Skip to main content
. 2023 Sep 15;26(10):107934. doi: 10.1016/j.isci.2023.107934

Table 1.

Logistic regression of 48 genes to survival outcome conducted on the ovarian cancer dataset

Gene Estimate Std. Error t value Pr(>|t|)
TP53BP1 −0.077836 0.041337 −1.883 0.0606
RAD52 −0.063386 0.032482 −1.951 0.0519
MRE11 −0.061275 0.039049 −1.569 0.1176
POLQ −0.058071 0.049820 −1.166 0.2446
XRCC5 −0.056447 0.037277 −1.514 0.1309
XRCC1 −0.047599 0.036273 −1.312 0.1904
XRCC7 −0.037603 0.041710 −0.902 0.3680
MSH6 −0.034452 0.062775 −0.549 0.5835
EXD2 −0.027621 0.034477 −0.801 0.4236
RBBP8 −0.020403 0.029359 −0.695 0.4876
APLF −0.019839 0.033619 −0.590 0.5555
RIF1 −0.016524 0.039430 −0.419 0.6754
LIG4 −0.013188 0.031801 −0.415 0.6786
EXO1 −0.010461 0.051082 −0.205 0.8379
PAXX −0.008699 0.033950 −0.256 0.7979
H2AX −0.007304 0.035200 −0.208 0.8357
XRCC6 −0.006841 0.033174 −0.206 0.8367
PNKP −0.005799 0.038298 −0.151 0.8797
LIG3 −0.003759 0.028825 −0.130 0.8963
BRCA1 −0.002899 0.038271 −0.076 0.9397
RAD1 −0.002605 0.034548 −0.075 0.9399
ERCC1 0.001512 0.036701 0.041 0.9672
RAD50 0.003361 0.033791 0.099 0.9208
NBN 0.005523 0.031675 0.174 0.8617
ATR 0.006529 0.041340 0.158 0.8746
MSH3 0.008567 0.041481 0.207 0.8365
RPA1 0.010596 0.032621 0.325 0.7455
XRCC4 0.013539 0.036136 0.375 0.7082
RAD51 0.018338 0.039797 0.461 0.6452
TP53 0.018412 0.028813 0.639 0.5233
MLH1 0.023919 0.035277 0.678 0.4982
ERCC4 0.024449 0.031275 0.782 0.4349
WRN 0.024710 0.034415 0.718 0.4733
DCLRE1C 0.026012 0.035011 0.743 0.4580
NHEJ1 0.026084 0.036593 0.713 0.4765
PARP1 0.031145 0.042478 0.733 0.4640
PARP3 0.033195 0.031000 1.071 0.2850
POLM 0.033783 0.032540 1.038 0.2999
MLH3 0.036035 0.034967 1.031 0.3035
LIG1 0.036274 0.043006 0.843 0.3996
TDP1 0.040557 0.036737 1.104 0.2704
MSH2 0.043464 0.063100 0.689 0.4914
POLL 0.045968 0.031495 1.460 0.1454
PMS1 0.052444 0.030650 1.711 0.0880
CTBP1 0.052678 0.030728 1.714 0.0874
ATM 0.056676 0.044617 1.270 0.2049
APTX 0.058779 0.031894 1.843 0.0662
BRCA2 0.060350 0.039121 1.543 0.1239

Logistic regression for the gene dataset was conducted and each gene was ordered by the estimates. Positive estimates of gene expression are associated with improved survival whereas the negative estimates contribute to poor survival probability. Standard error, a t-value, and a p value for each gene in the logistic regression model was generated. P-values under 0.1 were bolded.