Table 2.
Dataset |
Independent test dataseta |
||||
---|---|---|---|---|---|
Model | Our model (LogBB_Pred) | admetSAR | LightBBB | SwissADME | BBB predictor |
Accuracy (%) | 0.85 | 0.85 | 0.70 | 0.70 | 0.70 |
MCC | 0.6 | 0.65 | 0.42 | 0.29 | 0.15 |
Sensitivity | 0.42 | 0.85 | 0.70 | 0.57 | 0.28 |
Specificity | 0.99 | 0.66 | 0.74 | 0.75 | 0.85 |
NPVb | 0.83 | 0.94 | 0.45 | 0.44 | 0.80 |
PPVc | 1 | 0.66 | 0.89 | 0.22 | 0.77 |
URL | http://ssbio.cau.ac.kr/software/logbb_pred | http://lmmd.ecust.edu.cn/admetsar2 | http://ssbio.cau.ac.kr/software/BBB | http://www.swissadme.ch/ | https://www.cbligand.org/BBB/index.php |
Reference | This study | Yang et al. (2019) | Shaker et al. (2021) | Daina et al. (2017) | Liu et al. (2014) |
The independent test dataset used for the comparison of quantitative models was also used for qualitative model evaluation.
Negative predictive value: (number of true negatives)/(number of true negatives + number of false negatives).
Positive predictive value: (number of true positives)/(number of true positives + number of false positives).