Skip to main content
. Author manuscript; available in PMC: 2023 Oct 7.
Published in final edited form as: Proc Mach Learn Res. 2023 Jul;202:1341–1360.

Table 2.

Results on heterophilic graphs.

Texas Wisconsin Actor Squirrel Chameleon Cornell
Hom level 0.11 0.21 0.22 0.22 0.23 0.30
#Nodes 183 251 7,600 5,201 2,277 183
#Edges 295 466 26,752 198,493 31,421 280
#Classes 5 5 5 5 5 5
GCN 55.14 ± 5.16 51.76 ± 3.06 27.32 ± 1.10 31.52 ± 0.71 38.44 ± 1.92 60.54 ± 5.30
HH-GCN 71.89 ± 3.46 79.80 ± 4.30 35.12 ± 1.06 47.19 ± 1.21 60.24 ± 1.93 63.24 ± 5.43
Δ +16.75 (↑) +19.04 (↑) +7.80 (↑) +15.67 (↑) +21.80 (↑) +2.70 (↑)
GAT 52.16 ± 6.63 49.41 ± 4.09 27.44 ± 0.89 36.77 ± 1.68 48.36 ± 1.58 61.89 ± 5.05
HH-GAT 80.54 ± 4.80 83.53 ± 3.84 36.70 ± 0.92 46.35 ± 1.86 61.12 ± 1.83 72.70 ± 4.26
Δ +28.38 (↑) +34.12 (↑) +9.26 (↑) +9.58 (↑) +12.75 (↑) +10.81 (↑)
GraphSAGE 82.43 ± 6.14 81.18 ± 5.56 34.23 ± 0.99 41.61 ± 0.74 58.73 ± 1.68 75.95 ± 5.01
HH-GraphSAGE 85.95 ± 6.42 85.88 ± 3.99 36.82 ± 0.77 45.25 ± 1.52 62.98 ± 3.35 74.60 ± 6.06
Δ +3.51 (↑) +4.70 (↑) +2.59 (↑) +3.64 (↑) +4.25 (↑) −1.35 (↑)
MixHop 77.84 ± 7.73 75.88 ± 4.90 32.22 ± 2.34 43.80 ± 1.48 60.50 ± 2.53 73.51 ± 6.34
GGCN 84.86 ± 4.55 86.86 ± 3.29 37.54 ± 1.56 55.17 ± 1.58 71.14 ± 1.84 85.68 ± 6.63
H2GCN 84.86 ± 7.23 87.65 ± 4.98 35.70 ± 1.00 36.48 ± 1.86 60.11 ± 2.15 82.70 ± 5.28
MLP 80.81 ± 4.75 85.29 ± 3.31 36.63 ± 0.70 28.77 ± 1.56 46.21 ± 2.99 81.89 ± 6.40

We report the test accuracy across many heterophilic graph benchmark datasets, and highlight the absolute improvement (Δ) in classification accuracy when the model is augmented with Half-Hop.

The “†” results are obtained from (Yan et al., 2021).