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A B S T R A C T   

The current global shortage of organ resources, the imbalance in donor-recipient demand and the 
increasing number of high-risk donors make organ preservation a necessity to consider appro-
priate storage options. The current method of use often has risks such as blood group mismatch, 
short shelf life, and susceptibility. HBOCs have positive effects such as anti-apoptotic, anti-in-
flammatory, antioxidant and anti-proliferative, which have significant advantages in organ 
storage. Therefore, it is the common pursuit of researchers to design and synthesize HBOCs with 
safety, ideal oxygen-carrying capacity, easy storage, etc. that are widely applicable and optimal 
for different organs. There has been a recent advancement in understanding HBOCs mechanisms, 
which is discussed in this review.   

1. Information 

The increased success of solid organ transplantation (SOT), the treatment of choice for end-stage organ disease, has been hampered 
by ischemia-reperfusion injury (IRI) [1]. According to the data from the OPTN/SRTR 2021 Annual Data Report about Deceased Organ 
Donation, there were 13 862 deceased donors, a 10.1% increase from 12 588 in 2020, and an increase from 11 870 in 2019; this 
number has been increasing since 2010 [2]. IRI unavoidably occurs during organ resection and transplantation, may compromise the 
short-term and long-term after transplantation, and remains a critical organ transplantation challenge. With the increase in expanded 
criteria donor (ECD), the selection of better preservation methods to improve the preservation time of isolated organs, tissue 
oxygenation, etc., and to further reduce organ IRI remains an urgent issue [3]. 

The methods commonly used today to preserve organs are: under room temperature conditions using crystalloid and RBCs or under 
cryogenic conditions at 4 ◦C using clinically standard preservation solutions [4,5]. However, the above methods suffer from storage 
fluid cross-matching, scarcity, and infection-induced oxidative metabolism of the organ, which in turn exacerbates oxidative stress 
damage to the organ [6]. In addition, the limitation of the preservation fluid makes it necessary to use the organs in a short period of 
time, otherwise thousands of organs will be abandoned. Therefore, we have a critical need for better organ isolation preservation fluids 
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to provide near physiological conditions for the duration of organ preservation, thereby improving the quality of transplanted organs 
to address the global crisis of organ shortage due to organ storage. 

HBOCs (hemoglobin-based oxygen carriers) have expanded from their initial use as a blood substitute to ischemia and hypoxia 
therapy as a near physiologically conditioned oxygen carrier. Among the many properties that make hemoglobin (Hb) the ideal oxygen 
carrier within red blood cells are its oxygen affinity, long-term stability, stability of tetramers, and cooperativity [7,8]. During the past 
few decades, diverse nanoscale carriers have been developed for physical encapsulation or chemical conjugation of Hb, which were 
known as HBOCs [9]. To obtain desirable HBOCs for organ preservation, HBOCs of different particle sizes were synthesized in different 
buffers by chemical modification means, such as co-precipitation, desolvation, cross-linking, microencapsulation, selected from the 
above-mentioned methods (Table 1). 

In this review, we summarize the use of purified hemoglobin that was structurally modified for organ storage. Most examples 
presented here have been published within the past 5 years, and greater emphasis has been given to recent examples that are illus-
trative principles. 

Abbreviations 

BHb Bovine hemoglobin 
ECD Expanded criteria donor 
DHSG 1,5-O-dihexadecyl-N-succinyl-L-glutamate 
DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine 
EDTA Ethylene diamine tetraacetic acid 
Hb Hemoglobin 
HBOCs Hemoglobin-based oxygen carriers 
Hb-V Hemoglobin vesicles 
HHb Human hemoglobin 
HSA Human Serum Albumin 
IRI Ischemia reperfusion injury 
GA Glutaraldehyde 
LBL Layer by layer 
MQ Milli-Q 
nCV Normalized cell viability 
PDA Polydopamine 
PEG Polyethylene glycol 
PEG-DSPE 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-poly (ethylene glycol) 
RBC Red blood cells 
SOT Solid organ transplantation  

Table 1 
Different HBOCs sources, solvents and particle size.  

Polyhemoglobin Source various of buffers Mean diameter Ref. 

Hb-MPs BHb EDTA solution (0.2 M, pH 7.4, 20 mL) 3.30 ± 0.80 μm [10] 
ZnPc-loaded HbMs BHb Phosphate buffer (10 mM, pH = 7.4) 66.01 ± 0.95 nm [11] 
PLGAHb/M-NCs BHb Tris(hydroXymethyl) aminomethane (TRIS) ～95 nm [12,13] 
PDA-Hb BHb Tris-HCl buffer (10 mM, pH 8.5) 3.32 ± 0.49 μm [14,15] 
Hb@lipo HHb pH 7.4 PBS ～120 nm [16] 
BP QDs-Hb-encapsulated biocompatible HHb Deionized water NA [17] 
GelMA hydrogel 
Hb-PDA BHb Tris-HCl buffer (10 mM, pH 8.5) 6–8 nm [18] 
Hb-conjugated biotins HHb Phosphate buffer (50 mM, pH 6.5) NA [19] 
SA@Hb@CQDs HHb Deionized water NA [20] 
ZIF-8P-Hb BHb Deionized water 106.0 ± 9.7 nm [21] 
SFHbNP HHb Phosphate buffer (10 mM, pH 7.4) ～90 nm [22] 
HbAvHb HHb Phosphate buffer (50 mM, pH 6.5) NA [23] 
SPolyHb Guinea pig hemoglobin Phosphate buffer (50 mM, pH 7.4) ＞500 kDa [24] 
Hb@lipo HHb phosphate-buffered (pH 7.4) ～120 nm [25] 
HEP BHb phosphate-buffered (pH 7.4) ～200 nm [26] 
Hb-PEG HHb Phosphate buffered (10 mM Na2HPO4, pH 7.4) 10.6 ± 3.6 nm [27] 
PolyhHbs BHb Phosphate buffered (10 mM, pH 7.4) ～80 nm [28] 
Hb-V HHb Phosphate buffered (10 mM, pH 7.4) 250–280 nm [29] 
Fe3O4-PEI-PA-Yb3+ BHb Tris-HCl (pH 6) ～105 nm [30]  
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2. Materials of HBOCs-Hb 

The function of Hb includes maintaining the pH of the blood, carrying oxygen to peripheral tissues, as well as transporting carbon 
dioxide. Structurally, hemoglobin chains retain the classic globin fold, which is shared by several proteins. Each hemoglobin chain 
harbors a heme group in a hydrophobic pocket. A ferrous ion (Fe2+) of the heme group associated with each hemoglobin chain acts as a 
cofactor for this tetrameric protein. An Hb molecule is also categorized as a supramolecular assembly that consists of two α and two β 
subunits (α2β2). They are assembled using a combination of non-covalent interactions as hydrogen bonds, hydrophobic forces, van der 
Waals forces, and electrostatic effects. Its tetrameric structure(α2β2) is fundamentally stable under physiological conditions, but 
dissociates reversibly into dimers, thereby exchanging dimers intermolecularly(αβ) [31]. Specifically, the amino acids that comprise 
each of the three coding sequences of Hb are responsible for the following functions: i) heme contacts essential for oxygenation, ii) 
contacts α1 and β1 are essential for a cooperative dimer, iii) α1-β1 contacts essential for cooperative tetramer, iv) the Bohr effect that 
modulates oxygen loading and unloading from the lung to tissues, and v) oxygen affinity regulation requires 2,3-diphosphoglycerate 
binding [32,33]. 

Due to its genetic similarity to human hemoglobin (HHb) at 90% of amino acid sequence and its better oxygen-carrying capacity, 
bovine hemoglobin (BHb) is commonly used in hemoglobin synthesis [34,35] (Fig. 1). Both BHb and HHb consists of two α-chains with 
141 amino acid residues each and two β-chains with 146 amino acid residues each that form a tetrameric protein molecule [36]. In fact, 
Hes_63, His_92, and Phe_42 in beads proteins act as markers to maintain the position and orientation of the heme group, while Cys_93 
in this protein uses NO as a site-modifying enzyme in Hb [37]. Although mammalian Hb contains six cysteines, all of which are capable 
of binding NO, β-Cys_93 has two unique properties (one in each α-globin and two in each β-globin): it is not only the most active Cys 
residue in Hb, but also its activity is related to the binding and release of oxygen at the heme site (“thermodynamic link”) [38,39]. 

3. Chemical modification 

3.1. Coprecipitation 

Since the affinity of neutral salt to water molecules is greater than that of Hb, it causes the hydration layer around protein molecules 
to weaken or even disappear. As the ionic strength changes with the addition of Hb to the neutral salt, the charge on the Hb surface is 
heavily neutralized, leading to a decrease in solubility and allowing co-precipitation by aggregation between molecules [38](Fig. 2). 

Fig. 1. Comparison of the spatial structure of BHb and HHb. A. BHb and β-Cys_93; B. HHb and β-Cys_93 (PDB: 6IHX and 1A3N).  
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When a precipitant is added, homogeneous precipitation can be obtained. By adopting this method, precipitated particles with uniform 
chemical composition, small particle size, and uniform steps can be obtained. Carbonate ions (CO3

2− ) and nanoparticles are used as 
precipitants for co-precipitation. a. MnCO3: A combination of MnSO4 and NH4HCO3 was used to synthesize MnCO3 particles from 
Chunmei yu for its excellent absorption capacity [40]. As a result of their high oxygen affinity, PDA-Hb microcapsules can bind and 
reversibly release oxygen. Metal carbonates of MnCO3 are formed when MnCl2 reacts with Na2CO3, encapsulating Hb in M. Emily [41]. 
CaCO3: Using a co-precipitation process between Hb and CaCO3, followed by covalent sphere assembly between Hb and GA, Li and 
co-workers have recently developed highly loaded Hb spheres [14,15]. They used CaCO3 particles as templates for fabricating Hb 
spheres that contain a high loading content in order to exploit their special properties, such as porous channel-like structures and high 
surface areas. CaCl2 and Na2CO3 were co-precipitated to produce CaCO3 particles. For every CaCO3 particle, there were 1.36 g/cm3 of 
Hb. 

b. Desolvation precipitation: Desolvation results in the effective supersaturation of a protein solution by replacing water with an 
antisolvent, which is insoluble in water [42]. Precipitates are commonly dissolved with polar solvents. By applying classical nucleation 
theory, precipitates are formed as protein-protein interactions take precedence over protein-solvent interactions as the antisolvent is 
added [43]. Chen and colleagues used a magnetic stirring apparatus to dissolve Hb with different concentrations of ultrapure water 
(MQ), using EtOH as an excipient for protein dissolution [44]. EtOH was then added dropwise to Hb solutions under continuous 
stirring at different volumes based on the water phase. In order to remove the turbid suspensions, a benchtop centrifuge was used and 
MQ washes were used to spin the suspensions down. However, sonication and resuspension of Hb-NPs were both successful. The 
method is simple to operate, does not introduce toxic solvents, has uniform particle size, high encapsulation efficiency, and good 
re-dispersibility in water, and is a relatively common method. The synthesis of HBOCs by coprecipitation usually controls the amount 
of Hb in the spheres by regulating the initial concentration of hemoglobin, which in turn improves the oxygen-carrying capacity. 
Nevertheless, the Hb loading efficiency in the spheres can also be adversely affected by high concentrations. In addition, the stability of 
HBOCs obtained by this method is relatively poor. Therefore, on this basis, other chemical modification methods were introduced for 
structural modifications. 

3.2. Cross-linking 

Cross-linking selects functionalities of the components to form polymers of a certain size by cross-linking with exposed amino acid 
residues –SH or –NH2 of Hb [45](Fig. 3). By increasing the particle size of Hb, cross-linking improves a certain oxygen-carrying ca-
pacity, increases the half-life of HBOC, and reduces the degradation of metabolic enzymes. However, to a certain extent, it causes side 
effects such as vasoconstriction. HBOCs are commonly used as a polymer of glutaraldehyde, polydopamine and glucan oxide and so on 
[33–46]. The purified hemoglobin was dissolved in the anti-solvent ice ethanol, and oxidized dextran (2 wt%) was added for 
cross-linking reaction when the solution became turbidity. The reaction was completed by adding NaBH3CN to quench the reaction. 
Subsequently, the template is usually removed with EDTA or Na2EDTA after the cross-linked Hb is completed. It has been noted that 
hemoglobin’s nitrite reductase activity is a potential source of biologically active NO during hypoxia and ischemia. Activating variable 
structure-controlled nitrite reductase with hemoglobin’s heme fraction allows nitrite in the blood to be converted to NO [47,48]. 
Protein modifications that alter the binding affinity of the ligand to heme or its redox potential are considered to contribute to the 
enhancement of nitrite reductase activity. Ronald Kluger produced the PEGylated bis-tetramers with cross-linking that makes 

Fig. 2. Synthesis of HBOCs based on co-precipitation method.  

Fig. 3. Synthesis of HBOCs based on cross-linking method.  
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hemoglobin (BT-HB-PEG5K4)(Fig. 4a). In order to develop functional oxygen therapeutics that are effective, these polymers must have 
high oxygen affinity and nitrite reductase activity [49]. Their research has led to the production of PEGylated bis-tetramers of he-
moglobin (BT-Hb-PEG5K4), enhancement of oxygen affinity, and improvement of nitrite reductase activity, all of which are critical for 
the development of functional oxygen therapies. Daiki Tomita used α-succinimidyl-ε-maleimide crosslinker constructs to covalently 
wrap Hb with HSAs to generate new core-shell protein clusters [50](Fig. 4b). O2-carrying HbX-HSAm clusters with negative surface net 
charges, high O2 affinity, and lower P50 value, does not cause vasoconstriction and NADH-dependent reductase unit shells can provide 
O2 therapeutic reagent in various clinical situations. 

4. Microencapsulation 

In order to further improve the oxygen capacity of the Hb vector and increase the function of the carrier, the researchers used the 
polymer and liposomes to encapsulate the hemoglobin, which formed the scale of the micro sodium level and made up a more stable 
and multivariate oxygen delivery system. These methods not only increase the quality of the hemoglobin package, but also improve the 
compatibility of the objects, and adapt the more complex biological environment to the prospect of a broader application of the 
hemoglobin vector. 

4.1. Polymer 

Polymersomes are of interest as nanocarriers due to their physical and chemical robustness, which arises from the macromolecular 
nature of their block copolymer components. The polymer of the polymerized hemoglobin: dextran, dopamine, PEG, etc. The poly-
dopamine (PDA) coating material is highly adherent to all surface types of substrates and is simple and easy to apply. The PDA not only 

Fig. 4. Hemoglobin oxygen carriers was synthesized by cross-linking method. a) Synthesis of hemoglobin oxygen carrier BT-HB-PEG5K4 based on 
the cross-linking method; b) Schematic illustrations of the synthetic route of the HbX-HSAm cluster. 
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has little effect on the survival and proliferation of many kinds of mammal cells but also as an antioxidant agent, removing free radicals 
from distinct hydroquinone moiety. Platelet adhesion and fibrinogen conformation transition could be effectively inhibited by surfaces 
modified with PDA [51–53]. By encapsulating Hb in one step using a simple PDA coating, Wang and colleagues focused on the 
coating’s desirable properties [54](Fig. 5a). An incubation mixture containing dopamine hydrochloride and Hb was incubated at room 
temperature for 3.5 h with slight stirring using a Tris-HCl buffer. The total volume of the reaction system was 2 mL, and it was dialyzed 
in PBS solution to remove excess dopamine hydrochloride. In addition, DA was oxidatively polymerized in TRIS 1 for coating Hb with 
PDA by Jansman [55]. Briefly, 8 mg/mL solution of Hb and 1.6 mg/mL solution of DA were mixed at 1:1 vol ratio in TRIS 1 and rotators 
for 3 h were used. The resulting HbPDA was washed in TRIS 2 using a bench-top centrifuge and amicon centrifugal filters. By conju-
gating polyethylene glycol (PEG) to the protein surface, protein therapeutics can increase their circulatory half-life in vivo. PEG is used 
as a standard for nanoparticle and protein coupling surfaces due to its excellent biocompatibility and increased hydration radius after 
coupling. Furthermore, PEG chains possess bristle-like structures on their molecular surfaces that prevent T-cell recognition and 
reduce clearance of PEG-coupled therapeutic molecules [56,57]. As a result of PEGylated apoHb (PEG-apoHb) coupling of PEG to 
apoproteins via thiol-maleimide, Ivans S and colleagues improved lipoprotein stability, circulating half-lives, and the prevention of 
PEG-apoHb extravasation [58](Fig. 5b). 

4.2. Liposome 

Hb encapsulated in lipid membranes without antigen, and thereby reducing renal excretion, would not only increase circulation 
time, but eliminate the need for matching blood groups [22,59,60]. Despite PEG being the standard for delivering stealth properties to 
intravenously administered carriers, the production of anti-PEG antibodies is increasingly recognized as a concern. By creating PEG 
antibodies, the liver and spleen recognize and eliminate PEGylated drugs and NPs by creating mononuclear phagocytes (MPS). In order 
to avoid this drawback, alternative PEGylation techniques are highly sought after [61–63]. As the most common substitute for bio-
logical membranes, amphiphilic molecular phospholipid vesicles or liposomes self-assemble in water to form bilayers (Fig. 6a) [64]. 
The interaction with plasma proteins poses difficulties in controlling particle size and inhibiting aggregation [65]. Using the extrusion 
method, particles of phospholipids are dispersed in an aqueous phase and then extruded through filters with different pore sizes [66]. 
Viscosity increases further when lipids are added to hemoglobin vesicles (Hb-V) to enhance oxygen carrying capacity. Extrusion 
methods clog filters due to the mixture’s high viscosity. The mixture of lipids was therefore limited [67]. It has been proposed that 
freeze-dried liposomes can be mixed to resolve this difficulty. However, Hb remains limited in how much lipid can be mixed with it. 
Tomoko Kure and Hiromi Sakai developed “dual (asymmetric) centrifugation (DAC or DC)" after carefully understanding the back-
ground and difficulties presented above [68]. Using planetary motion, raw materials are sealed inside a cylindrical container (vessel) 
that rotates around a central axis and a second axis simultaneously. To prepare the mixed lipids, specific molar ratios of DPPC, DHSG, 
and PEG-DSPE were dissolved in 2-methyl-2-propanol by stirring in a 500 mL flask at 60 ◦C(Fig. 6a and b). Then, the lipid mixture 
solution was freeze-dried for 1 day to obtain a powdered lipid mixture. Liposomal preparation can be performed in fewer steps with 
this mixer without contamination, rapidly and aseptically. In addition, Michelle Maria Theresia Jansman and his colleagues chose 
human blood cells as phospholipid membranes to wrap the Hb(Fig. 6c) [59]. Nanocarriers with membrane coatings were shown to be 

Fig. 5. Synthesis of hemoglobin oxygen carrier in polymeric form. a) Synthetic pathway of Hb-PDA; b) Synthetic pathway of PEG-apoHb.  
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novel oxygen carriers that combine antioxidant and stealth properties. 

5. Biocompatibility and hemocompatibility 

1Good biocompatibility is a central aspect when developing HBOCs to preserve the normal physiological functions of the body [44]. 
According to the literature, HUVEC, RAW 264.7, HEK 293T, HepG 2 cell lines were usually selected for HBOCs for biocompatibility 
determination by CCK-8 and other methods. HbPDA was not significantly cytotoxic after 24 h incubation in different concentration 
ranges [18]. The biocompatibility of the Hb/PDA-NPs was evaluated by assessing the in vitro cell viability of HUVEC and RAW 264.7 
cells [44]. It was shown to inhibit cells by approximately 15% at only higher concentrations of 30 000 NPs/μL. The PDA-Hb micro-
capsules designed by Yu C did not produce significant cytotoxic activity on HEK 293T cells compared to the control [40]. The IL/PDA 
nanocapsules studied by Tan et al. still showed 80% cell viability at 200 μg/mL. Therefore, it was shown to have no significant cellular 
activity [53][69]. RAW264.7 cells in PLGAHb/M − NCs showed a significant decrease in cellular activity with increasing concen-
trations of NCs, whereas this did not occur in HUVEC. Leticia Hosta-Rigau suggested that the decrease in RAW264.7 cellular activity 
was the result of phagocytosis of NCs by cells, independent of cell membrane concentration [55]. In addition, the study by Leticia 
Hosta-Rigau’s group found no significant differences based on different coating methods to cover Hb. 

Hemocompatibility as an important essential property of intravenous carriers has also been used to examine the safety of HBOCs. 
According to the literature the threshold value of hemolysis rate of HBOCs is below 5%, which indicates that the microcapsules do not 
interact with other components of the blood and therefore do not have adverse effects on the blood after introduction [40,44,51,59]. 
The Hb-NPs and Hb/PDA-NPs did not hemolysis to occur, even at higher concentrations [40,44]. The hemolysis rates of 
PLGA/HbPDA/(CeO2-NPs)-NCs and PLGA/HbPDA/(CeO2-NPs)-NCs were both well below 5% under the wrapping of cell membranes 
[51,55]. 

Fig. 6. Synthesis of hemoglobin oxygen carrier in microcapsule form. a) Chemical structure of DPPC, DHSG cholesterol, and PEG-DSPE; b) Synthetic 
pathway of HbO2-V; c) Synthetic pathway of PLGAHb/M-NCs. 
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6. Conclusion 

HOBCs have an important role as a blood substitute used clinically to maintain normal physiological functions of the body. With the 
continuous development and optimization of synthesis technology, it is now common to combine one or more of the above methods to 
synthesize the required HBOCs with the advantages of higher oxygen-carrying capacity, higher stability, improved half-life, and lower 
toxicity. However, there are some unavoidable drawbacks (Table 2). For example, although the coprecipitation method for the syn-
thesis of HBOCs is simple in operation, without the introduction of toxic substances and with greater solubility in various buffers, its 
stability is poor compared to several other methods, so the cross-linking agent and the formation of microcapsules are introduced on 
this basis. However, the introduction of cross-linking agents largely causes vasoconstriction and has a potential risk of causing hy-
pertension. In addition, the formation of hemoglobin into polymers leaves relatively small molecules or unreacted Hb, and when li-
posomes are encapsulated, the formation of membranes requires the addition of other substances to fill the shell. 

HBOCs were initially developed and used as blood substitutes as an ideal class of oxygen carriers for early applications in hem-
orrhagic shock. However, the ethical problems associated with the use of modified HBOCs in emergency care, the significant car-
diovascular dysfunction and the apparent increased mortality caused by them led to the extended use of most HBOCs in organ 
preservation fluids. In organ storage, HBOCs have positive effects such as anti-apoptotic, anti-inflammatory and anti-proliferative. Not 
only that, HBOCs improve oxygen supply and preserve optimal metabolic activity, reduce oxidation-mediated tissue damage and 
enhance liver capacity storage, but also have positive effects in preserving and improving marginal organs. Mechanistic studies related 
to vascular resistance, methemoglobin and oxidative damage in transplants and recipients should also be closely investigated in future 
studies. In the future, according to the characteristics of storing different types of organs, we will screen the synthesis method that is 
most suitable for storing HBOCs of that type of organ, so as to construct the optimized storage solution. 
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Table 2 
Merits and disadvantages of different synthesis methods.  

Method of synthesis Merits Disadvantages 

coprecipitation simple, no toxic substances introduced, high encapsulation efficiency and solubility in a polar 
solvent 

lower stability 

cross-linking increased half-life, improved stability, and oxygen-carrying capacity, reduced protein 
immunogenicity 

blood pressure rises, 
vasoconstriction 

polymer increased half-life, smaller side effects, and larger particle size residual unreacted Hb 
liposome uniform particle size, good stability cumbersome steps  
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