Skip to main content
. Author manuscript; available in PMC: 2023 Oct 7.
Published in final edited form as: Proc Mach Learn Res. 2023 Jul;202:1341–1360.

Table 1.

Increase in supervised performance when using Half-Hop.

Am. Comp. Am. Photos Co.CS WikiCS
GCN 90.22 ± 0.60 93.59 ± 0.42 94.06 ± 0.16 81.93 ± 0.42
HH-GCN 90.92 ± 0.35 94.52 ± 0.22 94.71 ± 0.16 82.57 ± 0.36
Δ +0.70 (↑) +0.93 (↑) +0.65 (↑) +0.64 (↑)
GraphSAGE 84.79 ± 1.08 95.03 ± 0.33 95.11 ± 0.10 83.67 ± 0.45
HH-GraphSAGE 86.60 ± 0.49 94.55 ± 0.41 95.13 ± 0.21 82.81 ± 0.32
Δ +1.81 (↑) −0.48 (↓) +0.02 (↑) −0.86 (↓)

The average and standard deviation of accuracy is computed over 20 random splits and model initializations. The absolute improvement (Δ) is also reported.