Table 5.
Best hyperparameters found using the validation set in our experiments on heterophilic datasets.
| Dataset | Model | lr | weight decay | depth | hidden | dropout | α | p |
|---|---|---|---|---|---|---|---|---|
| Texas | HH-GCN | 0.0291 | 0.0096 | 2 | 64 | 0.8058 | 0.0043 | 0.9526 |
| HH-GraphSAGE | 0.0170 | 0.0053 | 2 | 64 | 0.1967 | 0.9397 | 0.7140 | |
| HH-GAT | 0.0328 | 0.0066 | 2 | 32 | 0.1288 | 0.0902 | 0.9841 | |
| Wisconsin | HH-GCN | 0.0105 | 0.0002 | 3 | 128 | 0.6612 | 0.9937 | 0.7140 |
| HH-GraphSAGE | 0.0202 | 0.0042 | 3 | 64 | 0.3462 | 0.0100 | 0.6177 | |
| HH-GAT | 0.0539 | 0.0068 | 3 | 16 | 0.2141 | 0.0026 | 0.9797 | |
| Actor | HH-GCN | 0.0313 | 0.0087 | 3 | 64 | 0.5511 | 0.0369 | 0.5466 |
| HH-GraphSAGE | 0.0133 | 0.0090 | 3 | 32 | 0.3737 | 0.0116 | 0.8368 | |
| HH-GAT | 0.0009 | 0.0001 | 3 | 128 | 0.8708 | 0.0549 | 0.9594 | |
| Squirrel | HH-GCN | 0.0053 | 0.0001 | 3 | 128 | 0.2455 | 0.0145 | 0.8257 |
| HH-GraphSAGE | 0.0296 | 0.0001 | 2 | 128 | 0.8668 | 0.9474 | 0.5198 | |
| HH-GAT | 0.0027 | 0.0001 | 3 | 64 | 0.5131 | 0.9277 | 0.1549 | |
| Chameleon | HH-GCN | 0.0318 | 0.0057 | 2 | 128 | 0.8040 | 0.0510 | 0.9986 |
| HH-GraphSAGE | 0.0225 | 0.0001 | 2 | 32 | 0.7175 | 0.9834 | 0.6226 | |
| HH-GAT | 0.0012 | 0.0008 | 3 | 64 | 0.0439 | 0.9766 | 0.9386 | |
| Cornell | HH-GCN | 0.0505 | 0.0055 | 2 | 32 | 0.4123 | 0.0145 | 0.9660 |
| HH-GraphSAGE | 0.0697 | 0.0018 | 2 | 64 | 0.0697 | 0.8807 | 0.5660 | |
| HH-GAT | 0.0572 | 0.0070 | 2 | 64 | 0.0572 | 0.0710 | 0.9979 |