Skip to main content
. 2023 Sep 15;26(10):107934. doi: 10.1016/j.isci.2023.107934

Table 3.

Logistic regression of 48 genes to recurrence outcome conducted on the ovarian cancer dataset

Gene Estimate Std. Error t value Pr(>|t|)
MLH3 −0.1436620 0.0508329 −2.826 0.00506
BRCA2 −0.1229546 0.0434042 −2.833 0.00496
LIG3 −0.0960805 0.0733806 −1.309 0.19152
LIG1 −0.0912946 0.0479346 −1.905 0.05789
MSH3 −0.0576118 0.0442279 −1.303 0.19381
XRCC5 −0.0561888 0.0382077 −1.471 0.14255
RAD51 −0.0554070 0.0411657 −1.346 0.17944
PAXX −0.0516596 0.0345574 −1.495 0.13610
ERCC4 −0.0406260 0.0504662 −0.805 0.42151
POLM −0.0379293 0.0343613 −1.104 0.27064
WRN −0.0337736 0.0395686 −0.854 0.39411
PMS1 −0.0323849 0.0315185 −1.027 0.30510
POLL −0.0280872 0.0334922 −0.839 0.40242
XRCC7 −0.0236921 0.0450393 −0.526 0.59929
APTX −0.0219715 0.0355848 −0.617 0.53746
PNKP −0.0185921 0.0412459 −0.451 0.65252
MSH2 −0.0154689 0.0681421 −0.227 0.82059
RPA1 −0.0019469 0.0380689 −0.051 0.95925
PARP3 −0.0015842 0.0347633 −0.046 0.96369
DCLRE1C −0.0009017 0.0410132 −0.022 0.98248
ATR −0.0007959 0.0466153 −0.017 0.98639
RAD1 0.0031648 0.0360723 0.088 0.93015
BRCA1 0.0060448 0.0409094 0.148 0.88264
XRCC6 0.0061608 0.0364277 0.169 0.86583
CTBP1 0.0066763 0.0324354 0.206 0.83707
EXD2 0.0072041 0.0383797 0.188 0.85125
POLQ 0.0114784 0.0533366 0.215 0.82977
APLF 0.0127893 0.0366496 0.349 0.72739
RBBP8 0.0133334 0.0310312 0.430 0.66777
MSH6 0.0185962 0.0675222 0.275 0.78321
LIG4 0.0279871 0.0363777 0.769 0.44235
MRE11 0.0281447 0.0412834 0.682 0.49598
XRCC4 0.0342550 0.0403606 0.849 0.39678
RAD50 0.0374275 0.0363462 1.030 0.30404
NHEJ1 0.0408071 0.0380589 1.072 0.28457
PARP1 0.0414107 0.0448986 0.922 0.35718
RIF1 0.0422092 0.0426535 0.990 0.32325
TP53BP1 0.0426385 0.0435148 0.980 0.32802
ERCC1 0.0475018 0.0399575 1.189 0.23555
XRCC1 0.0490576 0.0404126 1.214 0.22583
TDP1 0.0608796 0.0413757 1.471 0.14234
EXO1 0.0630913 0.0546782 1.154 0.24956
ATM 0.0633327 0.0488009 1.298 0.19546
H2AX 0.0751909 0.0396955 1.894 0.05926
TP53 0.0774415 0.0315229 2.457 0.01465
NBN 0.0788570 0.0333537 2.364 0.01877
MLH1 0.0867637 0.0397749 2.181 0.03001
RAD52 0.1173069 0.0437177 2.683 0.00774

Logistic regression for the gene dataset was conducted and each gene was ordered by the estimates. Positive estimates of gene expression are associated with likelihood for recurrence whereas the negative estimates contribute to low recurrence probability. Standard error, a t-value, and a p value for each gene in the logistic regression model was generated. P-values under 0.1 were bolded.