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Abstract

The goal of describing how the human brain responds to complex acoustic stimuli has driven 

auditory neuroscience research for decades. Often, a systems-based approach has been taken, in 

which neurophysiological responses are modeled based on features of the presented stimulus. This 

includes a wealth of work modeling electroencephalogram (EEG) responses to complex acoustic 

stimuli such as speech. Examples of the acoustic features used in such modeling include the 

amplitude envelope and spectrogram of speech. These models implicitly assume a direct mapping 

from stimulus representation to cortical activity. However, in reality, the representation of sound 

is transformed as it passes through early stages of the auditory pathway, such that inputs to the 

cortex are fundamentally different from the raw audio signal that was presented. Thus, it could be 

valuable to account for the transformations taking place in lower-order auditory areas, such as the 

auditory nerve, cochlear nucleus, and inferior colliculus (IC) when predicting cortical responses 

to complex sounds. Specifically, because IC responses are more similar to cortical inputs than 

acoustic features derived directly from the audio signal, we hypothesized that linear mappings 

(temporal response functions; TRFs) fit to the outputs of an IC model would better predict EEG 

responses to speech stimuli. To this end, we modeled responses to the acoustic stimuli as they 

passed through the auditory nerve, cochlear nucleus, and inferior colliculus before fitting a TRF 

to the output of the modeled IC responses. Results showed that using model-IC responses in 

traditional systems analyses resulted in better predictions of EEG activity than using the envelope 

or spectrogram of a speech stimulus. Further, it was revealed that model-IC derived TRFs predict 

different aspects of the EEG than acoustic-feature TRFs, and combining both types of TRF models 

provides a more accurate prediction of the EEG response.

Introduction

Decades of research have sought to understand how the human brain processes the many 

sounds we encounter in everyday life. For example, since the 1930s researchers have used 

the electroencephalogram (EEG) to derive event-related potentials (ERPs) by averaging 

responses immediately following repeated presentations of brief, isolated stimuli (Davis, 
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1939; Handy 2005, Sur and Sinha, 2009). However, most sensory information available to 

human listeners is continuous, non-repeated, and occurs within a noisy environment, forcing 

listeners to discern important on-going signals from surrounding irrelevant information with 

only a single presentation. This includes that all-important of human signals – speech. To 

better approximate normal listening conditions – with a particular emphasis on speech – 

research turned towards using longer, more natural stimuli to elicit the EEG (Connolly et 

al., 1994; Näätänen, 1997). Initially, these studies used relatively short segments of speech 

to produce ERPs, which still provided only a limited view on how the brain parses and 

processes continuous segments of acoustically, lexically, and semantically rich speech.

In recent years, researchers have increasingly emphasized the use of continuous, natural 

speech in their experiments (Hamilton and Huth, 2020). One fruitful approach to analyzing 

the resulting neural data involves modeling those data based on the speech stimuli that 

elicited them (Brodbeck and Simon, 2020). This approach, which is known as system 

identification, treats the brain as something of a ‘black box’ and seeks to develop 

quantitative mappings between various speech features and the resulting neurophysiological 

responses. In particular, electroencephalography (EEG) has often been the recording 

modality of choice given its noninvasive nature, ease of use, and high temporal resolution 

(Gevins et al., 1995; Regan, 1989; Murakami and Okada, 2006; Buzsaki et al., 2012; Lopes 

da Silva and Niedermeyer, 2005). One particularly popular and tractable analysis involves 

treating the brain as a linear time-invariant (LTI) system and obtaining a so-called temporal 

response function (TRF) via regularized linear regression (Crosse et al., 2016, 2021). 

This framework allows researchers to study how the brain processes speech at different 

hierarchical levels by modeling the relationship between EEG and both acoustic (e.g., 

acoustic envelope, spectrogram) and linguistic (e.g., phonetic features, semantic surprisal) 

features (Di Liberto et al., 2015, Broderick et al., 2018; Brodbeck et al., 2018, 2022; Gillis et 

al., 2021). For example, a model involving spectrogram and phonetic features out-performs 

either constituent model, indicating that each feature contributes to unique aspects of the 

EEG signal (Di Liberto et al., 2015).

One limitation of the TRF approach – as noted by Drennan and Lalor (2019) – is that it 

makes a strong assumption about linearity and time invariance. In effect, this assumes that 

EEG responses to a particular speech feature always have the same timing and morphology; 

because the speech feature changes in intensity, the EEG response will scale, but will not 

change in terms of its timing or shape. However, this assumption is incorrect; it has long 

been known that EEG responses to auditory stimuli vary in both amplitude and latency with 

the intensity of the sound (Beagley and Knight, 1967). Drennan and Lalor (2019) proposed 

to relax this assumption in the context of modeling EEG responses based on the speech 

envelope. Specifically, they allowed the TRF to vary in morphology for different envelope 

intensities by binning the speech envelope based in amplitude deriving a multivariate 

TRF (mTRF). The resulting amplitude-binned (AB) envelope mTRF produced significant 

improvements in the ability to predict EEG responses to novel stimuli (Drennan and Lalor, 

2019).

While this approach produced significant improvements, it was based on a simple, somewhat 

arbitrary manipulation of the stimulus (amplitude binning). A more principled approach 
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not yet considered would be to formally incorporate the substantial processing of sound 

input that occurs along subcortical pathways before reaching cortex and contributing to 

scalp-recorded EEG. For example, it is well known that neurons in the inferior colliculus 

(IC) are tuned to sound frequency and amplitude-modulation rate (Krishna and Semple, 

2000; Nelson and Carney, 2007). Thus, IC neurons represent a population of cells that 

can integrate responses to sound features (e.g., spectrogram, amplitude envelope) extracted 

at lower levels of the auditory system (e.g., Carney et al., 2015). Given that such a 

transformed representation of the speech input is what cortex actually receives (rather than 

the stimulus itself), incorporating a model of such subcortical processing might lead to 

improved predictions of cortical EEG.

In the present study, we hypothesized that accounting for subcortical processing of speech 

sounds would improve predictions of EEG responses to natural speech. To test this, 

we modeled IC responses to speech sounds using the phenomenological same-frequency, 

inhibitory-excitatory (SFIE) model based on Nelson and Carney (2004; Fig. 1). This model 

transforms a sound input into simulated responses at the levels of the auditory nerve 

(AN), ventral cochlear nucleus, and inferior colliculus that have been validated against 

neurophysiological recordings across a series of studies (Zilany et al., 2009, 2014; Nelson 

and Carney, 2004; Carney et al., 2015; Carney and McDonough, 2019). We fitted TRF 

models to these simulated IC responses, broadband speech envelopes, AB envelopes, and 

spectrograms and measured how well each TRF could predict EEG responses recorded 

while participants listened to speech. Overall, the mTRF fit to IC responses produced more 

robust EEG prediction than the speech envelope or spectrogram. The IC response and 

AB-envelope mTRFs performed at comparable levels. However, analysis of the correlations 

between predicted EEGs from these two models revealed that they predicted different 

aspects of the EEG. Thus, combining the IC-response and AB-envelope mTRFs further 

improved the EEG predictions.

Methods

EEG Data and Stimuli

Stimuli and corresponding EEG responses from 19 subjects were obtained from two 

previous studies (DiLiberto et al., 2015; Broderick et al., 2018). In those experiments, 

subjects were presented with 20 three-minute-long segments of audio from an audiobook 

read by a male American English speaker (The Old Man and the Sea by Ernest 

Hemingway), using Sennheiser HD650 headphones. Each segment was ~155 s in duration 

and segments were presented in sequential order. During stimulus presentation, 128 scalp 

channels (+ 2 mastoid channels) of EEG data were recorded from each participant with 

a sampling rate of 512 Hz using the BioSemi ActiveTwo system. The recordings were 

digitally filtered between 1 and 15 Hz with a 2nd order, zero-phase (non-causal) Butterworth 

filter. The EEG signal was then referenced to the average of the two mastoid channels and 

down-sampled to 128 Hz to decrease computation time during further analyses.
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Speech Representations

As mentioned, our goal was to attempt to account for early stage acoustic encoding when 

modeling EEG responses to natural speech. To that end, we wanted to compare the EEG 

predictions that included modeled IC responses to those based on acoustic representations 

computed directly from the speech stimulus. In particular, we derived TRFs based on four 

distinct representations of the speech stimulus. These representations were presented as 

either single or multivariate feature vectors. Before feature extraction, all audio samples 

were lowpass filtered with a Chebyshev Type 2 filter having a cutoff frequency of 20 kHz. 

The broadband-envelope representation of the audio was calculated as

 env  = xa(t) , xa(t) = x(t) + jx(t), ( 1 )

where xa(t) is the analytical representation of the signal, taken as the sum of the original 

speech, x(t), and its Hilbert transform x(t) (Fig. 2A).

The spectrogram of the speech was obtained by filtering the speech into 20 log-spaced 

frequency bands ranging from 200 to 8-kHz (Di Liberto et al., 2015). The amplitude 

envelope of each frequency band was calculated using Eq. 1 (Fig. 2C). All audio-feature 

signals were down sampled to 128 Hz to match the sampling rate of the EEG data. To create 

the AB-envelope feature vector, the SPL (sound pressure level) envelope (Fig. 2B) was 

binned into 10 8-dB level ranges using the histcounts function in MATLAB (as outlined 

in Drennan and Lalor, 2019). This binning resulted in 10-variable feature vectors at each 

time point (Fig. 2D).

Neural responses to the acoustic stimuli were modeled in two steps. First, an AN model 

(Zilany et al., 2014) was used to simulate the responses of 20 AN fibers with characteristic 

frequencies (CF, the frequency that elicits a response at the lowest sound pressure level, 

SPL) that were matched to the spectrogram frequency bands. Then, the SFIE model (Carney 

and McDonough, 2019) was used to simulate responses of two types of IC neurons: band-

enhanced (BE) and band-suppressed (BS) neurons, as described by modulation transfer 

functions, average rates as a function of modulation frequency in response to sinusoidally 

amplitude-modulated sounds (Kim et al., 2020). BE IC neurons are excited by amplitude-

modulated stimuli with modulation frequencies near the peak of the modulation transfer 

function (MTF), whereas BS IC neurons are suppressed by stimuli that are modulated near 

a trough frequency in the MTF. The IC models had peak or trough modulation frequencies 

in the MTFs that were set to 100 Hz, which is near the center of the distribution for MTFs 

recorded in the IC (Kim et al., 2020). The IC-model feature vector consisted of responses 

from 20 BE and 20 BS neurons, with CFs ranging from 200 Hz to 8 kHz to match the 

frequencies used for the spectrogram analysis (Fig. 2E, F). BE and BS responses were 

concatenated, resulting in a 40-variable feature vector at each time point. The responses of 

the neural models were also down sampled to 128-Hz for correlation analysis with the EEG 

signals. Code for the AN and IC models is available at https://urhear.urmc.rochester.edu.

TRF calculation and EEG prediction

The TRF is a linear transformation from a stimulus feature vector, S(t), to the neural 

response vector, R(t), i.e.,
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R(t) = TRF*S(t), ( 2 )

where * represents the convolution operator (Crosse et al., 2016). The TRF for each feature 

is calculated over a series of time lags between the stimulus and the response, producing 

a set of temporal TRF weights for each EEG channel. To estimate the TRF we used 

ridge regression (see Crosse et al., 2016 for details on the TRF; code available at https://

github.com/mickcrosse/mTRF-Toolbox). In brief, this involves solving for the TRF using the 

following equation:

TRF = STS + λI −1STr,

where S is the lagged time series of the stimulus property, s(t), and is defined as follows:

S =

s 1 − τmin s −τmin ⋯ s(1) 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ s(1) ⋯ ⋮
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ s(1)

s(T ) ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 s(T ) ⋯ ⋮ ⋮ ⋯ ⋮
⋮ 0 ⋯ ⋮ ⋮ ⋯ ⋮
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ s(T ) s(T − 1) ⋯ s T − τmax

. ,

where the values τmin and τmax represent the minimum and maximum time lags (in 

samples), respectively. In S, each time lag is arranged column-wise. The center column, 

beginning with s(1), represents zero lag with columns to the right representing positive lag 

and left-side columns representing negative lags. Non-zero lags are padded with zeros to 

ensure causality (Mesgarani, et al., 2009). The window over which the TRF is calculated 

is defined as τwindow = τmax – τmin and the dimensions of S are thus T × τwindow (where 

T is the total length of the stimulus/data used for fitting). To include the constant term 

(y-intercept) in the regression model, a column of ones is concatenated to the left of S. 

The neural response data is organized into a matrix r with the N EEG channels arranged 

column-wise (i.e., a T × N matrix). The resulting TRF, w, is a τwindow × N matrix with 

each column representing the univariate mapping from s to the neural response at each 

channel. Λ is a regularization parameter that controls for overfitting (see below for how this 

was determined). TRFs were estimated separately for each stimulus feature representation. 

For initial inspection (Fig. 3), τmin and τmax were set to −500 to 500 ms, respectively. 

Subsequently, the window of analysis was narrowed to 0 to 275 ms for prediction analyses.

Nested cross-validation was completed to first select the optimal ridge parameter that would 

prevent overfitting (a detailed description of this process is provided in Crosse et al., 2016) 

and to assess the EEG’s sensitivity to different speech features or combinations of features. 

To summarize, data were split into training (19 trials) and testing (1 trial) sets. On the 

training set, ‘leave-one out’ cross-validation was used in which TRF models were fit to 

all but one trial for each ridge-parameter value (λ = 10−6,10−4, 10−2…106). TRFs were 
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averaged and used to predict responses from the remaining trial. This process was repeated 

until all trials had been left out and all ridge parameters within the predetermined range were 

exhausted. The best ridge parameter was chosen based on the correlation value between 

predicted and measured EEG data and then used to fit a new TRF on all training trials. This 

TRF was used to predict the EEG responses to the remaining test trial. Training and testing 

steps were repeated until all trials had been used as the test trial. TRFs were optimized and 

tested separately for each speech feature model and participant.

Assessment of Model Performance

The Pearson’s correlation coefficient, r, between predicted and measured EEGs was 

computed as the dependent measure used to assess how well each feature or groups of 

features were represented in the EEG. As such, r was used to compare EEG prediction 

accuracy between the different TRF models using a forward selection approach. Briefly, 

the logic here is that if adding a feature to an existing model improves EEG prediction 

accuracy, then that EEG is encoding that feature independent the other features. A repeated 

measures ANOVA test was used to compare distributions of prediction correlation values 

across the different TRF models. Post-hoc comparisons between TRF models were done 

using Bonferroni corrected paired t-tests.

Results

High-density (128 channels) EEG responses were collected from 19 subjects as they 

listened to excerpts from an audiobook (The Old Man and the Sea by Ernest Hemingway) 

containing narrative speech from an American male speaker. We used these responses and 

several features derived from the speech heard by the participants to fit TRF models and 

predict unseen EEG. In particular, we were interested to explore whether simulated IC 

responses driven by the stimulus could better predict the EEG compared to previously used 

features derived directly from the stimulus. Pearson’s correlation coefficients, r, between the 

predicted and measured EEGs were used to assess how well each TRF model predicted the 

EEG.

Twelve electrode channels over the frontocentral region of the scalp were used for analysis 

(Fig. 4, blue dots). Analysis channels were chosen based on examining the distribution of 

prediction correlations across the scalp for all four TRF models. The distributions were not 

significantly different (p>0.05, ANOVA) allowing for a single set of 12 electrodes with the 

highest prediction correlations to be chosen that did not bias the results towards any of the 

models (consistent with the approach in DiLiberto et al., 2015).

Comparing Performance of Feature-Specific TRFs

The grand means of prediction correlation values were compared across the different 

TRF models (Fig. 5A). We first performed a one-way repeated-measures ANOVA with 

factor TRF model which revealed a significant main effect (F(4,72)=30.87, p=5.8×10−15), 

indicating that some models were better at predicting EEG than others. The IC-response 

mTRF outperformed the envelope and spectrogram mTRFs (IC vs Envelope: T(18) = 4.63, 

p = 3.6×10−7; IC vs. Spectrogram: T(18) = 4.63, p = 4.5×10−7). The IC-response mTRF 
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performance was not significantly different from the AB-envelope-derived TRF (T(18) = 

0.062, p>0.5).

Because both the AB envelope and IC response predicted the EEG with comparable 

performance, we explored whether the two speech representations predicted different 

aspects of the EEG signal. To test this hypothesis, we analyzed the correlation between 

the predictions derived from each of these models and compared that to the correlation 

between envelope- and spectrogram-based prediction. For comparison, the EEG predicted 

from the envelope-derived and spectrogram-derived TRFs were strongly correlated (r=0.79), 

suggesting that these TRFs predict similar features of the EEG signal. In contrast, there 

was a significantly weaker correlation between the AB-envelope and IC predicted EEGs (r 

= 0.59; T(18) = 6.59, p = 3.4×10−6), suggesting that these two speech representations were 

capturing more complementary aspects of the EEG compared to envelope and spectrogram 

model. Given this evidence, we fit a joint model (AB+IC) and hypothesized that it would 

predict both aspects of EEG, thus improving predictions of the overall EEG signal. As 

expected, the combined AB+IC mTRF predicted the EEG significantly better than its 

constituent features (Fig. 5A; AB+IC vs AB: T(18) = 4.82, p = 0.0064; AB+IC vs. IC: 

T(18) = 6.77, p = 0.0076).

Analyzing Inter-subject Variability

To better assess model performance given inter-subject variability, the recorded r-values 

for each TRF-model were plotted individually and compared across subjects (Fig. 5B). 

Although the results show variability across subjects, the AB+IC mTRF model produced 

higher correlation coefficients than all other TRF models across 18 of 19 subjects. Further, 

the envelope- and spectrogram-TRF models consistently performed the poorest of the five 

models.

Discussion

Auditory stimuli such as speech undergo substantial processing as they ascend from the 

cochlea to the cortex. Despite awareness of such transformations and despite the ability to 

extract subcortical responses to continuous speech (Forte et al., 2017; Maddox and Lee, 

2018; Polonenko and Maddox, 2021) to our knowledge subcortical processing above the 

level of cochlear filters (Kulasingham et al., 2020; Gillis et al., 2021; Weineck et al., 2022) 

has not been incorporated into EEG analyses of continuous speech. Here, we have shown 

that including subcortical processing, in the form of auditory-midbrain model responses, 

allows for the derivation of TRFs that predict EEG responses with higher accuracy than 

previous TRFs based on acoustic features derived directly from the speech stimuli.

More specifically, in this work, the SFIE midbrain model was used to produce model IC 

responses to speech which, in turn, were used to derive TRFs for predicting EEG responses. 

The Pearson’s correlation coefficient between predicted and measured EEG was used to 

evaluate if incorporating the IC responses into the mTRF pipeline could produce better EEG 

predictions than those based on the envelope, spectrogram, or AB-envelope derived from 

the speech. Such acoustic features have previously been reported as successful methods 

for predicting EEG (Lalor et al., 2009, Ding and Simon, 2012, DiLiberto et al., 2015; 
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Drennan and Lalor, 2019). However, those approaches generally ignore the substantial 

amount of processing that occurs before the input signal reaches the cortex and influences 

the EEG signal. Thus, incorporating a model of the IC into the pipeline could lead to better 

predictions of the EEG. Similar hierarchical, predictive models have been implemented, for 

example, in the nonhuman primate visual neuroscience literature (Mineault et al., 2012). As 

expected, the IC-response TRF outperformed the envelope and spectrogram TRF models; 

but, it did not predict the EEG better than the AB envelope-derived TRFs. However, the 

IC-response and AB-envelope-based predictions were not as highly correlated with each 

other as envelope and spectrogram predictions and combining IC responses and the AB 

envelope features into one mTRF model provided the best of the tested mappings to EEG 

responses. This suggests that the IC responses and the AB envelope are capturing unique 

information from the EEG signal and supports our original hypothesis. While the IC model 

is capturing nonlinearities of the subcortical auditory system (e.g., saturating transduction, 

compressive amplification, neural adaptation), we think the AB envelope could be capturing 

cortical nonlinearities such as non-monotonic rate-level functions (Schreiner et al., 1992).

IC neurons lend themselves well to TRF analyses of speech encoding, as most cells are 

rate-tuned to both audio frequency and amplitude-modulation (AM) frequency. The display 

of spectral tuning is often characterized by a strong sensitivity to a certain frequency, or best 

frequency (BF), while low-frequency AM tuning is often characterized by a best modulation 

frequency (BMF; Krishna and Semple, 2000; Joris et al., 2004; Nelson and Carney, 2007). 

Further, a majority of IC BMFs fall within the range of voice pitch (Langner, 1992) making 

them suitable for analyzing speech stimuli (Delgutte et al., 1998; Carney et al., 2015). 

In the current study, we have selected a single BMF near the f0 of our speaker. While 

it is possible that the selection of a single modulation frequency might negatively impact 

our ability to encode the time-varying f0 of the speaker, the neural modulation filters are 

quite broad (Q~1) and should be sensitive to the range of frequency fluctuations in the 

speech. It seems likely that incorporating a bank of population responses spanning multiple 

BMFs (and likewise increasing number of simulated CFs within each bank) would improve 

EEG predictions, but we worry about our data being underpowered or overfit. One could 

conceivably test the specificity of the responses by fitting IC model parameters to EEG data 

recorded during speech from two speakers with very different f0s.

BMFs are best represented by the peaks (or troughs) in MTFs, which depict average 

discharge rate as a function of AM frequency and can be classified as either band-enhanced, 

exhibiting an increased discharged rate at BMF, or band-suppressed, exhibiting a decreased 

firing rate at BMF. The SFIE model simulates responses from both cell types, providing a 

robust population response to our stimulus that is intended to represent a simplified midbrain 

encoding of complex sounds. Given this evidence, it is not surprising that the IC-response 

mTRF was able to represent the EEG significantly better than previous models, which 

typically only incorporate acoustic features of the speech stimuli (albeit sometimes passed 

through a very simple gammatone filter model of the cochlea). In particular, it is likely that 

the addition of AM tuning properties, typically present at the level of the midbrain provides, 

has provided much of the improvement in modeling the EEG.
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The analysis presented in the current work focused specifically on EEG responses to speech. 

This was a natural choice given the importance of speech in everyday life, as well as the 

wealth of previous research aimed at modeling EEG responses to natural, continuous speech 

(Lalor and Foxe, 2010; Ding and Simon, 2014; Myers et al., 2019; Brodbeck and Simon, 

2020). And while the inclusion of the IC-model within the framework has improved our 

EEG modeling, we think it is possible that the use of speech may have produced more 

modest benefits than would have derived for other types of audio stimuli. This is because 

envelope/spectrogram modeling has already been shown to work quite well for speech in 

particular – given the large amplitude modulation depths seen in natural speech and the 

importance of envelopes for speech intelligibility in general (Shannon et al., 1995; Smith 

et al., 2002). As such, it might be the case that the framework we have introduced here 

– including an IC model in an EEG modeling pipeline – would produce larger benefits in 

the context of other stimuli. In particular, greater improvements in EEG prediction accuracy 

might derive for signals with a more heterogeneous pattern of amplitude modulations across 

frequencies, such as music. Indeed, EEG tracking of the envelope of music has often been 

shown to be much weaker than for speech (Zuk et al., 2021). Future work will apply the 

framework presented here to modeling EEG responses to music.

Another interesting possible use of the framework presented here could be for the refinement 

of auditory subcortical models themselves. Although models of the auditory periphery 

have been used successfully to predict human speech perception (Heinz, 2010; Moncada-

Torres et al., 2017; Bruce, 2017; Zaar and Carney, 2022), such models are often fit using 

data recorded from non-human mammals (Carney, 1993; Zhang et al., 2001; Zilany and 

Bruce, 2006, 2007; Zilany et al., 2009, 2014). While these models should work well given 

evolutionary homologies in the midbrain (Webster, 1992; Grothe et al., 2004; Woolley and 

Portfors, 2013), it is also true that speech is a particularly special signal for humans. As 

such, the processing of speech by humans involves predictions (Kutas and Hillyard, 1980, 

1984; Leonard et al., 2016; Zoefel, 2018; Broderick et al., 2018) and attention (Cherry, 

1953; McDermott, 2009; Mesgarani and Chang, 2012; Golumbic et al., 2013; O’Sullivan et 

al., 2015) effects that are unlikely to be present in non-human animals. One could imagine 

constraining and refining parameters of a subcortical model based on EEG prediction 

accuracy to have those subcortical models better capture human-specific subcortical auditory 

processing. Of course, validation of such models would be extremely important given the 

relatively low SNR of EEG and the risk of overfitting, and could perhaps be carried out 

using intracranial recordings in human neurosurgical patients.

Two additional issues are worth considerating, both of which relate to filtering EEG signals. 

First, it is important to note that filters affect the interpretation of TRF components (and 

TRF component latencies in particular). This is because the TRFs fit to filtered EEG contain 

a convolution of the filter response and the impulse response of the neural system (de 

Cheveigne and Nelken 2019; see Fig. 3a inset showing the impulse and step response for 

filters used in this study). As such, interpreting TRF components at different latencies as 

reflecting different stage of processing – as has been done for ERPs/ERFs (e.g., Salmelin, 

2007) – is not straightforward. An alternative approach for interpreting TRF models, and 

one that we and others have used regularly, is to model EEG responses based on different 

explicitly defined acoustic and linguistic speech representations (e.g., Di Liberto et al, 2015; 
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Brodbeck et al., 2018). As stated in the introduction, our goal in the present study was 

to improve the modeling of the acoustic features of speech in particular. Second, filtering 

high-frequency and difficult-to-explain features from the EEG signal increases the signal-to-

noise ratio (SNR) of the TRF at the expense of a fuller explanatory model. Indeed, it seems 

that activity outside the frequency range tested in the current study can be useful to decode 

stimulus features in some individuals (Synigal et al, 2020), but generally has low signal 

strength on the scalp. As such, varying how one filters one’s data can produce differences 

in prediction accuracy simply because one is essentially varying the amount of signal one 

is trying to predict. In our study, we don’t think this is a major concern, as we always 

compared the performance of models based on different features in predicting EEG data 

that had been filtered in the same way. Other approaches have been developed in an effort 

to contend with the complex effects of filtering on modeling neural data. We were mostly 

interested in the interpretability of our models, so we elected to use linear TRFs. However 

future work might explore other methods such as mTRF stimulus reconstruction (Crosse et 

al 2016), canonical components analysis (CCA; de Cheveigne et al., 2018), or back-to-back 

regression (King et al 2020).

In sum, we have shown that incorporating a well-established model of IC neuronal activity 

can improve models of EEG responses to natural speech. Given the relatively low SNR of 

EEG, any improvements in the ability to model that EEG could have important benefits in 

electrophysiological research on speech and language processing. Future work will aim to 

extend the framework to other auditory stimuli.
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Figure 1: 
Schematic diagram of the same-frequency inhibition and excitation (SFIE) model. A single 

model AN fiber provides the postsynaptic cell with both excitatory and inhibitory input, 

via an inhibitory interneuron. The thickness of the lines corresponds to the relative strength 

of the inhibition and excitation at each level. Alpha functions representing the assumed 

membrane and synaptic properties are also shown above or below corresponding synapses. 

Adapted from Nelson and Carney (2004).
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Figure 2: Representations of speech stimulus.
Four different representations of the speech stimuli were used to derived TRFs and predict 

EEG responses: A) broadband envelope, B) SPL envelope used for amplitude binning, C) 
spectrogram, D) amplitude-binned envelope and E, F) IC BE and BS model responses.
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Figure 3: TRF model weights plotted over wide range of time-lags.
mTRF plotted for the A) Envelope (inset: filter impulse and step response), B) Spectrogram, 

C) IC responses provided by SFIE model; top half shows IC BS responses; bottom half 

shows IC BE responses, and D) AB envelope representations of the speech stimulus. Time 

lags ranged from −500 to 500-ms and mTRFs were averaged across the 12 electrodes of 

interest (see Fig. 4). Shaded region in A) indicates the 275-ms analysis window used.

Lindboom et al. Page 16

Hear Res. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Topographical representation of prediction correlations between predicted and actual 
EEGs.
Topographical distribution of prediction correlation values plotted onto a schematic diagram 

of the scalp. The electrodes used in analysis are emphasized in dark blue. The colormap 

indicates the Pearson correlation between the predicted and recorded (unaveraged) EEG.
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Figure 5: Comparison of IC-model derived mTRF to acoustic feature derived TRFs.
A) The grand mean prediction correlation values for each type of TRF (mean ±SEM). The 

IC-model and AB-envelope TRF models were significantly higher than the envelope and 

spectrogram models. There was no significant difference between envelope and spectrogram 

prediction accuracy or between IC-model and AB-envelope prediction accuracy (p>0.05). 

The combined AB+IC TRF outperformed all other models. B) Correlation values were 

plotted for each subject individually. Data was sorted according to the prediction correlation 

values for the AB+IC model. Despite some variability across subjects, it is clear that the 

AB+IC mTRF model performs the best and the envelope TRF has the poorest performance 

across subjects.
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