Table 6.
The comparison between improved traditional algorithms and machine learning algorithms.
Model | Accuracy | ROC_AUC | Precision | Recall | F1 | |
---|---|---|---|---|---|---|
Traditional Model | Logistic Regression |
0.748 | 0.747 | 0.741 | 0.776 | 0.758 |
Traditional Machine Learning Model | Random Forest | 0.818 | 0.818 | 0.816 | 0.829 | 0.822 |
Decision Tree | 0.726 | 0.725 | 0.714 | 0.77 | 0.74 | |
BernoulliNB | 0.698 | 0.700 | 0.700 | 0.719 | 0.708 | |
KNeighbors | 0.746 | 0.745 | 0.735 | 0.782 | 0.759 | |
GaussianNB | 0.600 | 0.595 | 0.567 | 0.908 | 0.698 | |
Ensemble Learning Models | XGBoost | 0.819 | 0.819 | 0.822 | 0.821 | 0.822 |
Catboost | 0.815 | 0.814 | 0.806 | 0.836 | 0.821 | |
Lightgbm | 0.802 | 0.802 | 0.801 | 0.812 | 0.806 |