is accepted
thatmore sample datapoints or features
typically correlate with higher statistical power
and prediction accuracy (9), this concept does
not apply tomachine learning–driven big data
processing, because the predictive power of
machine learningmodels is sharply reduced
beyond a certain number of input features,
which is known as the curse of dimensionality
or theHughes phenomenon (10). To deal

with this caveat, machine learning technology
typically starts with a first step of data
simplification, which can be done inmultiple
ways that broadly include the following: 1)
clustering, in which features that share a
relatively similar effect on the investigated
outcome are lumped together; and 2)
reduction, resulting from an initial filtering
step, that defines which features aremore
impactful on the outcome of interest, followed
by either feature elimination of the less
relevant entities or feature selection of the
most relevant entities. These filtering and
reduction processes leave a final dataset that
retains a subgroup of the original features that
aremore strongly correlated with the selected
outcome (Figure 3). Examples of data
clustering that we use later in the text are data
hierarchical clustering (11) and latent class
analysis (LCA) (12), and an example of data
reduction is recursive feature elimination
(RFE) (13). Often, data aggregation and
reduction are combined in a single analytical
strategy. For example, multiple features can be
clustered, resulting in a reduced number of
variables, and then, among those variables, the
ones that provide themost impactful
information on a selected outcome are
retained, and the rest are eliminated. A typical
use of that approach is to conduct principal
component analysis on a big dataset and

retain only the componentsmost impactful to
the outcome of interest. These components
can be later added as a covariable to adjust for
an effect on said outcome using classical
multivariable statistical analysis (14).

It is important to clarify thatmachine
learning is not always combinedwith omics-
level data. For example, recent studies that
have defined subphenotypes in critical illness
used LCA andmachine learning technology
on readily available laboratory and clinical
records in combinationwith cytokine and
chemokine analyses detected withmultiplex
targeted (nonomics) systems. In contrast,
some omics data (e.g., DNA-sequencing data)
are not always processedwithmachine
learning technology. For example, GWASs
conducted to associate genetic polymorphisms
with lung phenotypes, such as between the
MUC5B promoter polymorphism and
idiopathic pulmonary fibrosis (IPF) (15),
do not usemachine learning technology to
analyze the datasets. Because all the cells in
a single organism have identical genetic
information, these studies often interrogate
DNA from an easily accessible cell type, such
as circulating leukocyte DNA. Nevertheless,
GWASs can still be combined withmachine
learning technology to refine analyses and
suggest possible causal associations between
polymorphisms and outcomes (16, 17).

Figure 2. Description of the most popular platforms to generate datasets with molecular features from peripheral blood. GWAS=genome-wide
association study.
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Applications of Big Datasets
Obtained from the Peripheral
Blood in Pulmonary and
Critical Care Medicine

Blood-derived big datasets helped improve
understanding and management of multiple
conditions in pulmonary and critical care
medicine. The following are typical uses
of peripheral blood–derived data sources:
1) biomarker discovery, allowing the
identification of one or more features that
are useful to improve disease prediction and
monitor treatment response, such as the
association between IL-6 elevation and worse
outcomes in acute respiratory distress
syndrome (ARDS) (18); 2) identification of
targetable mechanisms, which can potentially
be “druggable” with outcome-modifying
intent, such as the use of IL-6 pathway

antagonists to improve outcomes in
severe COVID-19–induced ARDS (19);
3) identification of novel subphenotypes via
clustering of signatures, which could refine
treatments that do not work for the overall
population but are effective on a unique
phenotype, such as the beneficial use of
corticosteroids on a subgroup of patients
with sepsis (20); and 4) information about
potential pathophysiological mechanisms,
including the discovery of an adverse
association of genetic polymorphisms, such
asMUC5Bwith IPF (15, 21, 22).

Specific Sources of Big
Datasets Obtained from the
Peripheral Blood

Peripheral blood contributes cellular (i.e.,
leukocytes) and soluble fractions. The

cellular fraction can be further used in bulk
analysis, in which the sample is processed
for the mean (average) value of a given
feature. For example, in an RNA-sequencing
analysis, the transcripts’ relative expression
in each patient will be reported as the average
value expressed by the whole, or bulk,
cellular fraction from that patient used to
conduct the analysis. Because different cell
types express alternative genes and thus
produce diverse proteins, a bulk RNA-
sequencing dataset that aggregates transcripts
produced by all the blood cells used for a
given analysis may not capture the transcript
coding for an outcome-impactful protein.
For example, although IL-6 and IL-8 are
associated with worse outcomes in ARDS
(18, 23), bulk RNA-sequencing analysis does
not identify their upregulation in sicker
patients (5, 23, 24). Indeed, although
circulating monocytes produce IL-6 (25),

Figure 3. Cartoon illustrating the pipeline of data generation involving collection of blood samples and clinical data from participant individuals,
followed by blood constituent processing, omic processing, data simplification, and correlation with clinical outcomes.
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these cells are relatively scarce in the
peripheral blood count, and thus bulk RNA
sequencing of unsorted cells will not capture
these cytokine transcripts as differentially
expressed between patients with better and
worse outcomes. It is also possible that
other noncirculating cells, such as tissue
macrophages, produce a fraction of the
cytokine RNA and protein products, in
which case, even cell sorting of peripheral
blood cells will fail to capture the RNA
transcript coding for this outcome-relevant
protein. Some other times, the bulk RNA-
sequencing analysis can be very useful to
inform on actionable measures, including the
use of corticosteroids to treat patients
demonstrating a specific transcriptomic bulk
signature (20). An exception to the bulk-
average rule is DNA-sequencing analysis,
given that the data obtained in bulk analysis
is identical in all the cells present in a single
organism, which means that no data are
obscured or underrepresented because of
this aggregated type of sample collection.

The cellular fraction can also be used
in cell sorting, where cellular components
are further separated with the use of
Fluorescence Activated Cell Sorting (FACS)
that takes advantage of specific surface
antigens expressed by certain cell types and
fluorescent antibodies bound to those antigens.
These separated cell fractions can be further
processed with omic analysis (26). In addition,
the cellular fraction can be used in single-cell
sequencing, in which omic data are all
generated from individual cells. As opposed to
FACS-sorted cells, single-cell data require that
cells be individually separated, even those
expressing the same surface antigens, which
means that each cell will contribute a unique
dataset (26). Single-cell technology is relatively
recent, and its applications in the field of
peripheral blood omics are thereforemore
limited; yet, these approaches have already
been used inmultiple studies to define cell-
specific mechanisms of disease heterogeneity,
as we present later in the text. Samples from
the cellular fraction contribute DNA, RNA,
proteins, lipids, metabolites, and other
molecules. Although the soluble fraction is not
typically used for DNA or RNA analysis but
instead contributes large amounts of proteins,
lipids, andmetabolites (5), circulating cfDNA
has been used to stratify mortality risk and
identify sources of tissue injury in patients with
severe COVID-19 and pulmonary
hypertension (27, 28). Moreover, circulating
microRNA has recently been used to facilitate
early detection of lung cancer (29) (Figure 3).

Essential Concepts of
Pipelines Used for Big Data
Generation and Analysis

After the clinical data and blood samples are
obtained from study participants, blood
samples are processed to separate the
fraction of interest. Then, for DNA or RNA,
a collection of nucleotide fragments, or
libraries, needs to be prepared for sequencing
(Figure 1). The sequencing step produces
a large amount of data, which is later
bioinformatically processed, including
data simplification (e.g., clustering and/or
reduction), and correlated with selected
clinical outcomes (Figure 3). Appropriate
statistical models are employed to establish
phenotype associations; specific model
descriptions and uses can be found
elsewhere (5).

Examples of Big Datasets
Generated with Peripheral
Blood in the Recent
Pulmonary and Critical Care
Medicine Literature

1. Circulating RNA-sequencing analysis:
Research has shown that circulating
bulk RNA sequencing followed by
hierarchical clustering analysis can be
used to define two distinct leukocyte
transcriptomic groups in sepsis,
sepsis response signature 1 (SRS1;
immunosuppressed) and SRS2
(nonimmunosuppressed), which are
associated with higher and lower
mortality, respectively (30). The same
group recently reported that SRS1
and SRS2 are partially replicated in
patients with COVID-19 (11). These
two phenotypes could respond
differently to corticosteroid
administration (20), potentially refining
selection of patients to receive these
drugs and improving clinical outcomes.
Another example of this approach is the
use of 52 transcripts in circulating
leukocytes to predict mortality in IPF
(31). Interestingly, expression levels of
50 of these 52 genes were found in one
study to define risk of death in
hospitalized patients with COVID-19,
suggesting that severe IPF and
COVID-19 may share a similar
inflammatory profile in the peripheral

blood. These data could potentially
inform drug development if these
signatures are corroborated in other
studies (32). Single-cell sequencing
analysis obtained from a different
cohort (33) indicates that among
patients with higher mortality risk,
transcripts are contributed by monocytes,
dendritic cells, and neutrophils, whereas
low-risk profile-expressing cells are
predominantly lymphocytes (32).

2. DNA-sequencing analysis: GWASs
identified an association ofMUC5B
promoter variants with IPF (15).
Recently, that polymorphism was
found also to be associated with the
development of ARDS, suggesting that
ARDS and undiagnosed interstitial lung
disease or pulmonary fibrosis may share
a potential pathogenic overlap in some
cases (34). Moreover, associations of
higher COVID-19 mortality with the
ABO blood group (35) and human
leukocyte antigen systems (36) have
recently been described. Although
genetic association studies do not
typically require machine learning–
mediated processing, recent research
has used these algorithms to further
analyze genomic datasets, allowing
more refined identification of genetic
variants, known as supervariants,
that may be causally associated
with COVID-19 mortality (37). It is
important to emphasize that, except for
genes that code for protein products
that execute their function in the
circulation and are associated with
adverse pulmonary outcomes, big data
analyses involving features present
in the peripheral blood are largely
inferential, and thus mechanistic
causality cannot be substantiated
using these methodologies.

3. Plasma cytokines, chemokines, and other
proteins: Protein biomarkers in the
circulation, including IL-6, IL-8,
soluble TNF receptor 1, and protein C,
can discriminate hyper- versus
hypoinflammatory phenotypes in
ARDS and predict patient response
to positive end-expiratory pressure
and other measures (38). Machine
learning models can distinguish these
phenotypes with regular clinical data,
which could facilitate the rapid bedside
identification of phenotypes leading to
more refined fluid challenge, positive
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end-expiratory pressure setting, and
other measures (39). A recent study using
LCA suggested a partially overlapping
pattern in critically ill patients with
COVID-19 and a differential response to
corticosteroid administration between
these patient classes (12).

4. Plasma metabolomics: Using mass
spectrometry to identify circulating
blood metabolites followed by feature
selection and machine learning
prediction, a recent study reported that
plasma metabolites such as glycylproline
and long-chain acylcarnitines could be
associated with antibody fading in
convalescent patients with COVID-19
and with higher susceptibility to
reinfection. This finding could be
instrumental to personalize the
vaccination “booster” timing or to
develop strategies to maintain levels
of neutralizing antibody levels (40).
Another study combining circulating
macrophages with single-cell
sequencing and metabolomics has
identified multiple metabolism-related
genes and substrates correlated with
worse patient outcomes (4). A very
recent analysis of patients with ARDS
and sepsis found that metabolic LCA
clustering defined classes that are
independently associated with mortality
and could inform personalized
approaches as well (41).

5. DNAmethylation analysis: DNA
methylation is an epigenetic change that
regulates gene accessibility and thus
gene expression, thereby influencing
the cellular phenotype (42). Blood
DNAmethylation can be determined
with untargeted DNA sequencing, with
targeted DNAmicroarrays, or with
direct target sequencing of individual
gene areas (42). To determine the DNA
methylation status, a first step of either
chemical or enzymatic treatment of the
DNA is needed (42). The circulating
DNAmethylome has been used to
predict long-term outcomes in acute
critical illness, including the effects
of early parenteral nutrition on
neurocognitive development in pediatric
critical illness (43). In chronic obstructive
pulmonary disease (COPD), circulating
leukocyte DNAmethylation has recently
been used to characterize potentially
targetable loci in the genome for future

drug development (14, 44). DNA
methylation sequencing has identified
multiple positions and regions across the
genome that are differentially methylated
in association with COVID-19 diagnosis
and severity (13). Recursive feature
elimination identified a limited set of
positions that, if methylated, predict the
mortality of patients with COVID-19
(13). Because DNAmethylation is a
covalent and relatively stable chemical
modification to the DNA, some of these
regions could remain aberrantly
dysregulated long after COVID-19 and
provide a biological underpinning for
postacute sequelae of SARS-CoV-2
infection (45, 46).

6. cfDNA and cfRNA: cfDNAs are
circulating short DNA fragments
(�165 base pairs) that represent cell
injury or cell turnover. Elevated total
cfDNA concentration has been
associated with worse prognosis in
heterogeneous conditions such as sepsis
and trauma (47). DNAmethylation
sequencing facilitates the discrimination
of cfDNA subsets based on cell type
origin, allowing the detection of tissue-
specific injury. Indeed, recent studies
using methylated cfDNA sequencing
followed by unsupervised clustering
have identified the sources of tissue
injury associated with worse outcomes
in pulmonary hypertension and
COVID-19 (27, 28). These data could
potentially inform measures of organ
support to improve outcomes in
these conditions. Moreover, multiple
cfRNA signatures have been used to
identify patients with lung cancer and
differentiate them from those with no
cancer (29), offering promise to better
surveil patients with elevated risk of
lung cancer and to monitor relapse of
those already treated with curative intent.

Limitations of This Approach

The use of peripheral blood omics and
multiplex systems is associated with
significant caveats that need to be carefully
considered. First, peripheral blood features
associated with a particular disease
characterize not the primary organ driving
the disease course but instead its peripheral
bloodmolecular profile. For example, as

mentioned before, patients admitted to the
ICU because of pneumonia and sepsis can
be classified as immunosuppressed (SRS1,
with relatively higher 14-d mortality) or
nonimmunosuppressed (SRS2, with
relatively lower 14-d mortality) (30). That
classification is based on bulk transcriptomic
analysis of circulating leukocytes and does
not mean that the immune response
taking place in the lungs is mirrored by the
peripheral blood signature. As mentioned
before, except for genomic DNA findings
of genetic variants coding for aberrant
proteins that execute their function in the
circulation and impact lung phenotypes,
the information provided by the peripheral
blood should never be assumed as
mechanistically representing the status of an
inaccessible organ. Second, peripheral blood
features are indirect surrogates of organ
abnormalities, and, given that pulmonary
and critical care conditions are often
associated with multiple comorbidities, a set
of features assumed to covary with a primary
organ dysfunction could instead do so with
a secondary organ. For example, features
originally described as surrogates of COPD
(48) have recently been shown to correlate
with COPD-induced skeletal muscle and not
pulmonary integrity (49). Third, a specific
signature found in a patient’s population
could not necessarily be replicated in
another, unrelated group of individuals for
multiple reasons, including racial and
ancestral background, geographical factors,
and others (50). For those reasons, the
findings from a study conducted on a
single cohort of patients should ideally be
corroborated in a separate group of
individuals serving as a validation cohort.
Fourth, the sequencing technology used to
identify features is costly and not easily
implemented at a large scale in clinical
practice, at least for now. The cost is variable,
with bulk analysis being cheaper than
single-cell sequencing; yet, the limitations
associated with each technique mentioned
before currently limit the universal use of
these technologies. Similarly, even for readily
available data, the use of an outcome-
associated cluster might require consistent
aggregation of many features, andmissing
data can undermine the models’ predictive
power. The recent expansion and
accessibility of artificial intelligence tools
could help practicing physicians organize
large-scale data collection and use, and

PERSPECTIVE

388 American Journal of Respiratory Cell and Molecular Biology Volume 69 Number 4 | October 2023



develop actions to facilitate patient care
in the near future (51).

Future Directions

The following are major areas that could
lead to an acceleration of peripheral
blood omics- and other multiplex-based
technologies’ development in the
setting of pulmonary and critical care
medicine:

1. Improving scalability, such as by the
development of cheaper and efficient
pipelines that can procure, at the
bedside, high-quality samples for
further omic processing in a
reproducible way;

2. Generation of outcome-associated
signatures that require fewer features to

establish accurate correlations with
outcomes of interest and thus can be
probed with less sophisticated technologies;

3. Wider availability of data-processing
systems, including deep learning
instruments, that are readily available to
the general public;

4. Automatization of data curation, which
could improve imputation of accurate
subject data, including clinical
covariables collected and aggregated in
real time, severities, prehospitalization
comorbidity scores, and other aspects
that are relevant to capture population
heterogeneity potentially undermining
reproducibility; and

5. Development of collaborative platforms
using cloud computing systems that can
merge and analyze data from multiple
centers in a way that protects patient

confidentiality and at the same time
accelerates timely validation.

Conclusions

The combination of peripheral blood big
data generation with clinical variables and
outcomes has contributed to a better
understanding of pulmonary and critical
care conditions, together with potentially
actionable therapies. The recent acceleration
of machine learning and other artificial
intelligence technologies will likely facilitate
larger-scale data generation and processing
in the near future.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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