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Summary

Background—Exercise can rapidly drop glucose in people with type 1 diabetes. Ubiquitous 

wearable fitness sensors are not integrated into automated insulin delivery (AID) systems. We 

hypothesised that an AID can automate insulin adjustments using real-time wearable fitness data 

to reduce hypoglycaemia during exercise and free-living conditions compared with an AID not 

automating use of fitness data.

Methods—Our study population comprised of individuals (aged 21–50 years) with type 1 

diabetes from from the Harold Schnitzer Diabetes Health Center clinic at Oregon Health and 

Science University, OR, USA, who were enrolled into a 76 h single-centre, two-arm randomised 

(4-block randomisation), non-blinded crossover study to use (1) an AID that detects exercise, 

prompts the user, and shuts off insulin during exercise using an exercise-aware adaptive 

proportional derivative (exAPD) algorithm or (2) an AID that automates insulin adjustments using 

fitness data in real-time through an exercise-aware model predictive control (exMPC) algorithm. 

Both algorithms ran on iPancreas comprising commercial glucose sensors, insulin pumps, and 

smartwatches. Participants executed 1 week run-in on usual therapy followed by exAPD or 

exMPC for one 12 h primary in-clinic session involving meals, exercise, and activities of daily 

living, and 2 free-living out-patient days. Primary outcome was time below range (<3·9 mmol/L) 
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during the primary in-clinic session. Secondary outcome measures included mean glucose and 

time in range (3·9–10 mmol/L). This trial is registered with ClinicalTrials.gov, NCT04771403.

Findings—Between April 13, 2021, and Oct 3, 2022, 27 participants (18 females) were enrolled 

into the study. There was no significant difference between exMPC (n=24) versus exAPD (n=22) 

in time below range (mean [SD] 1·3% [2·9] vs 2·5% [7·0]) or time in range (63·2% [23·9] 

vs 59·4% [23·1]) during the primary in-clinic session. In the 2 h period after start of in-clinic 

exercise, exMPC had significantly lower mean glucose (7·3 [1·6] vs 8·0 [1·7] mmol/L, p=0∙023) 

and comparable time below range (1·4% [4·2] vs 4·9% [14·4]). Across the 76 h study, both 

algorithms achieved clinical time in range targets (71·2% [16] and 75·5% [11]) and time below 

range (1·0% [1·2] and 1·3% [2·2]), significantly lower than run-in period (2·4% [2·4], p=0∙0004 vs 
exMPC; p=0∙012 vs exAPD). No adverse events occurred.

Interpretation—AIDs can integrate exercise data from smartwatches to inform insulin dosing 

and limit hypoglycaemia while improving glucose outcomes. Future AID systems that integrate 

exercise metrics from wearable fitness sensors may help people living with type 1 diabetes 

exercise safely by limiting hypoglycaemia.

Funding—JDRF Foundation and the Leona M and Harry B Helmsley Charitable Trust, National 

Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.

Introduction

Type 1 diabetes (type 1 diabetes) is an autoimmune disorder that results in the destruction 

of the insulin-producing β cells in the pancreas. People with type 1 diabetes cannot 

produce sufficient insulin to maintain normal glucose concentrations and therefore must take 

exogenous insulin through either injection or an insulin pump. Automated insulin delivery 

(AID) systems are now commercially available and comprise a continuous glucose monitor 

(CGM), an insulin pump, and a control algorithm to automate insulin delivery based on 

sensed glucose.1–4 Commercial systems are hybrid systems requiring the person to estimate 

the amount of carbohydrates in their meals and enter this information into the AID to 

calculate meal insulin. Newer systems under development are fully automated and do not 

require carbohydrate entry.5 Although commercial AIDs have shown benefit, there is still 

need for improvement as many people on AID do not yet achieve the target of HbA1c below 

7·0% and hypoglycaemia can occur, especially during times of high physical activity.6

A remaining challenge in glucose management for people with type 1 diabetes is 

maintaining optimal glucose concentration during and following exercise to avoid 

hypoglycaemia.7,8 Glucose management during exercise is particularly challenging for 

people with type 1 diabetes because the glucose response depends on many factors including 

type of exercise, duration, intensity, amount of insulin acting at the time of exercise, time 

of day, and whether exercise is competitive. Aerobic exercise is particularly problematic 

as it can cause sharp drops in glucose, especially when performed shortly after a meal 

when insulin concentrations are high.9 Compounding the problem is that there is substantial 

variation in glucose response during exercise, even when the exercise is done by the same 

person across similar days when all conditions of eating, insulin dosing, and exercise are 

consistent.10 Consensus statements provide guidelines to people with type 1 diabetes to help 
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them adjust insulin and carbohydrate intake before and during exercise if necessary.7,8 Some 

commercial AIDs offer the ability to change the glucose target before and during exercise, 

which can be helpful in avoiding hypoglycaemia during exercise.11 However, adjustment of 

the target is not automatic and requires the person to change the target, typically several 

hours in advance of exercise. Herein, we present results from a clinical study showing how 

an AID system can respond automatically to exercise quantified using a wrist-worn fitness 

watch.

Automating the detection of exercise using wearable sensors is now possible because of the 

ubiquity of commercial wearable sensors that quantify physical activity measures including 

heart rate and accelerometry. These sensors can be leveraged to compute various derived 

metrics including metabolic equivalent to task (MET), exercise start and stop, duration, 

intensity, and exercise type. Research has been done to assess the accuracy of these 

metrics12 which is critical for their potential use within AIDs that can then automatically 

adjust dosing in response to exercise.

Once physical activity has been quantified, it needs to be properly used within a control 

algorithm to adjust insulin dosing. Turksoy and colleagues13 showed in a small in-clinic 

trial that various physical activity metrics including energy expenditure and galvanic skin 

impedance from a SenseWear Pro 3 (Pittsburgh, PA, USA) could be used to inform an 

AID. Participants in their 60 h in-clinic study performed a variety of exercises while using 

this multiple-input AID. Participants maintained a time in range of 69·9% with low time 

in hypoglycaemia, although 16 (59%) of 27 aerobic exercise sessions required participants 

to consume carbohydrates during exercise sessions to avoid low glucose. De Boer and 

Breton also showed, in an in-clinic study, that using heart rate as an additional input to 

an AID could significantly reduce the percent time in low glucose (<3·9 mmol/L) during 

exercise compared with an AID that did not use heart rate.14 Garcia-Tirado and colleagues 

described an AID that anticipated exercise from past behavioural patterns to estimate 

exercise in the future that could occur at the same time, showing in an in-clinic study that 

the number of low glucose events could be reduced when the AID anticipates exercise.15 

Our group has used exercise metrics from wearable sensors to inform an exercise-aware 

multihormone (insulin and glucagon) adaptive proportional derivative (exAPD) closed-loop 

control algorithm.16 This algorithm was used to reduce insulin and increase glucagon in 

response to the exercise onset. Clinical studies showed that use of this exAPD algorithm 

when used in dual-hormone mode (insulin and glucagon) could help reduce hypoglycaemia 

substantially compared with when it was used in single-hormone mode.17 The exAPD 

algorithm detected when METs exceeded a threshold of 4·0 then prompted the user to 

confirm exercise. After user confirmation, the exAPD would shut off insulin for 30 min, 

and then reduce insulin delivery by 50% over the next 60 min. While the exAPD algorithm 

described above is helpful in reducing insulin during and following exercise, it required 

the user to interact with the system by responding to a prompt and confirming exercise. 

The exAPD algorithm was unable to respond automatically to physical activity that is not 

typically considered exercise, such as housework, yardwork, commuting by bike or walking, 

etc, because the intensity and duration thresholds of such activities might be lower than the 

intensity threshold for exercise detection used in exAPD.
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The normal functioning pancreas responds continuously to physical activity by reducing 

insulin secretion when physical activity increases to avoid hypoglycaemia. Herein, we 

describe an exercise-aware model predictive control algorithm (exMPC) that behaves more 

like the human pancreas by responding in real-time to increases or decreases in physical 

activity to modulate the amount of insulin delivered. The algorithm has been described in 

earlier publications18,19 and a brief overview is in the appendix (pp 2–7).

Methods

Study design and participants

This study was a randomised, single-centre crossover study.

Participants were enrolled from the Harold Schnitzer Diabetes Health Center clinic at 

Oregon Health and Science University (OHSU). Inclusion criteria required diagnosis with 

type 1 diabetes for at least 1 year, age of 21–50 years, physically willing and able to perform 

aerobic exercise, current use of an insulin pump for at least 3 months with stable insulin 

pump settings for at least 2 weeks, living with a person aged 18 years or older, living within 

40 miles of OHSU, baseline HbA1c of 10·0% or lower, and a total daily insulin requirement 

of less than 139 units per day, chosen to ensure that expected meal insulin could be 

fully delivered within 20 min. Exclusion criteria included females of childbearing age who 

were pregnant or intending to become pregnant, cardiovascular disease, renal insufficiency, 

liver failure, low haematocrit concentration, uncon trolled hyper tension, history of severe 

hypoglycaemia during past year, history of ketoacidosis during preceding 6 months, adrenal 

insufficiency, and active infection.

The first visit to the clinic was a screening visit that was within 12 weeks before the 1 

week run-in period; participants were consented via written informed consent, screened for 

eligibility, and HbA1c was measured along with an EKG. After eligibility was confirmed, 

participants performed a 1 week run-in when they received training on using the Dexcom G6 

CGM (Dexcom, San Diego, CA, USA). Following the 1 week run-in, participants arrived at 

the OHSU inpatient research unit to start the first 76 h treatment.

Complete protocol (Institutional Review Board protocol number 19973 and investigational 

device exemption (G200363) is provided in the appendix (p 7).

Procedures

Since the exMPC algorithm was a new algorithm that had not been previously tested in 

humans, for safety reasons and as requested by the US Food and Drug Administration 

(FDA), the first eight participants used the exMPC only during the 12 h daytime period 

(0700–1900 h) in the clinic on days 1–3. During the evening hours, these participants used 

the iPancreas system in open loop only. After safety was confirmed for the first eight 

participants using exMPC, the remaining partici pants used exMPC during days 2 and 3 

under freeliving conditions. The primary in-clinic session was on day 3 for these first eight 

exMPC studies, and day 1 for the remaining exMPC studies and for all of the exAPD 

studies.
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During the primary in-clinic session of the study, participants ate self-selected meals at 

approximately 0800 h, 1200 h, and 1700 h. Participants counted their own carbohydrates and 

entered these into the AID system using the iPancreas app; identical meals were consumed 

for the exMPC arm and the exAPD arms during the primary in-clinic session of the study. 

During the primary in-clinic session, participants performed activities of daily living at 1000 

h that included vacuuming, washing dishes, folding laundry, etc, and performed a 30 min 

aerobic exercise video at 1500 h referred to herein as structured exercise. The exercise video 

included a 3 min warm-up and cool-down and workout designed to elicit a target heart rate 

of 70–80% of the age-predicted maximal heart rate. The hypothesis was that exMPC would 

lead to less percent time below range (time below range <3·9 mmol/L) than exAPD during 

the primary in-clinic session because exMPC was always using physical activity data to 

adjust the insulin and therefore responding to all activity during the day, not just structured 

exercise. Conversely, exAPD only adjusted insulin in response to structured exercise, but 

not throughout the day or during the activities of daily living. The exAPD also required 

the participant to respond to a prompt when physical activity exceeded 4·0 METs whereas 

the exMPC algorithm did not require any interactions from the participant in response to 

physical activity changes.

Participants were discharged from the clinic at approximately 2000 h. For days 2 and 3 of 

the interventional part of the study, participants used iPancreas at home under free-living 

conditions and were instructed to exercise on their own. On day 4 of the intervention, 

participants returned to the clinic to end the first arm of the study. After the first treatment 

visit, a washout period of 6 days to 10 weeks was done before performing the next 76 h 

intervention on either the exMPC or exAPD depending on the first intervention arm.

Outcomes

The primary outcome measure was the percent time below range during the 12 h primary 

in-clinic session. Primary and secondary outcome measures were also assessed during the 

entire 76 h study and also during the 2 h period immediately after the start of structured 

exercise on the primary in-clinic session. Glucose metrics were based on Dexcom G6 CGM 

data. Secondary outcome measures included the percent time in range (3·9–10 mmol/L), 

percent time above range (>10 mmol/L), total number of rescue carbohydrates required per 

day in response to hypoglycaemia (<3·9 mmol/L), mean glucose, percent time glucose was 

very low (<3·0 mmol/L), percent time sensed glucose was very high (>13·9 mmol/L) and 

mean amount of insulin per day.

Randomisation and masking

Participants were randomised using block randomisation with a block size of 4 to first use 

iPancreas running either exMPC or exAPD for the duration of the intervention. The study 

was non-blinded in that the study participants and the investigators knew the intervention 

that was being done.

Overview of iPancreas test platform

iPancreas (appendix p 41) is a modular, licensable, open access system to enable rapid 

prototyping of closed-loop and decision support algorithms and user interfaces for glucose 
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management. The system (figure 1) comprises the custom iPancreas app running on a 

Samsung smartphone (Suwon-Si, Korea), a Dexcom G6 CGM, a research version Insulet 

Omnipod (Acton, MA, USA), a Polar M600 smartwatch (Kempele, Finland), and a custom-

developed cloud monitoring and data acquisition repository running on Amazon Web 

Services (Seattle, WA, USA). CGM data and M600 heart rate and accelerometry data are 

received wirelessly by the phone. The control algorithm calculates the amount of insulin to 

deliver and sends this information wirelessly to the Omnipod. iPancreas includes a simple 

meal bolus calculator.

Overview of the AID algorithms

The exMPC algorithm18–21 (appendix p 2) is a traditional MPC algorithm that uses a 

linearised version of a compartment model comprising nonlinear differential equations that 

represent kinetics and dynamics of subcutaneously delivered insulin, carbohydrates, and 

exercise. The insulin kinetics and dynamics models and the carbohydrate absorption model 

are described by Hovorka and colleagues22 and Wilinska and colleagues.23 The exercise 

model is described by Hernandez and colleagues24 and describes how glucose uptake 

and endogenous glucose production are impacted by METs. We calculated METs using 

accelerometer and heart rate data (appendix p 6). The METs data is provided as an input to 

the control algorithm every 5 min when a new insulin delivery micro-bolus is calculated.

The exAPD algorithm17,20,21 is a proportional-derivative control algorithm that includes a 

fading history of past CGM to calculate the amount of insulin that should be delivered every 

5 min.25 Because the exAPD algorithm does not include a model of metabolism, exercise 

metrics such as heart rate and accelerometry cannot be easily included as a continuous input. 

Instead, the exAPD algorithm calculates METs (appendix p 6), and if METs exceeds a 

threshold of 4·0, then the person using iPancreas will be prompted to confirm exercise. After 

accepting the prompt, insulin is turned off for 30 min and then reduced by 50% for 1 h.

Artificial intelligence (AI)-augmented safety layer

Both exAPD and exMPC use a safety layer built into iPancreas. This includes an AI-based 

predictive low glucose suspend algorithm that uses a long-short-term memory (LSTM) 

neural network26 glucose forecasting algorithm to automatically shut off insulin if CGM is 

3·9–7·77 mmol/L and predicted to drop below 5 mmol/L within 30 min (appendix p 5–6). In 

addition, the maximum insulin delivery rate is limited to four times the user’s typical basal 

insulin infusion rate. Finally, maximum insulin delivery is limited such that insulin on board 

never exceeds 35% of the total daily insulin requirement.

Statistical analysis

For the primary outcome of percent time with glucose less than 3·9 mmol/L, we anticipated 

a mean paired difference of 1·2 (SD 2·5) with a kurtotic, double-exponential distribution, 

based on previously published, closed-loop study data20 and simulations using the OHSU 

simulator.27 A sample of 24 participants provided 80% power at the 0∙05 level of 

significance to detect a difference of that size or larger using a two-sided t test with an 

adjustment for the distribution. For normally distributed secondary outcomes, we had over 

80% power to detect differences of 0·6 SD or greater using a two-sided one-sample t test 
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for the mean difference at the 0∙05 significance level. Power calculations were done using 

Power Analysis and Sample Size Software (version 14; NCSS, Kaysville, UT, USA).

The primary study endpoint was percent of time with CGM below range (time below range, 

<3·9 mmol/L) during the primary in-clinic session. The hypothesis to be tested was whether 

the exMPC decreases time below range compared with the exAPD algorithm. For this, as 

well as for secondary endpoints, we used an intention-to-treat analysis whereby all available 

data were included if the participant completed the primary in-clinic session. Mean paired 

differences were calculated as the differences between the two sample means with SD of the 

differences

SDdiff = SDexMPC
2 + SDexAPD

2 − 2 × CorrexMPC_exAPD × SDexMPC × SDexAPD

where CorrexMPC_exADP is the sample correlation between measurements in the two arms. Two-

sided p values were calculated using a panel model for each endpoint with a random 

intercept for participant and indicator variables for the intervention, the sequence of the 

intervention (exMPC first or second, as a measure of potential carryover effects), and 

period (first or second). For the primary endpoint, which had non-normally distributed 

residuals, the standard errors for this model were calculated using bootstrap methods where 

participants were resampled with 1000 replications. For endpoints that were counts, we used 

negative binomial models. Other non-normally distributed outcomes were transformed or 

bootstrapped, depending on the fit of the transformation. Analyses were completed using 

Matlab (Mathworks, Natick MA; version 21b) and Stata/IC (Stata Statistical Software, 

College Station TX; version 16.1).

This trial is registered with ClinicalTrials.gov, NCT04771403.

Role of the funding source

Funders did not have a role in the study design, data collection, interpretation of results, or 

the writing of the manuscript.

Results

Between April 13, 2021, and Oct 3, 2022, 27 adults (18 females) with type 1 diabetes from 

the Harold Schnitzer Diabetes Health Center clinic at OHSU were recruited into the study 

(table 1). Of the 27 participants screened, 25 (16 females) participated in the study (figure 

2). 24 of 25 participants completed the exMPC arm and 22 of 25 participants completed the 

exAPD arm (figure 2). Reasons for not completing an arm included a software error that 

occurred and was fixed early on in the study (n=2), pump occlusion (n=1), and a participant 

withdrew from the study before starting the arm (n=1). There were no serious adverse 

events. The washout period was not correlated with time below range or time in range.

Both exMPC and exAPD were similarly effective at using exercise data to prevent low 

glucose. For the primary outcome measure, participants using exMPC had similar time 

below range compared with participants using exAPD during the primary in-clinic session 

(1·3% vs 2·5%, difference −1·2 [SD 7·3]; p=0∙46; table 2). Time in range was similar for 
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participants using the exMPC compared with the exAPD during the primary in-clinic session 

(63·2% vs 59·4%, difference 3·8 [29·8]; p=0∙49). Table 2 shows that there was no significant 

effect of the sequence of participants performing exMPC versus exAPD arms first. However, 

the order of performing the intervention regardless of intervention type as indicated by the 

column labelled period, was significant for time in range (increased in period 2) and time 

above range (decreased in period 2), indicating that the participants might have benefited 

from learning in the first period. Figure 3 shows that the exMPC algorithm tended to 

respond more to the activities of daily living during the morning time by turning down 

insulin whereas exAPD did not adjust insulin based on the activities of daily living since 

it was only designed to respond to prolonged vigorous exercise including the structured, 

user-confirmed exercise video. The automated insulin on board calculated in the 2 h before 

the start of exercise was comparable for exAPD and exMPC (appendix p 44).

Low glucose (<3·9 mmol/L) occurred during the 2 h after the start of structured exercise 

during the primary in-clinic session for three participants in each of the exMPC and the 

exAPD arm. Table 3 shows that the duration of the low glucose during and following 

structured exercise was similar for exMPC compared with exAPD (1·4% vs 4·9%, difference 

−3·5 [15·4]; p=0∙29). Participants using exMPC had a significantly lower mean CGM 

compared with exAPD during this 2 h window after structured exercise in the primary 

in-clinic session (7·3 vs 8·0 mmol/L, difference −0·8 [1·4]; p=0∙023) and had similar time 

in very low glucose (0 for exMPC vs 0·57% for exAPD). One participant in the exAPD 

arm had a very low glucose (<3·0 mmol/L) in the 2 h after the start of structured exercise 

whereas none of the participants experienced this in the exMPC arm. Participants using the 

exMPC had better glucose outcomes following in-clinic structured exercise as indicated by 

a significantly lower mean glucose (figure 4). Figure 4 also shows that although the exAPD 

shut off insulin completely when structured exercise was detected by the algorithm and 

accepted by the user prompt, the exMPC algorithm did not completely shut off insulin for 

all participants as the exercise data were just one input to the algorithm, and in certain cases, 

a complete shut-off of insulin was not necessarily indicated to maintain optimal glucose 

outcomes. Insulin shut-off could have been caused by either the LSTM or the exercise 

detection. The carbohydrate intake before and during exercise was not different between the 

exMPC and exAPD arms for in-clinic exercise (appendix pp 42–43).

Across the entire 76 h study (table 4), exMPC and exAPD performed comparably in terms 

of time in range (71·2% vs 75·5%, difference −4·3 [16·4]; p=0∙13) and time below range 

(0·96% vs 1·30%, difference −0·33 [1·92]; p=0∙47). The use of exMPC over the full study 

duration required similar rescue carbohydrates compared with exAPD (0·65 for exMPC vs 
1·03 per day for exAPD; p=0∙14).

During the free-living exercise sessions at home (appendix pp 42–43), there was no 

statistically significant difference between the glucose change for exMPC (−21·5 mg/dL 

[43·8]) versus exAPD (−13·4 mg/dL [27·2]; p=0∙56). CGM at the start and end of exercise 

was comparable between the in-home exMPC and exAPD exercise sessions. Carbohydrate 

intake before in-home exercise was higher for exMPC compared with exAPD (7·7 g [8·5] vs 
1·0 [3·7]; p=0∙01). No low glucose (<3·9 mmol/L) was observed during the in-home exercise 

for any participants on either algorithm.
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In a post-hoc analysis, we considered the hypothesis that participants using either exMPC 

or exAPD would have better glucose outcomes compared with their usual care since many 

participants did not use an AID in their usual care. We compared glucose metrics from 

the intervention periods with the run-in week when the participants used their own insulin 

pump and CGM. Notably many participants (n=11) were using commercial AID as their 

current therapy during run-in. Participants had lower time below range compared with the 

run-in period (2·4% run-in, p=0∙002 comparing run-in with exMPC of 0·96% and p=0∙019 

comparing run-in with exAPD of 1·3%). Time in range was higher for both algorithms 

compared with run-in but only significant for exAPD (69·2%, p=0∙52 comparing exMPC of 

71·2% and p=0∙036 comparing exAPD of 75·5%).

Discussion

Results indicate that the exMPC and exAPD algorithms, that both make use of exercise 

metrics, yielded comparable glucose outcomes. The exMPC yielded similar time in range 

and time below range compared with the exAPD during the primary in-clinic session. 

During the two 2 h after the start of the primary in-clinic session structured exercise period, 

the exMPC algorithm had better performance than the exAPD in terms of a significantly 

lower mean glucose without significant concomitant increases in time below range or very 

low glucose. The exMPC algorithm did not require any interaction from the participant 

in response to exercise, whereas the exAPD algorithm required the user to respond to the 

exercise announcement prompts. In this way, exMPC presumably required a lower burden 

than exAPD.

This is the first study whereby exercise metrics (ie, heart rate and accelerometry) were used 

as continuous inputs to an AID system to modify insulin dosing under free-living, real-world 

settings. Previously, the exAPD algorithm was used in both single and dual-hormone closed-

loop studies in in-clinic and outpatient free-living conditions. However, the adjustment to the 

insulin and glucagon dosing was done only after the user responded to a prompt indicating 

that exercise had been initiated. The exMPC algorithm did not require a user prompt and 

could respond throughout the day to exercise events. This enabled adjustment of insulin 

dosing even in response to activities of daily living (figure 3). The inhome results (table 4) 

indicate that both the exMPC and exAPD performed well and comparably under free-living 

conditions and on average both were able to keep participants above 70% time in range and 

less than 4% time below range as recommended by the American Diabetes Association.28 

There were no significant differences between the glucose outcomes for the two algorithms 

during the in-home exercise portions of the study and no low glucose observed during any of 

the inhome exercise sessions.

Early work on integrating exercise metrics into AID by Turksoy and colleagues13 and De 

Boer and Breton14 was done within an in-clinic setting. Other work assessed commercial 

AIDs during exercise. Breton and colleagues evaluated Control-IQ during a ski camp.29 

Control-IQ and other commercial AIDs do not use physical activity as an input. They 

provide the option for adjusting the target glucose before exercise and during exercise to 

reduce insulin delivery, which can help avoid exercise-induced hypo glycaemia if done 

in advance.6,11 However, people often forget to make adjustments in advance or make 
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inappropriate adjustments. Furthermore, people might be active throughout the day, but they 

might not consider any of these activities to be exercise. An AID system like exMPC that 

can automatically adjust insulin throughout all activities in the day could be helpful to 

people struggling with glucose management. Glucose has been shown to drop substantially 

even if basal insulin is suspended at the start of exercise30 and so anticipation of exercise 

could be critical for future applications.15

Results indicate that use of exercise metrics collected from a commercially available wrist-

worn fitness monitor can be used effectively by either exMPC or exAPD as a continuous 

input in an AID to achieve clinical glucose outcome targets28 for people with type 1 

diabetes. Limitations of this study are first that it was a short study. Future studies will 

evaluate the system over a longer period of time. In addition, the study was powered for 

24 participants, but only 22 participants completed the exAPD arm. Furthermore, the SD 

of the outcome measures was larger in the study than the ones used to power the study. 

This was probably because a simulator was used to estimate the variance for the power 

analysis, which can yield smaller variance estimates than real-world data. The small number 

of participants and the larger variance could partially explain why statistically significant 

differences might not have been observed in the primary or secondary outcome measures 

assuming that these differences exist. Second, the performance of the algorithms on primary 

in-clinic structured exercise sessions was only evaluated on a single type of exercise 

(aerobic) and was only 30 minutes in duration. However, the system performed well during 

the free-living portion of the study when participants were instructed to perform exercise 

on their own on days 2 or 3 of the study. In the future, it will be important to evaluate the 

exMPC under a variety of exercise types (resistance, aerobic, interval), durations, intensities, 

and under fasting versus non-fasting states.31 Although the current study was not powered 

to explore factors contributing to glucose changes, a study by Riddell and colleagues32 

provides an analysis on a large cohort of people with type 1 diabetes (n=497) exercising 

under free-living conditions. They identify baseline glucose, rate of change of glucose 

before exercise, insulin-on-board at start of exercise and other factors related to changes in 

glucose during aerobic, resistance, and interval exercise. Third, for safety reasons required 

by the FDA, we needed to include an in-clinic evaluation period for the exMPC, which 

potentially introduced noise into the findings because these first eight participants did the 

exercise on the day 3 in-clinic session. When evaluating the impact of doing the first eight 

exMPC participants on day 3, we found that these participants had higher time in range and 

lower time below range than the following 16 participants who did the in-clinic exercise 

on day 1; the p value did not reach significance (p=0∙063). Future studies will not require 

this type of a study design. Fourth, the study population from this study was generally well 

controlled with a mean HbA1c of 6·4%. Future studies will need to evaluate these algorithms 

in a more broadly representative population. A final limitation is that the results presented 

here are for only one type of fitness watch, the Polar M600. In a previous study,12 we 

found that accuracy of different fitness watches including the Garmin and the Fitbit watches, 

were comparable. If fitness watches are to be used in future closed-loop systems, it will be 

important to carefully assess the accuracy of heart rate and accelerometer data.
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Research in context

Evidence before this study

Before this study, there had not been a study showing that exercise metrics including 

heart rate and accelerometry collected from wearable fitness sensors can be incorporated 

into an automated insulin delivery (AID) system under free-living conditions. We 

reviewed publications in the area of incorporation of wearable fitness data into AID 

and automated multihormone delivery systems. We searched publicly available databases 

including PubMed without excluding by language or by date using the search terms 

“type 1 diabetes”, “exercise”, and “automated insulin delivery” or “artificial pancreas”. 

PubMed returned a total of 165 manuscripts, of which the majority were either 

review articles, studies done on commercial AID systems that do not incorporate 

exercise metrics as inputs to their algorithms, in silico mathematical models of exercise 

metabolism, or glucose forecasting models designed to work during exercise and 

evaluated post hoc. There has been preliminary work on incorporating heart rate, 

accelerometry and other measures from fitness wearables as continuous inputs into AID 

reported by our group as well as Breton, De Boer, Garcia-Tirado and colleagues at the 

University of Virginia, and Turksoy, Cinar and colleagues at the Illinois Institute of 

Technology. The preliminary studies by Breton, De Boer, Garcia-Tirado and by Turksoy 

and Cinar were all done in an in-clinic setting under prescribed conditions including fixed 

meal times, exercise types, durations, and intensities. De Boer and colleagues showed 

that the percent time less than 3·9 mmol/L could be significantly reduced during an 

in-clinic study of a heart-rate informed AID system compared with a standard AID (0·5 

+/− 2·1% vs 7·4 +/− 12·5%, p=0·028). Turksoy and Cinar also showed, in their in-clinic 

studies, that heart rate and other exercise metrics could be incorporated into an AID to 

yield high time in range and low time in hypoglycaemia, though carbohydrate intake was 

required in 59% of the exercise sessions to avoid hypoglycaemia. Garcia-Tirado, Breton 

and colleagues described a new AID that used previous imposed exercise behavioural 

patterns done at specific times over several weeks to determine if the AID system could 

then anticipate and respond to exercise when it occurred in the future at these same 

times. The intervention when exercise was anticipated was done in an in-clinic study 

whereby they showed that the system could reduce hypoglycaemia compared with if 

the system did not anticipate the exercise and adjust dosing in advance. Although these 

studies showed a potential benefit of incorporating exercise data into the AID dosing 

and decision-making, there had not yet been a study done under free-living conditions 

whereby exercise metrics were used to inform control decisions and modify insulin 

dosing. In our previous work, we had incorporated exercise as a metric for adjusting 

insulin dosing during exercise, but it required the user to acknowledge a prompt when 

exercise was detected by a wearable fitness sensor.

Therefore, these preliminary systems were designed to work only during structured 

exercise periods as opposed to continuously throughout the day and especially during 

increased activity during daily living such as housework or yardwork. Thus, before the 

current study, there had not yet been a study showing that an AID system receiving 

continuous fitness data for adjusting insulin dosing is effective at maintaining clinical 
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targets for glucose outcomes both during exercise and under free-living real-world 

conditions.

Added value of this study

Results from the study presented in this manuscript show for the first time that exercise 

metrics collected from a wearable fitness sensor can be effectively used as an additional 

input into an AID system. Results indicate that during a two-hour period following the 

start of exercise, an AID that automatically incorporates real-time exercise metrics into 

dosing decisions can improve glucose outcomes compared with a system that requires 

a user prompt and makes adjustments to insulin dosing that are rule-based (eg, shut 

insulin off for a period of time and then reduce insulin delivery if exercise is detected 

and acknowledged by the user). Results across the full 76 h study period which included 

two days of free-living indicate that an AID that uses exercise metrics as a real-time input 

for calculating automated insulin dosing can help achieve clinical targets for glucose 

outcomes.

Implications of all the available evidence

This study provides evidence that can support the development of next-generation 

exercise-aware commercial AID systems. These exercise-aware AID systems might 

ultimately leverage the ubiquity of wearable fitness sensors for informing AIDs during 

an active lifestyle. An exercise-aware AID could ultimately help people living with type 

1 diabetes improve their overall health through exercise while maintaining safety and 

improved glucose outcomes during and following exercise. An exercise-aware AID could 

also provide benefit for people with type 1 diabetes who are living an active lifestyle who 

might struggle with glucose management during physical activity that is not traditionally 

considered exercise (eg, housework, yardwork, commuting).
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Figure 1: iPancreas system
The system comprises a Dexcom G6 CGM, an Insulet Omnipod along with a relay PDM, 

a Polar M-600 smartwatch with heart rate and accelerometer sensors, and a Samsung 

smartphone running the exAPD or exMPC control algorithms. AWS=Amazon Web Services. 

exAPD=exercise-aware adaptive proportional derivative. exMPC=exercise-aware model 

predictive control. PDM=personal diabetes manager.
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Figure 2: Trial profile
exAPD=exercise-aware adaptive proportional derivative. exMPC=exercise-aware model 

predictive control.
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Figure 3: CGM data, insulin, and METs during the primary in-clinic session (0700–1900 h)
Middle plots show how the exMPC tended to reduce insulin earlier in the day when 

activities of daily living were taking place, whereas, the exAPD only shut off insulin 

when the structured exercise took place later in the day. CGM=continuous glucose monitor. 

exAPD=exercise-aware adaptive proportional derivative. exMPC=exercise-aware model 

predictive control. MET=metabolic equivalent to task.
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Figure 4: CGM data, insulin, and METs during the 2 h after the start of the primary in-clinic 
session structured exercise
The exercise-aware model predictive control (exMPC) algorithm data are shown on the right 

panel and the exercise-aware adaptive proportional derivative (exAPD) algorithm data are 

shown on the left panel. Notice that the exAPD shuts off insulin completely once structured 

exercise is detected while the exMPC will only shut off insulin completely if necessary. 

CGM=continuous glucose monitor. MET=metabolic equivalent to task.
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Table 1:

Study participant demographics at baseline

Participants (n=25)

Age, years 34·4 (8·8)

Weight, kg 78·8 (13·5)

Sex at birth

 Male 9 (36%)

 Female 16 (64%)

Race

 American Indian or Alaska native 1 (4%)

 White 22 (88%)

 More than one race 2 (8%)

Ethnicity

 Hispanic 0

 Non-Hispanic 25 (100%)

HbA1c 6·4% (0·6)

HbA1c, mmol/mol 49·5 (4·9)

Diabetes duration, years 22·8 (9·7)

AID users 11 (44%)

CGM users 24 (96%)

Data are mean (SD) or n (%). AID=automated insulin delivery. CGM=continuous glucose monitoring. HbA1c=glycated haemoglobin A1c.
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