Table 4.
Increase in performance when using Half-Hop with different SSL frameworks.
| input (test) | encoder | Am. Comp. | Am. Photos | Co.CS | Co.Phy | WikiCS | |
|---|---|---|---|---|---|---|---|
| GRACE | G | 2-GCN | 89.53 ± 0.35 | 92.78 ± 0.45 | 91.12 ± 0.20 | OOM | 80.14 ± 0.48 |
| HH-GRACE | G | 2-GCN | 91.11 ± 0.18 | 94.21 ± 0.26 | 93.59 ± 0.16 | OOM | 79.77 ± 0.40 |
| HH-GRACE | HH(G) | 2-GCN | 90.65 ± 0.19 | 94.89 ± 0.23 | 94.76 ± 0.14 | OOM | 80.15 ± 0.16 |
| BGRL | G | 2-GCN | 90.34 ± 0.19 | 93.17 ± 0.30 | 93.31 ± 0.13 | 95.73 ± 0.05 | 79.98 ± 0.10 |
| HH-BGRL | G | 2-GCN | 91.02 ± 0.27 | 93.88 ± 0.19 | 93.61 ± 0.13 | 95.75 ± 0.13 | 80.76 ± 0.71 |
| HH-BGRL | HH(G) | 2-GCN | 90.94 ± 0.19 | 94.50 ± 0.35 | 94.74 ± 0.15 | 96.13 ± 0.10 | 80.37 ± 0.62 |
| BGRL | G | 3-GCN | 90.04 ± 0.23 | 92.59 ± 0.34 | 92.42 ± 0.17 | 95.32 ± 0.51 | 78.22 ± 0.77 |
| HH-BGRL | G | 3-GCN | 90.53 ± 0.27 | 93.09 ± 0.16 | 92.58 ± 0.20 | 95.45 ± 0.09 | 79.76 ± 0.61 |
| HH-BGRL | HH(G) | 3-GCN | 91.10 ± 0.21 | 94.34 ± 0.25 | 94.76 ± 0.12 | 96.10 ± 0.09 | 81.11 ± 0.48 |
Encoders 2-GCN and 3-GCN represent a 2 layer and a 3 layer GCN respectively. Input (test) denotes the graph supplied at test time, where we can choose to use the original graph G or the augmented graph . Performance is reported in terms of classification accuracy along with standard deviations. All experiments are performed over 20 random dataset splits and model initializations.