Skip to main content
. 2023 Sep 15;39(10):btad577. doi: 10.1093/bioinformatics/btad577

Table 2.

Performance comparison of our model with publicly available qualitative models.

Dataset
Independent test dataseta
Model Our model (LogBB_Pred) admetSAR LightBBB SwissADME BBB predictor
Accuracy (%) 0.85 0.85 0.70 0.70 0.70
MCC 0.6 0.65 0.42 0.29 0.15
Sensitivity 0.42 0.85 0.70 0.57 0.28
Specificity 0.99 0.66 0.74 0.75 0.85
NPVb 0.83 0.94 0.45 0.44 0.80
PPVc 1 0.66 0.89 0.22 0.77
URL http://ssbio.cau.ac.kr/software/logbb_pred http://lmmd.ecust.edu.cn/admetsar2 http://ssbio.cau.ac.kr/software/BBB http://www.swissadme.ch/ https://www.cbligand.org/BBB/index.php
Reference This study Yang et al. (2019) Shaker et al. (2021) Daina et al. (2017) Liu et al. (2014)
a

The independent test dataset used for the comparison of quantitative models was also used for qualitative model evaluation.

b

Negative predictive value: (number of true negatives)/(number of true negatives + number of false negatives).

c

Positive predictive value: (number of true positives)/(number of true positives + number of false positives).