Table 4.
The comparison between unimproved traditional algorithms and machine learning algorithms.
Model | Accuracy | ROC_AUC | Precision | Recall | F1 | |
---|---|---|---|---|---|---|
Traditional Model | Logistic Regression |
0.554 | 0.559 | 0.649 | 0.267 | 0.379 |
Traditional Machine Learning Model | Random Forest | 0.814 | 0.813 | 0.819 | 0.815 | 0.816 |
Decision Tree | 0.767 | 0.767 | 0.771 | 0.771 | 0.771 | |
BernoulliNB | 0.698 | 0.698 | 0.697 | 0.719 | 0.708 | |
KNeighbors | 0.675 | 0.674 | 0.664 | 0.732 | 0.696 | |
GaussianNB | 0.600 | 0.595 | 0.567 | 0.908 | 0.698 | |
Ensemble Learning Models | XGBoost | 0.806 | 0.806 | 0.802 | 0.821 | 0.811 |
Catboost | 0.763 | 0.762 | 0.759 | 0.788 | 0.772 | |
Lightgbm | 0.803 | 0.803 | 0.802 | 0.813 | 0.808 |