Skip to main content
. Author manuscript; available in PMC: 2023 Oct 7.
Published in final edited form as: Proc Mach Learn Res. 2023 Jul;202:1341–1360.

Table 4.

Increase in performance when using Half-Hop with different SSL frameworks.

input (test) encoder Am. Comp. Am. Photos Co.CS Co.Phy WikiCS
GRACE G 2-GCN 89.53 ± 0.35 92.78 ± 0.45 91.12 ± 0.20 OOM 80.14 ± 0.48
HH-GRACE G 2-GCN 91.11 ± 0.18 94.21 ± 0.26 93.59 ± 0.16 OOM 79.77 ± 0.40
HH-GRACE HH(G) 2-GCN 90.65 ± 0.19 94.89 ± 0.23 94.76 ± 0.14 OOM 80.15 ± 0.16
BGRL G 2-GCN 90.34 ± 0.19 93.17 ± 0.30 93.31 ± 0.13 95.73 ± 0.05 79.98 ± 0.10
HH-BGRL G 2-GCN 91.02 ± 0.27 93.88 ± 0.19 93.61 ± 0.13 95.75 ± 0.13 80.76 ± 0.71
HH-BGRL HH(G) 2-GCN 90.94 ± 0.19 94.50 ± 0.35 94.74 ± 0.15 96.13 ± 0.10 80.37 ± 0.62
BGRL G 3-GCN 90.04 ± 0.23 92.59 ± 0.34 92.42 ± 0.17 95.32 ± 0.51 78.22 ± 0.77
HH-BGRL G 3-GCN 90.53 ± 0.27 93.09 ± 0.16 92.58 ± 0.20 95.45 ± 0.09 79.76 ± 0.61
HH-BGRL HH(G) 3-GCN 91.10 ± 0.21 94.34 ± 0.25 94.76 ± 0.12 96.10 ± 0.09 81.11 ± 0.48

Encoders 2-GCN and 3-GCN represent a 2 layer and a 3 layer GCN respectively. Input (test) denotes the graph supplied at test time, where we can choose to use the original graph G or the augmented graph HH(G). Performance is reported in terms of classification accuracy along with standard deviations. All experiments are performed over 20 random dataset splits and model initializations.