Skip to main content
. 2023 Aug 30;9(9):e19525. doi: 10.1016/j.heliyon.2023.e19525

Table 4.

The comparison between unimproved traditional algorithms and machine learning algorithms.

Model Accuracy ROC_AUC Precision Recall F1
Traditional Model Logistic
Regression
0.554 0.559 0.649 0.267 0.379
Traditional Machine Learning Model Random Forest 0.814 0.813 0.819 0.815 0.816
Decision Tree 0.767 0.767 0.771 0.771 0.771
BernoulliNB 0.698 0.698 0.697 0.719 0.708
KNeighbors 0.675 0.674 0.664 0.732 0.696
GaussianNB 0.600 0.595 0.567 0.908 0.698
Ensemble Learning Models XGBoost 0.806 0.806 0.802 0.821 0.811
Catboost 0.763 0.762 0.759 0.788 0.772
Lightgbm 0.803 0.803 0.802 0.813 0.808