Skip to main content
. 2023 Aug 30;9(9):e19525. doi: 10.1016/j.heliyon.2023.e19525

Table 6.

The comparison between improved traditional algorithms and machine learning algorithms.

Model Accuracy ROC_AUC Precision Recall F1
Traditional Model Logistic
Regression
0.748 0.747 0.741 0.776 0.758
Traditional Machine Learning Model Random Forest 0.818 0.818 0.816 0.829 0.822
Decision Tree 0.726 0.725 0.714 0.77 0.74
BernoulliNB 0.698 0.700 0.700 0.719 0.708
KNeighbors 0.746 0.745 0.735 0.782 0.759
GaussianNB 0.600 0.595 0.567 0.908 0.698
Ensemble Learning Models XGBoost 0.819 0.819 0.822 0.821 0.822
Catboost 0.815 0.814 0.806 0.836 0.821
Lightgbm 0.802 0.802 0.801 0.812 0.806