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Summary

Objective: COVID-19 might cause neuroinflammation in the brain, which could decrease neurocognitive function. We aimed to
evaluate the causal associations and genetic overlap between COVID-19 and intelligence.

Methods: We performed Mendelian randomization (MR) analyses to assess potential associations between three COVID-19 outcomes
and intelligence (N¼ 269 867). The COVID phenotypes included severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infec-
tion (N¼ 2 501 486), hospitalized COVID-19 (N¼ 1 965 329) and critical COVID-19 (N¼ 743 167). Genome-wide risk genes were compared
between the genome-wide association study (GWAS) datasets on hospitalized COVID-19 and intelligence. In addition, functional
pathways were constructed to explore molecular connections between COVID-19 and intelligence.

Results: The MR analyses indicated that genetic liabilities to SARS-CoV-2 infection (odds ratio [OR]: 0.965, 95% confidence interval
[CI]: 0.939–0.993) and critical COVID-19 (OR: 0.989, 95% CI: 0.979–0.999) confer causal effects on intelligence. There was suggestive evi-
dence supporting the causal effect of hospitalized COVID-19 on intelligence (OR: 0.988, 95% CI: 0.972–1.003). Hospitalized COVID-19
and intelligence share 10 risk genes within 2 genomic loci, including MAPT and WNT3. Enrichment analysis showed that these genes
are functionally connected within distinct subnetworks of 30 phenotypes linked to cognitive decline. The functional pathway
revealed that COVID-19-driven pathological changes within the brain and multiple peripheral systems may lead to cognitive impair-
ment.

Conclusions: Our study suggests that COVID-19 may exert a detrimental effect on intelligence. The tau protein and Wnt signaling
may mediate the influence of COVID-19 on intelligence.

Introduction
Infection with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), known as COVID-19, has an average infection fa-
tality rate of approximately 0.5–2% in most locations worldwide.1

A number of risk or protective factors for COVID-19 outcomes
have been reported, including neuropsychiatric diseases.2–12

Meanwhile, a sizable subpopulation of individuals who recovered
from acute COVID-19 may suffer from a variety of lingering
symptoms, collectively known as long COVID-19.13–17

SARS-CoV-2 can infect cells within the lower respiratory tract
(trachea and lungs) and the upper respiratory tract (sinuses, nose
and throat),18 in addition to damaging a wide range of human
organs and systems, such as the immune system,19 nervous
system20 and microvessels.21 Neuropsychiatric manifestations are

common among individuals with COVID-19.22 Moreover, it has

also been shown that COVID-19 could lead to a loss of 0.2–2% of

brain tissue in regions processing the sense of smell and taste, as

well as supporting higher functions; these losses are typically more

pronounced among older individuals.23 A longitudinal magnetic

resonance imaging (MRI) study revealed that individuals who con-

tracted COVID-19 infection, on average, show more pronounced

age-associated reductions in brain size and gray matter thickness

as well as a larger cognitive decline than controls.24 It was reported

that recovered COVID-19 patients have a higher risk of memory de-

cline.25 The neurological sequelae of COVID-19 are associated with

increased mental stress and the risks for mental disorders.14,26–29

It is worth mentioning that many of the peripheral pathologi-

cal changes observed in COVID-19 patients are directly or
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indirectly linked to cognition.30 Recently, several studies have

tested the relationship between COVID-19 and intelligence. In

particular, Li et al.8 showed that education may act indepen-

dently and jointly with intelligence in improving COVID-19 out-

comes. Zhu et al.10 suggested a causal genetic linkage between an

increased risk of symptomatic COVID-19 and decreased intelli-

gence in children. A significantly increased risk of newly diag-

nosed Alzheimer’s disease was noted within 360 days after the

initial COVID-19 diagnosis in elderly people.31 All of the evidence

prompts a detailed evaluation of the relationships between

COVID-19 and general intelligence.
Here, we hypothesize that COVID-19 may exert a detrimental

effect on intelligence. We sought to evaluate the effects by using

the Mendelian randomization (MR) framework applied to

genome-wide association study (GWAS) summary results. Using

large-scale automated mining of the literature, we also con-

structed functional pathways connecting COVID-19 and cognitive

function.

Methods
GWAS summary datasets
The study utilized publicly available GWAS summary results,

with all the participants of European origin. The summary results

of the GWAS for intelligence contained 269 867 participants, in-

cluding those from the UK Biobank (UKB).32 The COVID-19 data-

sets from the European population were obtained from the

COVID-19 HGI GWAS round 7 (release date: 8 April 2022, without

the 23andMe cohort).33 To avoid sample overlaps in the MR

analysis, we selected the COVID-19 datasets without UKB partici-

pants, including hospitalized COVID-19 (40 929 hospitalized cases

and 1 924 400 controls), critical COVID-19 (very severe respiratory

confirmed 17 472 cases and 725 695 controls) and SARS-CoV-2 in-

fection (143 839 virus-positive cases and 2 357 647 controls). In

the identification of overlapping genomic loci between COVID-19

and intelligence, the hospitalized COVID-19 dataset of the

European population, including 32 519 hospitalized cases and

2 062 805 controls, was utilized. The latter dataset included the

UKB population. The SARS-CoV-2 infection dataset mainly

reflects the susceptibility to the virus. The hospitalized COVID-19

and critical COVID-19 datasets characterize the severity of the

disease, which we collectively called ‘severe COVID-19’ in this

study. Ethical approval had been obtained from each of the origi-

nal studies.

MR analysis
The analyses were conducted using three complementary meth-

ods from TwoSampleMR,34 including weighted median (WM), in-

verse variance weighted (IVW) and MR-Egger. These models have

different assumptions on pleiotropy.35 The IVW model was used

as the primary MR method, which assumes an intercept of zero

and estimates the causality by a fixed-effect model.36 The WM

and MR-Egger models are more sensitive to horizontal pleiotropy

but less powerful than IVW. The intercept of the MR-Egger regres-

sion was employed to assess the average horizontal pleiotropy.35

For each exposure phenotype, genome-wide significant single-

nucleotide polymorphisms (SNPs) (P< 5� 10�8) were selected as

candidate instrumental variables (IVs). Then, these candidate IVs

were pruned by a clumping r2 value of 0.001 within a 10-Mb win-

dow. The 1000 Genomes Project Phase 3 (EUR) was used as the

reference panel.

Shared genomic loci between COVID-19 and
intelligence
To identify genetic overlaps between COVID-19 and intelligence,
we compared their respective GWAS datasets. For each dataset,

we used Functional Mapping and Annotation software to identify

LD-independent genomic loci and map SNPs to genes.37

Independent significant SNPs (IndSigSNPs) were identified by

their P values (P� 5.0E�08) and their independence from each
other (r2 < 0.6). The IndSigSNPs that were in LD with each other

within a 500-kb window (r2 < 0.1) were called lead SNPs. For each

locus, regional associations were plotted by LocsZoom.38

Protein–protein interaction analysis and pathway
construction
The protein-coding genes shared between the sets identified for
hospitalized COVID-19 and intelligence were used for the pro-

tein–protein interaction (PPI) analysis using STRING v11,39 fol-

lowed by a subnetwork enrichment analysis (SNEA).40

To explore the molecular network alterations caused by
COVID-19 and their influences on intelligence, we constructed

functional pathways connecting these two entities using large-
scale mining of the literature with Pathway Studio (www.path

waystudio.com). The following criteria were applied to select the

COVID-19-driven cognition/intelligence regulators: (i) the direc-
tion of the effect was from COVID-19 to cognition; (ii) exerted

changes were in brain regions and other tissues linked to cogni-
tion/intelligence; and (iii) the supporting references passed qual-

ity control through manual inspection. The relationships that

survived the filtering were used to construct the COVID-19-
driven signaling pathways that may influence intelligence.

Results
MR analysis
In the MR analysis of the causal effects of the three COVID-19
phenotypes on intelligence, a total of 19, 41 and 34 IVs were

extracted for SARS-CoV-2 infection, hospitalized COVID-19 and
critical COVID-19, respectively. We found that genetic liabilities

to SARS-CoV-2 infection (odds ratio [OR]: 0.965, 95% confidence

interval [CI]: 0.939–0.993, P¼ 0.015) and critical COVID-19 (OR:
0.989, 95% CI: 0.979–0.999, P¼ 0.036) conferred causal effects on

intelligence. There was suggestive evidence supporting the causal
effect of hospitalized COVID-19 on intelligence (OR: 0.988, 95% CI:

0.972–1.003, P¼ 0.127) (Table 1 and Figure 1).
The sensitivity analyses revealed that the directions of causal

effect estimates across the methods were largely the same
(Table 1 and Figure 1). Notably, tests of MR-Egger regression did

not support directional pleiotropy in this MR analysis (MR-Egger
intercept < 0.01, P> 0.05). Cochran’s test suggested possible het-

erogeneity in the hospitalized COVID-19 dataset and the critical

COVID-19 dataset.

Shared genomic loci influencing both COVID-19
and intelligence
A total of 32 and 203 genomic loci were associated with COVID-19
and intelligence, respectively (Figure 2A and Supplementary

Tables S1 and S2). Specifically, we detected two loci overlapping
between COVID-19 and intelligence gene sets, including

the 2p16.1 locus and the 17q21.31 locus (Table 2 and Figure 2).

Ten genes overlapped between COVID-19 and intelligence gene
sets included BCL11A, MAPT, KANSL1, ARL17B, NSF, WNT3,

LRRC37A, NSFP1, ARL17A and LRRC37A2.
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PPI analysis and SNEA results
Among the 10 overlapping genes, all except NSFP1 were protein

coding. PPI analysis showed that a majority of protein-coding

genes formed an interconnected group, with BCL11A remaining

an extant entity (Figure 3A).
The SNEA results showed that 6 out of these 10 genes were

enriched within 37 disease-centered subnetworks (P< 0.05,

Supplementary Figure S1 and Supplementary Table S3).

Interestingly, 30 out of these 37 pathophysiological subnetworks

were related to cognitive decline, indicating that these genes may

contribute to the impairment of intelligence in a variety of con-

texts.

Functional pathways connecting COVID-19 and
intelligence decline
The analysis of data obtained from structural and functional MRI

studies (Supplementary Table S4) allowed the construction of

functional pathways that connect COVID-19 with changes in dif-

ferent brain regions. Figure 3B illustrates various noticeable alter-

ations in brain structure resulting from COVID-19, such as

decreased gray matter thickness and tissue contrast in the orbito-

frontal cortex and parahippocampal gyrus, tissue damage in

regions connected to the primary olfactory cortex and a reduc-

tion in overall brain size. These brain abnormalities often coin-

cide with the pattern of cognitive decline associated with aging.

Some of these changes may be attributed to COVID-19-induced

dysfunction of the microvessels, while others could be caused by

direct damage to the neuroglial and immune systems. Both of

these pathophysiological processes have been linked to impaired

cognition. The pathway depicted in Figure 3B provides a potential

framework for understanding the possible connection between
COVID-19 and cognitive decline at the level of observable traits.

Discussion
In this study, we conducted an MR analysis to explore the
potential causality between three forms of COVID-19 and intel-
ligence. Our results showed the causal effects of SARS-CoV-2
infection and critical COVID-19 on intelligence, as well as
the possible influence of hospitalized COVID-19 on intelligence,
indicating that COVID-19 patients might be at risk of intelli-
gence decline.

Our study shows that the genes located at the 2p16.1 and
17q21.31 regions influence both severe COVID-19 and intelli-
gence. The 2p16.1 locus harbors the single protein-coding gene
BCL11A, which plays a vital role in B and T lymphopoiesis41 and
defines dendritic cell fate.42 Genetic variation within BCL11A
determines residual levels of fetal hemoglobin,43 which may be
protective against the symptoms of coronavirus infection.44 In
undifferentiated epithelial cells, the product of this gene prevents
senescence by accelerating the repair of oxidized DNA.45 During
postnatal corticogenesis, BCL11A prevents the death of projection
neurons.46 Haploinsufficiency of BCL11A underlines intellectual
disability syndrome (IDS) associated with the hereditary
persistence of fetal hemoglobin (HbF), also known as Dias-Logan
syndrome47 and a chromosome 2p16.1p15 microdeletion syn-
drome.48 Peculiarly, BCL11A was previously reported as a
genome-wide risk gene for COVID-1949 and as a pleiotropic gene
for attention-deficit/hyperactivity disorder, autism spectrum dis-
order and intelligence.50,51 Notably, these three neurodevelop-
mental features are underpinned by shared genetics.51,52

Table 1. Causal effects of the COVID-19 outcomes on intelligence

Exposure Method b (se) OR [95%CI] N_IV Q_P I2 Egger_intercept P_pleiotropy P

SARS-CoV-2 infection IVW -0.035 (0.014) 0.965 [0.939-0.993] 19 0.368 0.072 NA NA 0.015
SARS-CoV-2 infection WM -0.036 (0.019) 0.965 [0.929-1.002] 19 NA NA NA NA 0.066
SARS-CoV-2 infection MR Egger -0.044 (0.026) 0.957 [0.910-1.007] 19 0.316 0.063 0.001 0.697 0.109
Hospitalized COVID-19 IVW -0.012 (0.008) 0.988 [0.972-1.003] 41 2.26E-06 0.579 NA NA 0.127
Hospitalized COVID-19 WM -0.008 (0.009) 0.992 [0.975-1.009] 41 NA NA NA NA 0.343
Hospitalized COVID-19 MR Egger 0.007 (0.014) 1.007 [0.979-1.035] 41 8.07E-06 0.552 -0.002 0.123 0.644
Critical COVID-19 IVW -0.011 (0.005) 0.989 [0.979-0.999] 34 7.36E-03 0.411 NA NA 0.036
Critical COVID-19 WM -0.006 (0.006) 0.994 [0.982-1.006] 34 NA NA NA NA 0.306
Critical COVID-19 MR Egger 0.003 (0.009) 1.003 [0.986-1.021] 34 0.022 0.342 -0.003 0.061 0.702

IVW: inverse variance weighted; WM: weighted median; N_IV: number of instrumental variables; Q_P: Cochran’s P value of heterogeneity analysis.

Figure 1. Causal effects of the COVID-19 outcomes on intelligence. The trait on the x-axis denotes exposure, the trait on the y-axis denotes outcome
and each cross point represents an instrumental variant. The lines denote the effect sizes (b) of an exposure on an outcome.
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The 17q21.31 locus contains eight overlapping protein-coding

genes, including MAPT, KANSL1, ARL17B, NSF, WNT3, LRRC37A,

ARL17A and LRRC37A2. PPI analysis showed that the respective pro-

teins form an interconnected network (Figure 3A), which is function-

ally linked to a set of diseases associated with cognitive decline

(SNEA results). The genes located within the contiguous region were

repeatedly identified as contributors to COVID-19 phenotypes. For

example, the chromatin modifier gene KANSL1, which is also a risk

gene for atrial fibrillation and flutter as well as for pulmonary fibro-

sis, was identified in studies of genetic associations with severe

COVID-19.53,54 The same gene serves as a pathogenic culprit for

Koolen De Vries syndrome characterized by intellectual disability ac-

companied by characteristic facial features and hypotonia,55 a lon-

gevity gene56 and a contributor to Alzheimer’s disease phenotypes.57

Figure 2. Overlapping genes between hospitalized COVID-19 and intelligence. (A) Manhattan plot of GWAS results of hospitalized COVID-19 and
intelligence. The x-axis is the chromosomal position of SNPs and the y-axis is the significance of the SNPs (�log10P). Each horizontal dashed line
denotes the genome-wide significance level of 5E-8. Red arrows indicate the two overlapping genomic loci between COVID-19 hospitalization and
intelligence. (B) Two overlapping loci between hospitalized COVID-19 and intelligence. Left is the 2p16.1 locus and right is the 17q21.31 locus in hg19.
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The MAPT gene encodes the microtubule-associated protein
tau. This gene was identified by our previous multi-omics inte-
grative analyses as a contributor to COVID-19.58 A recent study
reported that increased levels of tau in the blood, which is possi-
bly due to its excretion by exosomes,55 are associated with fatal
outcomes of COVID-19.59 Notably, by adhering to the SARS-CoV-2
S1 receptor-binding domain, tau protein precipitates the aggrega-
tion of amyloid-like proteins and promotes neurodegeneration.60

MAPT is central to the pathogenesis of multiple neurodegenera-
tive disorders, including Alzheimer’s disease, Parkinson’s disease
and some neuropsychiatric conditions.32,51,61–64 Although it is
tempting to establish direct connections between COVID-19 and
neurodegeneration through MAPT, it is important to consider
that these links could also be indirect. One possible indirect asso-
ciation is the previously documented involvement of MAPT in the
phenotypes of aging-promoting interstitial lung disease65 and
overall lung function.66 Therefore, further exploration is war-
ranted to fully understand the relationship between COVID-19
and neurodegeneration, taking into account potential indirect
pathways involving MAPT.

The study of WNT3 involvement in the intersection of COVID-
19 and cognitive phenotypes closely follows that of MAPT. While
WNT3 is involved in intelligence and multiple psychiatric condi-
tions,51,67,68 its roles in COVID-19 phenotypes are more elusive
and likely defined by indirect relationships with blood–brain bar-
rier permeability.69–71

Colocated genes are rarely separated by recombination and
are commonly coregulated. When analysis of coregulation was
performed for MAPT-associated gene units, the levels of

transcripts produced by LRRC37A2, KANSL1, ARL17B, LRRC37A
and ARL17A were found to be affected by the MAPT haplotype in
a dose-dependent manner.72 Although each of these genes may
have a distinct impact on COVID-19, neurodegenerative pheno-
types or both, the existence of embedded coregulation adds com-
plexity to the study of this region. Therefore, it is crucial to
conduct functional investigations both in vitro and in model ani-
mals to gain a deeper understanding of the interplay between
these genes and their roles in the context of COVID-19 and neuro-
degeneration.

The composed map of the functional pathways (Figure 3B)
revealed that COVID-19 influences the structure and function of
multiple brain regions, including the hippocampal gyrus, orbito-
frontal cortex and olfactory cortex.24,73,74 In both survivors of se-
vere COVID-19 and elderly individuals, the loss of brain tissue
may lead to cognitive decline.23,75 The correlations between
changes in brain structure and age-related cognitive decline have
been extensively documented in the latter group. For instance,
among elderly individuals, a notable reduction in the mean vol-
ume of the right parahippocampal gyrus corresponds to their
cognitive decline.76 The changes in the frontal cortex, especially
the orbitofrontal cortex, cingulate cortex and amygdala, are asso-
ciated with emotional and cognitive impairments.77 The subjec-
tive cognitive decline in patients is also connected to significantly
reduced activation in the bilateral primary olfactory cortex.78

Moreover, COVID-19 may also lead to dysfunctions in the im-
mune system, the peripheral nervous system and the lining of
microvessels,19,21,79 a set of pathological features commonly as-
sociated with cognitive decline.80–82 Taken together, the

Table 2. Overlapping genomic loci between hospitalized COVID-19 and intelligence

Trait SNP CHR BP Start: End A1/A2 P Genes

Hospitalized
COVID-19

rs1123573 2 60707588 60705232:60727416 G/A 4.13E�11 CL11A

Intelligence rs10189857 2 60713235 60317457:60726427 A/G 4.91E�12 BCL11A
Hospitalized

COVID-19
rs63750417 17 44060775 43422855:44865603 T/C 1.37E�15 ARHGAP27; PLEKHM1; DND1P1;

RPS26P8; CRHR1-IT1; CRHR1;
MAPT-AS1; SPPL2C; MAPT;
STH; KANSL1; KANSL1-AS1;
ARL17B; LRRC37A; NSFP1;
ARL17A; LRRC37A2; NSF;
RPS7P11; WNT3

Intelligence rs17698176 17 44819595 44040184:44848314 T/G 1.70E�08 MAPT; KANSL1; ARL17B; NSF;
WNT3; LRRC37A; NSFP1;
ARL17A; LRRC37A2; FAM215B

CHR, chromosome; BP, base pair.

Figure 3. PPIs and COVID-19–intelligence connections. (A) PPIs between the shared protein-coding genes. (B) Biological abnormalities induced by
COVID-19 at the organ and system levels contribute to the development of intelligence decline. The relation type ‘–j’ represents an inhibition and ‘!’
represents a relationship with no polarity.
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functional pathways presented in Figure 3 may provide some
insights into the causal effect of COVID-19 on intellectual impair-
ment.

A limitation of this study is that the sample datasets were de-
rived solely from European populations. To validate the findings,
it is necessary to incorporate additional datasets from various
population regions.

Conclusions
In summary, our study suggests that COVID-19 may contribute
to cognitive impairment. Functional variation within the tau lo-
cus and the genes of the Wnt signaling pathway may be relevant
to COVID-19 and especially to its neurological sequelae.

Supplementary material
Supplementary material is available at QJMED online.
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