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Occurrence-based diversity estimation reveals
macroecological and conservation knowledge gaps for
global woody plants
Buntarou Kusumoto1,2,3,4,5*†, Anne Chao6, Wolf L. Eiserhardt5,7, Jens-Christian Svenning7,8,
Takayuki Shiono2,4, Yasuhiro Kubota2,4,9

Incomplete sampling of species’ geographic distributions has challenged biogeographers for many years to
precisely quantify global-scale biodiversity patterns. After correcting for the spatial inequality of sample com-
pleteness, we generated a global species diversity map for woody angiosperms (82,974 species, 13,959,780 oc-
currence records). The standardized diversity estimated more pronounced latitudinal and longitudinal diversity
gradients than the raw data and improved the spatial prediction of diversity based on environmental factors. We
identified areas with potentially high species richness and rarity that are poorly explored, unprotected, and
threatened by increasing human pressure: They are distributed mostly at low latitudes across central South
America, Central Africa, subtropical China, and Indomalayan islands. These priority areas for botanical explora-
tion can help to efficiently fill spatial knowledge gaps for better describing the status of biodiversity and
improve the effectiveness of the protected area network for global woody plant conservation.
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INTRODUCTION
The accumulation of species occurrence data is a fundamental basis
for biodiversity science, providing rising opportunities toward ad-
dressing major challenges in ecology and conservation (1, 2). Oc-
currence records have been widely used to model species
distribution (3) and to estimate diversity at given localities (4).
However, occurrence records notoriously suffer from incomplete-
ness and biases (5), where observed species diversity is statistically
influenced by sample size (6). As most occurrence records stem
from collections taken for purposes other than estimating diversity
patterns, their coverage is usually not geographically systematic nor
comprehensive, resulting in a dominance of omission errors (7, 8);
to complicate matters, species absence is scale-dependent, and its
information is usually unavailable (9). This so-called Wallacean
shortfall in biodiversity knowledge (10) potentially precludes a
solid understanding of geographical biodiversity patterns (11, 12)
and implementation of spatial conservation planning (13).
To correctly capture species diversity patterns, knowing the geo-

graphic variation in sample completeness of species occurrence data
is critical (14). The explicit link between sample size, completeness,
and diversity enables standardization of an observed diversity using
rarefaction or extrapolation based on sample completeness (15).
This allows fair comparisons of species diversity across multiple as-
semblages measured at unequal sample completeness without nec-
essarily knowing their true diversity (14). Notably, latitudinal and

longitudinal diversity gradients have recently been revisited in
this manner, especially in marine ecosystems (16, 17), and revealed
unexpected diversity patterns (e.g., bi- or multimodality). Thus, di-
versity estimation theory challenges the generality of macroecolog-
ical patterns that often suffer from serious sampling bias (18).
To achieve the global goals and milestones to counteract the

current biodiversity crisis [e.g., the post-2020 Biodiversity Frame-
work; (19)], the spatial allocation of conservation resources (e.g.,
land areas) is a key issue. For effective avoidance or mitigation of
negative human impacts, spatial planning based on reliable infor-
mation of biodiversity distribution is essential (20). However,
spatial planning analyses implicitly assume that biodiversity pat-
terns are accurately described, hereunder equally so inside and
outside existing conservation areas; the validity of this assumption
has not been examined at a global scale yet.
In this study, we focused on the species diversity of woody an-

giosperms. Woody angiosperms play a crucial role as ecosystem en-
gineers, shaping most terrestrial biomes and supporting ecosystem
functions and services on Earth (21). A recent study applied diver-
sity estimation theory to a global occurrence record dataset and es-
timated the continental-level tree species richness, correcting for
uneven sample completeness (4). However, their analysis did not
include all woody angiosperms and only estimated diversity at the
level of bioregions (biomes on continents). Global patterns of
woody plant diversity at finer resolutions remain to be estimated
from occurrence records and compared to previous studies using
different data sources such as floristic checklists (22, 23) and plot
surveys (24).
Here, we generated a global diversity map for woody angio-

sperms using 13,959,780 occurrence records for 82,974 species.
We computed sample completeness and standardized species diver-
sities using a Hill number–based approach to examine bias-correct-
ed geographical patterns of species diversity. Hill numbers (or the
effective number of species) (25) have been increasingly used to
quantify the species diversity of assemblages. In particular, we
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evaluated the impact of sample completeness on the description of
species diversity and ecological inferences, especially of latitudinal
and longitudinal diversity patterns related to spatial resolution, and
identified predominant environmental drivers of species diversity at
the global and regional scales. We also examined the spatial congru-
ence of the species diversity and sample completeness with the
global protected area network and changes in the human pressure.
Last, we identified spatial priority areas for allocation of future sam-
pling effort to effectively fill knowledge gaps.

RESULTS AND DISCUSSION
Observed diversity and sample completeness
Sample completeness measured by sample coverage, a concept orig-
inally developed by Alan Turing in his cryptographic analysis
during World War II, greatly varied globally for the occurrence
records of woody angiosperms (Fig. 1) (5, 26). Sample coverage is
defined as the proportion of the total number of incidences

(counted by the 10 km–by–10 km subcells) belonging to detected
species to the entire incidences including detected and undetected
species. It tended to be high in temperate regions, including North
America, Europe, Japan, Australia, and New Zealand. This trend
likely reflects the sociopolitical histories of botanical collections
rather than climatic conditions (27). Such geographical inequality
of sampling effort distorts the description, interpretation, and pre-
diction of biodiversity patterns (26, 28) because the observed diver-
sity patterns reflect both multiple gradients of true diversity and the
spatial bias of sampling efforts (29). The observed number of species
showed a strong spatial congruence with the total number of occur-
rences (fig. S1). Expectedly, sample coverage was lower and more
variable at the finest spatial resolution (100 km by 100 km) than
at coarse resolution (~800 km by 800 km) (fig. S2). Such positive
scale dependency of sample completeness has been reported previ-
ously in a regional-scale study of plants (30) and a global-scale study
of stony corals (17).

Fig. 1. Sample completeness (sample coverage) of species occurrence records of woody angiosperms at global scale. (A) Geographical map at the 100 km–by–100
km equal-area grids (n = 8427) and (B) the distribution onWhittaker’s biome plot: tundra (Tu), boreal forest (Bf ), temperate grassland/desert (Tmg), woodland/shrubland
(Wl), temperate seasonal forest (Tms), temperate rain forest (Tmr), tropical rain forest (Trr), tropical seasonal forest/savanna (Trs), and subtropical desert (Sd). In (B), the
sample coverage values were aggregated to the median values in pixels divided 60 × 60 of the climate space.
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The sample coverage–based standardization of species diversity
successfully mitigated the effect of uneven sample completeness
(14), improving the description of relative geographical diversity
patterns (Figs. 2 to 4 and figs. S3 to S9). Notably, the improvement
is quantitatively clear from the increase in the predictive perfor-
mance of macroecological models to explain species richness pat-
terns after standardization (Fig. 5 and figs. S10 and S11).
Specifically, the best-performing random forest model explained
~75% of the total variance of the sample coverage–based standard-
ized species richness pattern, while, for the observed species

richness, the model explained only 63% of the total variance
(Fig. 5A and fig. S10). This is comparable to previously reported
values (70 to 85%) in studies of macroscale plant diversity (23, 24,
31–33). These improved estimates of species richness showed devi-
ations from the geographical patterns of observed species richness
(Figs. 2 to 4 and fig. S12) especially for the latitudinal gradients in
the Asia-Oceania region (around the Tropic of Cancer; Fig. 3C) and
in the Africa-Europe region (around equator; Fig. 3B), likely reflect-
ing that the observed species diversity is severely affected by under-
sampling. Furthermore, the deviations in geographic patterns

Fig. 2. Geographical distribution of species richness (Hill number q = 0) for 100 km–by–100 km grid cells. (A) Observed species richness, (B) sample coverage–
based standardized species richness (sample coverage = 0.82), and (C) spatial projection of random forest model for standardized richness. The values are log-scaled.
Patterns for diversity at higher orders (q = 1 and 2) are given in fig. S18.
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between observed and standardized diversities were scale-depen-
dent and tended to be greater at finer spatial resolutions (figs. S13
to S17).
After applying standardization, the different orders of diversities

(q = 0, species richness; q = 1, Shannon diversity; and q = 2, Simpson
diversity) showed similar geographical pattern (figs. S18 to S20).
Because the rarefaction/extrapolation estimators for higher orders
(q = 1 and 2) are nearly unbiased and valid for a wide range of pre-
diction (15), the consistent results among different orders of diver-
sities suggest the standardization of species diversity improved
descriptions of geographical diversity patterns.

Geographical patterns of estimated diversity
The standardized (bias-corrected) species richness showed global
latitudinal trends with regional diversity hot spots (areas character-
ized by high species diversity) mainly scattered in the tropics (Figs. 2
and 3). The highest diversity was identified in central South
America followed by western tropical Africa and Indomalayan-Aus-
tralasian region including subtropical China; these are generally in
line with the estimation for tree species at continental and biome
levels by Gatti et al. (4), while our analysis also captured finer-
scale variation in species richness within continents, including a
species diversity peak in the northern midlatitudes of Asia.
The sample coverage–based standardization changed the shapes

of the latitudinal diversity gradient in the three longitudinal zones
(Americas, Africa-Europe, and Asia-Oceania) (Fig. 3 and fig. S3),
indicating that the biased raw data lead to mischaracterization of
the latitudinal diversity gradient (18). After bias correction, the lat-
itudinal diversity gradients showed regional differences (Fig. 3). The
latitudinal diversity gradient in the Americas showed a typical

symmetric shape with a peak at the equator and decline toward
both poles, in line with the finding of meta-analyses (34). In con-
trast, the latitudinal diversity gradient in the Africa-Europe and
Asia-Oceania regions showed complex patterns with asymmetric
unimodality or bimodality. Specifically, the latitudinal diversity gra-
dient in the Africa-Europe region showed a peak at the equator and
decline toward higher latitude in the Northern Hemisphere and up
to middle (~20°) latitude in the Southern Hemisphere; however, an
extraordinary high species diversity at the Cape Floristic Region in
South Africa (35) resulted in a distinctive bimodal diversity pattern
(Fig. 3B). The latitudinal diversity gradient in the Asia-Oceania
region showed a peak at northern central latitudes (around the
Tropic of Cancer). These regional anomalies of the latitudinal diver-
sity gradients have been pointed out for all vascular plants using dif-
ferent data sources (36).
These region-specific latitudinal diversity gradients can be un-

derstood in the context of a biodiversity anomaly among regions
with similar climatic conditions (37), e.g., the diversity depression
of African tropical rain forests in comparison with other tropical
biomes (38) and the “Asian bias” in species diversity of temperate
floras (39). Such regional diversity anomalies among continents
were reflected in the longitudinal diversity gradients globally
within the tropics and extratropics (Fig. 4 and fig. S4). Uni- and
bimodal longitudinal diversity gradients were identified in the
three latitudinal zones (northern extratropics, tropics, and southern
extratropics). A tropical diversity peak in South America and rela-
tively lower diversity in the rest of tropics (sub-Saharan Africa,
Southeast Asia, Australia, and Oceania) was evident, as reported
in a continental-level estimation (4) and community-based
studies (40, 41). Furthermore, temperate East Asia was identified

Fig. 3. Latitudinal pattern of species richness in three longitudinal zones for the 100 km–by–100 km grid cells. The globe was subdivided into (A) Americas, (B)
Africa-Europe, and (C) Asia-Oceania: the observed species richness and the standardized species richness (species diversity at the order q = 0) based on sample coverage
(0.82). Loess (locally estimated scatterplot smoothing) curve (scaling parameter α = 0.6) with 95% confidence interval is shown (green and red lines). Thick horizontal line
indicates the equator, and dashed lines represents the Tropics of Capricorn and Cancer. Patterns for diversity at higher orders (q = 1 and 2) are given in fig. S19.
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as a diversity peak on the longitudinal diversity gradient in the
northern extratropics, as argued in previous studies (37, 41), al-
though the diversity pattern was scale-dependent and assumed a
bimodal shape at coarse spatial resolutions (≥400 km by 400 km;
fig. S14). We noted that the longitudinal diversity gradients were
not steep (except for oceanic gaps) and were relatively stable irre-
spective of the sampling bias (Fig. 4 and fig. S4) compared with
the latitudinal diversity gradients. A possible explanation of this is
relatively smaller variation of sample coverage within the latitudinal
zones compared with the longitudinal zones (Fig. 1A).

Environmental drivers of woody species diversity
Within the 11 environmental (mostly climatic, see Materials and
Methods for details) factors considered, actual evapotranspiration
(AET; a measure that is high in warm and humid climate) was
the most important factor to explain the geographical patterns of
species richness at the global scale (Fig. 5C), regardless of the mod-
eling framework and spatial resolution (figs. S8 and S9): AET was
consistently positively associated with species richness (figs. S5 to
S7), as reported in previous global-scale studies using different
types of data (23, 24, 33, 35). The other climatic variables also
were of relatively high importance. Temperature change from the
Last Glacial Maximum (LGM) had a strong negative effect on
species diversity, especially at coarser spatial resolutions (fig. S9),
suggesting that geographic variation in late-Quaternary paleocli-
mate instability has had a regional effect on macroscale diversity
patterns in woody angiosperms through extinction and dispersal
limited range dynamics (42, 43). This is in line with the findings

for local plant communities on global geographical gradients by Sa-
batini et al. (44) where the geohistorical effects on species diversity
were greater at coarser grain sizes. In addition, the relative impor-
tance of environmental drivers, especially for the top four variables,
was stable across the tested spatial resolutions (fig. S9). Such a grain-
size–independent relationship of environmental variables with
species diversity, which contrasts with the findings of Keil and
Chase (24) covering a wider range of grain size across local commu-
nities (~10−3 km2) to regional species pools (~106 km2), suggests the
predominance of environmental species sorting at the regional
species pool level (>104 km2).
The latitudinal and longitudinal diversity gradients had region-

specific links to different environmental variables assessed at the
level of 100 km–by–100 km grid cells (figs. S23 and S24). Temper-
ature seasonality exhibited a negative correlation with species diver-
sity and outperformed AET in the Americas and the Africa-Europe
region, but not in the Asia-Oceania region (fig. S24), suggestive of
region-specific species sorting associated with latitudinal climatic
seasonality gradients (45). A possible explanation could be that
less temperature seasonality has facilitated the accumulation and/
or diversification of species with varied strategies in reproduction
and biological interactions (46). Although this effect might also
exist in the Asia-Oceania region, the high species richness in the
midlatitudes was not be explained by temperature seasonality (fig.
S23). In addition, historical temperature change since the LGM con-
tributed substantially to shaping the latitudinal diversity gradient in
the Americas. This suggests the long-lasting impact of glacial dis-
turbance and climatic disequilibrium in North America (47, 48):

Fig. 4. Longitudinal pattern of species richness in three latitudinal zones for the 100 km–by–100 km grid cells. The globe was subdivided into (A) northern
extratropics, (B) tropics, and (C) southern extratropics: the observed species richness and the standardized species richness (species diversity at the order q = 0)
based on sample coverage (0.82). The diversity values are log-scaled. Loess curve (scaling parameter α = 0.6) with 95% confidence interval is shown (green and red
lines). Patterns for diversity at higher orders (q = 1 and 2) are given in fig. S20.
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Seliger et al. (47) found that the potential ranges of North American
trees and shrubs are largely unfilled due to dispersal lags in response
to postglacial warming. Our result is also consistent with the finding
of a strong correlation between historical climatic stability and
number of restricted-range vertebrates in Meso- to South
America (49). In contrast, historical climatic changes from the
LGM showed minor importance in the Asia-Oceania region.
Older historical imprints (e.g., those of the Paleo- and Neogene)
might have played a pivotal role in shaping the heightened species
richness observed in subtropical China (50). To gain more pro-
found insights into these likely complex dynamics, it would be es-
sential to conduct further investigations that integrate both
phylogenetic and fossil information.
Across all continents, the longitudinal diversity gradients were

mainly driven by energy and/or water variables (fig. S24). In partic-
ular, in the tropics, potential evapotranspiration (PET) and aridity
index (AI) were of particularly high importance, indicating that low
energy and water availability, i.e., a harsh environment, depress
species diversity in particular tropical regions (51). In contrast to
the latitudinal diversity gradients, historical temperature changes
since the LGM played minor roles in explaining the longitudinal
diversity gradients (fig. S24).

Spatial priority areas for future sampling
We found that woody angiosperm diversity had been explored with
similar sample completeness inside and outside protected areas in
general, except for the Eastern Palearctic region where sample cov-
eragewas much lower in unprotected areas (fig. S26). The areas with

low sample coverage partly overlapped with high species richness
and rarity areas that were distributed inside and outside the protect-
ed areas (Fig. 6 and fig. S26, A and B). In addition, the spatial pre-
diction of the random forest model (see above) demonstrated that
some sites with no occurrence data (where the species diversity es-
timation was impossible) could contain areas with high species di-
versity (Fig. 6). Those less or not explored sites are potentially
suffering from escalating human pressure (Fig. 6A and fig. S26D).
The threat of human pressure is likely to be more prominent in un-
protected areas than in protected ones because of its absence of legal
restrictions and spillover effects of human pressure from surround-
ing protected areas (52, 53). Our recommendation would be that, in
such data-deficit areas, activities involving the destruction or
removal of vegetation should be preceded by botanical surveys to
avoid unexpectedly large biodiversity loss, including the extinction
of scientifically undescribed species (54).
To visualize the urgent needs for botanical exploration, we se-

lected the grid cells (100 km by 100 km) with lower sample coverage
(<30th percentile among the grid cells), higher species richness
(≥70th percentile among the grid cells), and rarity (≥70th percen-
tile among the grid cells) from the now unprotected areas experi-
encing escalating human pressure (Fig. 6 and fig. S27). Those
areas represent spatial priority areas of future inventories where im-
mediate assessments and evidence-based conservation decisions
would be needed. We found the priority areas in South America,
Central and part of West Africa, subtropical China, and Indoma-
layan islands (Fig. 6). These areas are spatially consistent with bot-
anically unexplored areas (55) with poor mobilization of existing

Fig. 5. Outputs of the random forest model explaining the observed and the sample coverage–based standardized species richness (sample coverage = 0.82)
evaluated at the 100 km–by–100 km grid cell level. (A) Explanatory power (R2), (B) root mean square error (RMSE) of prediction, and (C) the relative importance of
environmental variables. The environmental explanatory variables are mean annual temperature (Bio1), temperature seasonality (Bio4), annual precipitation (Bio12),
precipitation seasonality (Bio15), actual evapotranspiration (AET), potential evapotranspiration (PET), aridity index (AI), average elevation (Elv), SD of elevation (Elv.sd),
and differences in temperature (Dtemp) and precipitation (Dprec) between the Last Glacial Maximum (LGM) and the present. Results for diversity at higher orders (q = 1 and
2) are given in figs. S21 and S22.
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occurrence data (56) in the known global biodiversity hot spots
(57). Notably, the priority map reflected not only the information
gaps as reported by previous studies (5) but also the needs for pref-
erential sampling efforts (including mobilization of existing
records) that are informative to effectively fill the knowledge gap
in plant biodiversity (58). Given that the spatial precision of
species occurrence records in this study was restricted to less than
100 km (seeMaterials andMethods), the prioritization for sampling
was carried out at the highest feasible resolution within that scope
(i.e., 100 km–by–100 km grid cells). Nevertheless, for practical pur-
poses in conservation and management, it would be imperative to
perform a similar evaluation in individual regions at a resolution
more aligned with actual management units (e.g., 1 km) to devise
an effective sampling strategy.

Concluding remarks
This study evaluated the patterns of global woody angiosperm
species diversities (Hill numbers at the order 0, 1, and 2) using

rarefaction/extrapolation based on biodiversity estimation theory.
The estimated diversity patterns and assessment of environmental
drivers demonstrated that climatic factors mostly shape global-scale
diversity gradients and anomalies through species sorting with lat-
itude and longitude (38, 59). These diversity gradients and anoma-
lies were also influenced by the combination of spatial extent and
grain size in the diversity estimation, which is conceptually linked
to local/regional species pool size. This study confirmed the nonlin-
ear latitudinal and longitudinal diversity gradients that were deter-
mined by the relative effects of different climatic variables,
including historical components, as recently argued in marine bio-
diversity patterns, e.g., bimodality with a tropical decline or truncat-
ed bimodality in response to paleo-/modern climatic changes (60,
61). The geographical arrangement of habitats characterized by his-
torically warm and humid climates, coupled with less seasonality,
emerges as key determinants of the symmetric unimodal diversity
pattern peaking at the equator in the Americas, bimodality peaking
at both the equator and southern high latitudes in Africa-Europe,

Fig. 6. Spatial priority areas for improving sample completeness of species occurrence records of woody angiosperms. (A) Composition of the attributes used to
define the priority areas. (B) The geographical map. Yellow color represents the priority areas defined as low sample coverage (<30th percentile of sample coverage values
among the grid cells), high species rarity (≥70th percentile of species rarity values among the grid cells), high species richness (≥70th percentile of species richness values
among the grid cells), unprotected, and increased human footprint from 2000 to 2018. Red color represents the grid cells with similar values except no occurrence data
but predicted as potentially high species richness (≥70th percentile of species richness) by the random forest model.
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and asymmetric unimodality peaking at northern midlatitudes in
Asia-Oceania. Moreover, longitudinal diversity patterns of woody
angiosperms peaking at South America and East Asia support his-
torical imprints of the origin of tropical and temperate biome and
their expansion across continents (62).
Our results revealed that there are areas, both inside and outside

the global protected area network, where botanical sampling efforts
have been inadequate or largely nonexistent. This incomplete data
can result in spatial disparities between taxonomic diversity and
protected area networks (63). Our findings demonstrated that loca-
tions with a potentially high number of rare and diverse woody an-
giosperms are present in the data-deficient areas, suggesting a
conservation gap of the current protected areas. Prioritizing the in-
ventory of biodiversity in threatened and unprotected locations is a
pressing issue in enhancing the effectiveness of protected area ex-
pansion (64) in the post-2020 biodiversity framework.

MATERIALS AND METHODS
Woody angiosperm species data
We prepared a candidate species list of woody angiosperms (here
defined as species having lignified stem tissues including trees,
shrubs, lianas, bamboos, palms, and cacti) comprising all angio-
sperm species except exclusively herbaceous families such as Or-
chidaceae or Cyperaceae. The candidate species list contained
223,724 species. On the basis of information in the national
floras, botanical literature, and various databases (see table S1 for
the source list), we judged woody species by checking whether the
original botanical literature include the following words: woody,
tree, shrub, trunk, undershrub, semi-shrub, palm, or culm.We stan-
dardized the species names following the World Checklist of Vas-
cular Plants (https://wcvp.science.kew.org/) and integrated
subspecies and varieties into the parental binomials. The final list
of confirmed woody angiosperms comprised 123,878 species
from 6,844 genera and 296 families (table S2). On the basis of the
species list, we retrieved 40,770,307 occurrence records from exist-
ing databases and literature (tables S1 and S3). We retained only
records with precise geolocations (longitude/latitude coordinates
or locality names with <100-km precision) with spatial uncertainty
small enough to match to a 100 km–by–100 km grid cell. We
removed records that were suspected to be a result of artificial in-
troduction by verification in national floristic lists. After the data
cleaning processes, the dataset comprised 13,959,780 occurrence
records for 82,974 species (67% of known woody angiosperms).
The raw occurrence records comprise a heterogeneous assem-

blage of data, encompassing spot sampling, botanical expeditions,
and standardized plot surveys, which may potentially result in the
overrepresentation of rare species and the underrepresentation of
common species. To avoid this problem, we converted the species
occurrence records into species incidence data at the scale of ap-
proximately 10 km–by–10 km cells in the Behrmann projection
(PROJ.4: + proj = cea + lat_ts = 30 + lon_0 = 0 + x_0 = 0 + y_0 =
0 + datum = WGS84 + units = m + no_defs). To calculate sample
completeness and estimate diversity, we defined four coarser grids,
with cells of 100 km–by–100 km, 200 km–by–200 km, 400 km–by–
400 km, and 800 km–by–800 km resolution, respectively. Within
each cell of those coarser grids, we counted the frequency of
species incidence across 10 km–by–10 km equal area subcells.
Note that uncertainty in the locations of subcells within a grid

cell does not affect the species diversity estimation analysis.
Because of the known limitations of the analytical framework of di-
versity estimation (65), we excluded the cells for which the sample
size was deemed inadequate: The observed number of species was
less than 6, the number of the subcells where at least one incidence
was recorded was less than 6, or the total number of species inci-
dence was equal to the number of singletons (i.e., there were no
species recorded in more than one 10 km–by–10 km subcell).

Environmental data
To assess environmental drivers of species diversity, we selected en-
vironmental factors that reflect energy or water availability (66), en-
vironmental harshness [i.e., dryness or coldness; (50, 67)], climatic
seasonality (45), historical climate stability (68), and topographic
heterogeneity (69), which have been shown to affect plant diversity
in past studies. We obtained climatic information for the present
day and the LGM fromWorldClim (70). As surrogates of historical
climatic stability, we calculated absolute differences in annual mean
temperature and annual precipitation between the present day and
the LGM (68). Data for AET, PET, and AI were obtained from the
Global Aridity and PET Database and Global High-Resolution Soil-
Water Balance dataset (71, 72): PET was modeled using the World-
Clim dataset; AI was calculated as the ratio between annual precip-
itation and PET; AET was modeled using PET and vegetation
indices (71, 72). Elevation data at 15–arc sec resolution were ob-
tained from the Geospatial Information Authority of Japan
(www.gsi.go.jp/kankyochiri/gm_global_e.html).

Diversity estimation
We assessed the sample coverage and species diversities of the grid
cells (100 km by 100 km, 200 km by 200 km, 400 km by 400 km, and
800 km by 800 km) by using the 10 km–by–10 km subcell as the
fundamental unit for incidence counting. We calculated inci-
dence-based species diversities (diversity at q = 0, 1, and 2, corre-
sponding to species richness, Shannon diversity, and Simpson
diversity, respectively) (15) in each coarse grid cell. Given that the
relationships between diversity and the number of incidences were
often nonsaturated and that empirical diversity depends on sam-
pling effort and sample completeness, we estimated diversity
using a combination of rarefaction and extrapolation based on stan-
dardizing sample completeness (15). We used sample coverage in
each grid cell as a measure of sample completeness; the sample cov-
erage based on incidence data is defined as the proportion of the
total number of incidences belonging to detected species to the
entire incidences including detected and undetected species in the
grid cell (14). The sample coverage was calculated by following for-
mulae (14)

Sample coverage ¼ 1 �
Q1
U
ð1 � BÞ

Here, B is defined as

B ¼
2Q2=½ðT � 1ÞQ1 þ 2Q2�; if Q2 . 0

2=½ðT � 1ÞðQ1 � 1Þ þ 2�; if Q2 ¼ 0;Q1 . 0
1; if Q1 ¼ Q2 ¼ 0

8
<

:

whereU is the total number of species incidences in the data;T is the
number of subcells where at least one incidence was recorded; and
Q1 and Q2 are the number of uniques (those that are detected only
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in one subcell) and the number of duplicates (those that are detected
only in two subcells), respectively.
The basic assumptions for inferring sample coverage and cover-

age-based diversity estimation are the following (73): (i) The detec-
tion probability of a species in any subcell is affected by two sources
of heterogeneity: a species effect and a subcell effect. The species
effect accounts for the fact that each species may have its own
unique occurrence rate; the subcell effect may arise from different
surveys, expeditions, mixed types of data collections, etc. All subcell
effects are modeled as random effects taken from an unknown prob-
ability density function. Thus, species detection probability is
allowed to be heterogeneous across subcells. (ii) Because the
sample coverage estimate is mainly based on the incidence counts
of rare species (i.e., uniques and duplicates), rare species should be
correctly identified. One advantage of using incidence data is that
only species detection/nondetection records in a subcell are re-
quired, regardless of species abundance. Thus, the under-recording
of abundant species and over-recording of rare species do not affect
our analysis.
We used sample coverage values of doubled reference sample

size to capture a wide range of species diversities as possible
within a reliable extrapolation range (74), while we slightly mitigat-
ed this limitation for extrapolation by using the percentiles of
sample coverage values among the grid cells to standardize diversity
(17). This means, if a percentile is 40th, then the standardized diver-
sity of each grid cell was obtained by extrapolation to more than
double its reference sample size for 40% of the grid cells; for the
other 60% of the grid cells, the standardized diversity of each grid
cell was obtained either by rarefaction or by extrapolation to less
than double its reference sample size. By testing several levels of
standardization (see Supplementary Text), we confirmed that the
choice of level did not change the outcome of geographical
pattern analyses (see below) unless the levels of standardization
that were too low (first percentile) or too large (e.g., 100th percentile
or asymptotic diversity) were selected. The former is because, when
data in all grids were rarefied to a low coverage value, only a few
species would be involved, and, thus, the true geographical
pattern could not be detected. The reason for the latter is that as-
ymptotic diversity (especially for q = 0) is typically subject to
severe negative bias. As the level of standardization had only mar-
ginal influence on the outcome of geographical pattern analysis (see
Supplementary Text), we presented the results of standardized
species richness based on the 40th percentile of sample coverage
at the 100 km–by–100 km grid cell level in Results and Discussion.

Geographical pattern analyses
We mapped global woody plant diversity and drew latitudinal and
longitudinal diversity gradients in three longitudinal (Americas,
Africa-Europe, and Asia-Oceania) and three latitudinal (northern
extratropics, southern extratropics, and tropics) zones where previ-
ous studies have documented interzonal variations in species diver-
sity patterns (36). For each latitudinal/longitudinal zone, we fitted a
Loess (locally estimated scatterplot smoothing) regression curve
and then compared the shape of the curves. In a preliminary anal-
ysis, we examined various values of smoothing parameter α ranging
from 0.4 to 0.9 and verified that the global patterns of latitudinal and
longitudinal diversity gradients were generally robust to the
smoothing parameter configurations. Therefore, we present the
findings for the alpha value of 0.6, which enables the delineation

of major regional minima and maxima of species diversity, along
with the overall global trends.
To detect the predominant environmental drivers of species di-

versity at the global and regional scales, we conducted regression
analyses using three modeling approaches: ordinary least squares
(OLS), generalized additive model [GAM; (75)], and random
forest (76). In all models, we set log-scaled species diversity as the
response variable. As the explanatory variables, we used annual
mean temperature (Bio1), temperature seasonality (Bio4), annual
precipitation (Bio12), precipitation seasonality (Bio15), AET, PET,
AI, climatic difference between the LGM and present day for tem-
perature (Dtemp) and precipitation (Dprec), average elevation (Elv),
and SD of elevation (Elv.sd). In selecting explanatory variables,
we excluded variables exhibiting exceedingly high correlations (|r|
> 0.9). The maximum correlation coefficients and variance inflation
factors (VIFs) among the 11 chosen variables were 0.86 and 20.8,
respectively (table S5). Although the observed level of collinearity
was a cause for concern (77), we decided to retain all 11 variables
for the following reasons: the two variables with notably high VIFs
(Bio1 and Bio12) have traditionary served as important drivers for
species diversity, each variable contributed to improving the predic-
tive power of the regression models, and the magnitudes and direc-
tions of their regression parameters were interpretable.
Individual relationships between species diversity and the envi-

ronmental variables were visualized by plotting predictive lines
(curves) using partial residuals. The relative importance of the ex-
planatory variables was evaluated for OLS and random forest, based
on the coefficients of partial determination for OLS, and the mean
square error in out-of-bag data (permutation importance) for
random forest. We refrained from the relative importance evalua-
tion for GAM because, to the best of our knowledge, there is no es-
tablished methodology for determining variable importance for
GAM. The explanatory power of each model was evaluated using
the coefficient of determination (R2). The predictive power was
evaluated using root mean square errors computed by 10-fold
cross-validation. In addition, we assessed spatial autocorrelation
of diversity values and regression residuals for observed and stan-
dardized species richness (at sample coverage = 0.82) at the spatial
resolution of 100 km by 100 km using the spatial correlograms of
Moran’s I (78): This revealed a substantial reduction in spatial au-
tocorrelation within the residuals, especially in the random forest
model (fig. S25). In “Environmental drivers of woody species diver-
sity,” we present the results for the random forest model, which
showed the best overall performances among the three modeling
approaches (see the Supplementary Materials for the results of the
OLS and GAM approaches).

Priority map for future sampling
We visualize priority areas for future inventory as strategic sampling
efforts that enable us to effectively fill knowledge gaps of woody an-
giosperm diversity. Specifically, we superimposed sample coverage,
standardized species richness (at sample coverage = 0.82), species
rarity, human footprint trend, and protected areas at the scale of
100 km–by–100 km grid cells. We defined the species rarity as the
total number of unique (those that are detected only once in a grid
cell) and duplicate (those that are detected twice in a grid cell)
species (14). The information on protected areas was downloaded
from the World Database on Protected Areas (www.
protectedplanet.net/en), and, then, a grid cell was considered
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protected if it overlapped with the polygons belonging to the Inter-
national Union for Conservation of Nature protected area catego-
ries I to VI. We regarded grid cells devoid of these categories as
unprotected areas, representing locations with relatively high sus-
ceptibility to species loss by human pressure and, consequently,
warranting higher priority for sampling. We used the global
dataset of annual terrestrial human footprint, constructed upon
human pressure variables encompassing human population
density, agricultural land uses, built environment, and transporta-
tion infrastructure (79). We computed the difference in the human
footprint between 2000 and 2018 in each grid cell. Last, we identi-
fied the priority areas as the grid cells (100 km by 100 km) with
lower sample coverage (<0.52 or the 30th percentile among the
grid cells) and higher species rarity (≥118 species or the 70th per-
centile among the grid cells): These priority areas were selected
within now unprotected grid cells experiencing increasing human
footprint (fig. S27), which would be more threatened by habitat
loss or degradation (52).
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