Skip to main content
. Author manuscript; available in PMC: 2023 Oct 7.
Published in final edited form as: Proc Mach Learn Res. 2023 Jul;202:1341–1360.

Table 5.

Best hyperparameters found using the validation set in our experiments on heterophilic datasets.

Dataset Model lr weight decay depth hidden dropout α p
Texas HH-GCN 0.0291 0.0096 2 64 0.8058 0.0043 0.9526
HH-GraphSAGE 0.0170 0.0053 2 64 0.1967 0.9397 0.7140
HH-GAT 0.0328 0.0066 2 32 0.1288 0.0902 0.9841
Wisconsin HH-GCN 0.0105 0.0002 3 128 0.6612 0.9937 0.7140
HH-GraphSAGE 0.0202 0.0042 3 64 0.3462 0.0100 0.6177
HH-GAT 0.0539 0.0068 3 16 0.2141 0.0026 0.9797
Actor HH-GCN 0.0313 0.0087 3 64 0.5511 0.0369 0.5466
HH-GraphSAGE 0.0133 0.0090 3 32 0.3737 0.0116 0.8368
HH-GAT 0.0009 0.0001 3 128 0.8708 0.0549 0.9594
Squirrel HH-GCN 0.0053 0.0001 3 128 0.2455 0.0145 0.8257
HH-GraphSAGE 0.0296 0.0001 2 128 0.8668 0.9474 0.5198
HH-GAT 0.0027 0.0001 3 64 0.5131 0.9277 0.1549
Chameleon HH-GCN 0.0318 0.0057 2 128 0.8040 0.0510 0.9986
HH-GraphSAGE 0.0225 0.0001 2 32 0.7175 0.9834 0.6226
HH-GAT 0.0012 0.0008 3 64 0.0439 0.9766 0.9386
Cornell HH-GCN 0.0505 0.0055 2 32 0.4123 0.0145 0.9660
HH-GraphSAGE 0.0697 0.0018 2 64 0.0697 0.8807 0.5660
HH-GAT 0.0572 0.0070 2 64 0.0572 0.0710 0.9979