Skip to main content
International Journal of Analytical Chemistry logoLink to International Journal of Analytical Chemistry
. 2023 Sep 30;2023:9625588. doi: 10.1155/2023/9625588

QSPR Modeling of Fungicides Using Topological Descriptors

Saima Parveen 1,, Fatima Saeed 1, Fozia Bashir Farooq 2, Nusrat Parveen 1, Nazeran Idrees 1, Sumiya Nasir 3, Rakotondrajao Fanja 4,
PMCID: PMC10560116  PMID: 37810910

Abstract

A topological index is a real number that is obtained from a chemical graph's structure. Determining the physiochemical and biological characteristics of a variety of medications is useful since it more accurately represents the theoretical characteristics of organic molecules. This is accomplished using degree-based topological indices. The QSPR research has improved the structural understanding of the physiochemical properties of fungicides. Thirteen fungicides are examined for some of their physiochemical properties, and a QSPR model is built using nine of the drugs' topological indices. Here, we examine the degree to which the topological indices and physiochemical attributes are connected. To do this, we create networks connecting each of the topological indices to the properties of fungicides and computationally construct topological indices of the drugs mentioned above. According to this QSPR model, the melting point, boiling point, flash point, complexity, surface tension, etc. of fungicides are strongly connected. It was discovered that the topological indices (TIs) applied to the fungicides more accurately represent their theoretical features and show a strong correlation with their physical attributes.

1. Introduction

For many decades, fungicides have predominantly been used to control fungal-caused plant diseases that threaten human health and crop production [1]. Losses in crops reached almost one billion dollars. The pathogen (fungus) is highly aggressive under field conditions when the environmental conditions favor the disease development [2]. Currently, due to the unavailability of cultivars with complete resistance, the application of fungicides is the main recommended tool for disease control along with cultural practices [3].

There are presently nine and forty seven groups of contact fungicides with multisite and single-site modes of action, respectively. Single-site active fungicides are less toxic to nontarget organisms. Modern systemic fungicides are typified by the triazoles. This group of fungicides is still the basis of cereal disease management strategies worldwide. Their antifungal activity is based on their ability to inhibit CYP51 (lanosterol 14-demethylase), a key enzyme for sterol biosynthesis in fungi [4]. Each triazole substance may have a somewhat different effect on the metabolic process that produces sterols [5], while the outcomes—abnormal fungal growth and death—are identical in different fungi. Triazole chemicals are crucial because of their outstanding antifungal effectiveness, comparatively low risk of resistance, and long-term stability in soil and water [1]. Triazoles can be used as early infection treatments or as a preventative measure. Some triazole fungicides have antisporulant qualities. However, these are ineffective once a fungus starts to develop spores as spores have enough sterol to form germ tubes. Within the triazole family, the principal compounds are difenoconazole, fenbuconazole, tebuconazole, cyproconazole, myclobutanil, penconazole, propiconazole, tetraconazole, triadimenol, prothioconazole, triticonazole, bromuconazole, epoxiconazole, fluquinconazole, flutriafol, ipconazole, metconazole, paclobutrazol, flusilazole, bitertanol, and triadimefon [6].

Topological indices (TIs) are quantitative descriptors obtained from a chemical graph that thoroughly characterize the chemical system and are widely employed in the study on the physiochemical features of numerous drugs. The chemical graph theory makes extensive use of polynomials and TIs, which are extensively used to depict the chemical structure. Graph invariants (TIs) have recently attracted a lot of attention in studies of quantitative structure-property relationships (QSPRs) and quantitative structure-activity relationships (QSARs) and are used in a wide range of mathematical fields, including bioinformatics, mathematics, informatics, and biology. For further study on QSPR modeling on certain drugs, we encourage readers to read [710].

We examined some of the physiochemical characteristics of thirteen fungus therapy medications and created a QSPR model utilizing nine topological indices. For this, we compute topological indices of the drugs analytically and depict graphs relating each of these topological indices to the characteristics of fungus drugs. The melting point, boiling point, flash point, complexity, surface tension, etc. of fungus medicines are closely related according to this QSPR model.

2. Preliminaries

In drug configuration, atoms depict vertices, and the associated bonds connecting the atoms are termed as edges. Graph G(V, E) is thought to be simple, finite, and connected, whereas V and E in the chemical graph are referred to as vertex and the edge set, respectively. The degree of a vertex u in the graph G is the number of vertices adjacent to u in G is denoted by du. In chemistry, the valence of a compound and the degree of a vertex in a graph are concepts that are inextricably linked [11, 12]. The inspiration for this article comes from the idea that different medications (structures) may be identified, and that when they are examined for various factors while keeping topological indices in mind, their dominance can be rated. The QSPR model has been applied for the 9 topological indices, which are given in the following.

Definition 1 . —

The ABC index [13] is given under

ABCG=uvEGdu+dv2dudv. (1)

Definition 2 . —

The first degree-based TI is Randic index RA(G) calculated by Milan Randic in 1975 [14] is given under

RAG=uvEG1dudv. (2)

Definition 3 . —

The sum connectivity index [15] is given under

SG=uvEG1du+dv. (3)

Definition 4 . —

The GA index [16] is given under

GAG=uvEG2dudvdu+dv. (4)

Definition 5 . —

First and second Zagreb indices [17] are given under

M1G=uvEGdu+dv,M2G=uvEGdudv. (5)

Definition 6 . —

Harmonic index [18] of G is given under

HG=uvEG2du+dv. (6)

Definition 7 . —

Hyper Zagreb index [12] is defined as

HMG=uvEGdu+dv2. (7)

Definition 8 . —

Forgotten index [16] is given under

FG=uvEGdu2+dv2. (8)

3. Quantitative Structure Analysis and Regression Model

In this section, TIs of the fungicides are computed. The relationship between QSPR analysis and TIs suggests that the physiochemical characteristics of the fungus are highly connected. Thirteen medicines are used in the analysis. The drug edifices are exhibited in Figure 1. We implement regression analysis calculations for this study. Drug computable structure analysis of nine TIs for QSPR modeling tenacity is performed. The topological indices of the respective drugs are computed in Table 1. The ten physical properties, such as solubility in water, boiling point (BP), density, melting point (MP), molar mass, flash point (FP), topological polar surface area, heavy atom count, complexity, and refractive index, are listed in Table 2. We impose a linear model by using the following equation:

P=α+βTI. (9)

Figure 1.

Figure 1

Chemical structure of drugs. (a) Paclobutrazol. (b) Tebuconazole. (c) Flutriafol. (d) Myclobutanil. (e) Propiconazole. (f) Prothioconazole. (g) Epoxiconazole. (h) Triadimefon. (i) cyproconazole. (j) Flusilazole. (k) Hexaconazole. (l) Flucanozole. (m) Voriconazole.

Table 1.

The TIs values of candidate drugs.

Names of drug ABC(G) RA(G) M 1(G) M 2(G) HM(G) H(G) SCI(G) F(G) GA(G)
Paclobutrazol 15.40229 9.376029 102 116 508 8.852381 9.613811 276 19.96016
Tebuconazole 16.20668 9.800443 108 123 548 9.216667 10.03661 302 20.79001
Flutriafol 17.1846 10.59317 116 137 580 10.2381 11.04456 306 23.27251
Myclobutanil 14.34883 9.137977 94 107 458 8.819048 9.34952 244 19.34277
Propiconazole 17.08729 10.62696 116 137 580 10.28571 11.06044 306 23.29099
Prothioconazole 16.62446 9.935071 116 140 608 9.45 10.38075 328 21.98206
Epoxiconazole 17.63074 10.71518 124 154 640 10.45714 11.38356 332 24.46225
Triadimefon 15.40229 9.376029 102 116 508 8.852381 9.613811 276 19.96016
Cyproconazole 15.77039 9.593172 108 129 548 9.238095 10.04456 290 21.27251
Flusilazole 17.22504 10.57634 116 136 578 10.20476 11.03074 306 23.2321
Hexaconazole 15.12489 9.548661 100 115 494 9.152381 9.757768 264 20.20879
Flucanozole 17.24621 10.5663 116 135 576 10.18571 11.02206 306 23.20537
Voriconazole 19.48426 11.98945 131 154 657 11.47143 12.40002 349 25.98436

Table 2.

Physical properties of drugs.

Names of drugs Solubility in water (mg/L at 20°C) Boiling point (°C) Density (g/cm3) Melting point (°C) Molar mass (g/mol) Flash point (°C) Topological polar surface area (Å2) Heavy atom count Complexity Refractive index
Paclobutrazol 22.9 460.9 ± 55 1.23 165 293.8 232.6 ± 31.5 50.9 20 300 1.58
Tebuconazole 36 476.9 ± 55 1.249 102.4 307.82 242.2 ± 31.5 50.9 21 326 1.58
Flutriafol 130 506.5 ± 60 1.3 130 301.29 260.1 ± 32.9 50.9 22 365 1.6
Myclobutanil 142 465.2 ± 55 1.2 65 288.78 235.2 ± 31.5 54.5 20 345 1.589
Propiconazole 100 480.0 ± 55 1.39 −23 342.22 244.1 ± 31.5 49.2 22 377 1.623
Prothioconazole 300 486.7 ± 55 1.36 141.5 344.2 248.2 ± 31.5 80 21 458 1.698
Epoxiconazole 7.1 463.1 ± 55 1.374 134 329.76 233.9 ± 31.5 43.2 23 421 1.659
Triadimefon 64 441.9 ± 55 1.22 82 293.75 221.0 ± 31.5 57 20 338 1.579
Cyproconazole 140 479.1 ± 55 1.32 106.2 291.77 243.6 ± 31.5 50.9 20 331 1.633
Flusilazole 41.9 392.5 ± 52 1.2 52 315.39 191.2 ± 30.7 30.7 22 333 1.563
Hexaconazole 18 490.3 ± 55 1.3 111 314.21 250.3 ± 31.5 50.9 20 308 1.549
Flucanozole 579.8 ± 60 1.5 138–140 306.271 304.4 ± 32.9 82 22 358 1.683
Voriconazole 508.6 ± 60 1.4 ± 0.1 127–130 349.3 261.4 ± 32.9 77 25 448 1.617

P denotes the physiochemical property of the given drug. TI stands for topological index, α stands for constant, and β stands for regression coefficient. MATLAB and R-language software are helpful for results. Linear models are used to analyze nine TIs of the fungicides and their properties. ChemSpider and PubChem are used to get the information given in Table 2. The 2D and 3D graphs of the medicines with TIs are given in Figures 2 and 3, respectively.

Figure 2.

Figure 2

2D graph of medicines with TIs.

Figure 3.

Figure 3

3D graph of medicines with TIs.

3.1. Regression Models and Statistical Parameters Comparison between TIs and Correlation Coefficient of Properties

Relation between TIs and physical properties of fungicides is successfully analyzed by imposing QSPR modeling. This sort of analysis can be useful for the model. It is eminent the value of p is less than 0.05 and r is greater than 0.6. Hence it is concluded that the entire properties given in Tables 311 are significant. Figure 4 depicts the graph.

Table 3.

Statistical parameters used in QSPR model for ABC(G).

Physiochemical property N A b r r 2 F P
Solubility in water 11 86.314 0.295 0.004 0.000 0.000 0.992
Boiling point 13 343.135 8.246 0.261 0.068 0.804 0.389
Density 13 0.626 0.041 0.610 0.372 6.514 0.027
Melting point 13 49.859 3.180 0.087 0.007 0.083 0.779
Molar mass 13 125.565 11.392 0.720 0.519 11.863 0.005
Flash point 13 161.403 4.983 0.261 0.068 0.803 0.389
Topological polar surface area 13 6.608 2.991 0.269 0.072 0.857 0.374
Heavy atom count 13 3.597 1.077 0.963 0.927 139.079 0.000
Complexity 13 −65.744 25.904 0.684 0.467 9.654 0.010
Refractive index 13 1.386 0.014 0.399 0.159 2.086 0.177

Table 4.

Statistical parameters used in QSPR model for RA(G).

Physiochemical property N A b r r 2 F P
Solubility in water 11 187.306 −9.686 0.067 0.004 0.040 0.846
Boiling point 13 328.548 14.870 0.278 0.077 0.920 0.358
Density 13 0.610 0.069 0.601 0.361 6.218 0.030
Melting point 13 104.598 −0.217 0.003 0.000 0.000 0.991
Molar mass 13 120.460 19.059 0.712 0.506 11.280 0.006
Flash point 13 152.595 8.984 0.278 0.077 0.919 0.358
Topological polar surface area 13 11.439 4.395 0.233 0.054 0.633 0.443
Heavy atom count 13 2.545 1.858 0.981 0.961 274.362 0.000
Complexity 13 −56.575 41.290 0.643 0.414 7.770 0.018
Refractive index 13 1.428 0.018 0.312 0.098 1.190 0.299

Table 5.

Statistical parameters used in QSPR model for SCI(G).

Physiochemical property N A b r r 2 F P
Solubility in water 11 122.660 −3.065 0.026 0.001 0.006 0.940
Boiling point 13 344.671 12.804 0.267 0.072 0.848 0.377
Density 13 0.631 0.065 0.628 0.395 7.173 0.021
Melting point 13 97.816 0.435 0.008 0.000 0.001 0.980
Molar mass 13 134.489 17.041 0.711 0.506 11.276 0.006
Flash point 13 162.321 7.738 0.267 0.072 0.847 0.377
Topological polar surface area 13 19.082 3.511 0.208 0.043 0.499 0.494
Heavy atom count 13 4.041 1.649 0.973 0.947 197.308 0.000
Complexity 13 −42.909 38.510 0.671 0.450 9.011 0.012
Refractive index 13 1.403 0.020 0.383 0.147 1.893 0.196

Table 6.

Statistical parameters used in QSPR model for GA(G).

Physiochemical property N A b r r 2 F P
Solubility in water 11 83.186 0.365 0.007 0.000 0.000 0.983
Boiling point 13 361.053 5.359 0.254 0.065 0.761 0.402
Density 13 0.667 0.029 0.645 0.415 7.818 0.017
Melting point 13 91.378 0.499 0.020 0.000 0.005 0.947
Molar mass 13 148.492 7.486 0.710 0.504 11.194 0.007
Flash point 13 172.207 3.239 0.254 0.065 0.761 0.402
Topological polar surface area 13 25.199 1.396 0.188 0.035 0.404 0.538
Heavy atom count 13 5.637 0.713 0.957 0.915 119.159 0.000
Complexity 13 −24.023 17.495 0.693 0.480 10.149 0.009
Refractive index 13 1.390 0.010 0.439 0.193 2.627 0.133

Table 7.

Statistical parameters used in QSPR model for M1(G).

Physiochemical property N A b r r 2 F P
Solubility in water 11 −9.471 0.920 0.098 0.010 0.087 0.775
Boiling point 13 370.704 0.975 0.237 0.056 0.656 0.435
Density 13 0.677 0.006 0.644 0.415 7.806 0.017
Melting point 13 42.770 0.535 0.112 0.013 0.140 0.716
Molar mass 13 141.046 1.549 0.754 0.568 14.480 0.003
Flash point 13 178.030 0.589 0.237 0.056 0.657 0.435
Topological polar surface area 13 15.411 0.364 0.252 0.064 0.746 0.406
Heavy atom count 13 6.361 0.135 0.927 0.860 67.373 0.000
Complexity 13 −50.995 3.707 0.753 0.567 14.383 0.003
Refractive index 13 1.355 0.002 0.517 0.267 4.010 0.070

Table 8.

Statistical parameters used in QSPR model for HM(G).

Physiochemical property N A b r r 2 F P
Solubility in water 11 −60.409 0.275 0.174 0.030 0.280 0.610
Boiling point 13 393.103 0.154 0.209 0.044 0.504 0.493
Density 13 0.749 0.001 0.634 0.402 7.385 0.020
Melting point 13 25.196 0.138 0.161 0.026 0.293 0.599
Molar mass 13 154.568 0.284 0.772 0.596 16.218 0.002
Flash point 13 191.549 0.093 0.209 0.044 0.505 0.492
Topological polar surface area 13 17.964 0.068 0.262 0.069 0.813 0.387
Heavy atom count 13 8.695 0.023 0.870 0.757 34.253 0.000
Complexity 13 −30.761 0.701 0.795 0.633 18.934 0.001
Refractive index 13 1.351 0.000 0.585 0.342 5.709 0.036

Table 9.

Statistical parameters used in QSPR model for M2(G).

Physiochemical property N A b r r 2 F P
Solubility in water 11 −20.127 0.868 0.142 0.020 0.185 0.677
Boiling point 13 402.839 0.585 0.203 0.041 0.473 0.506
Density 13 0.786 0.004 0.648 0.420 7.959 0.017
Melting point 13 48.750 0.410 0.122 0.015 0.167 0.690
Molar mass 13 172.188 1.083 0.751 0.564 14.214 0.003
Flash point 13 197.430 0.354 0.203 0.041 0.474 0.505
Topological polar surface area 13 28.830 0.208 0.205 0.042 0.482 0.502
Heavy atom count 13 9.699 0.089 0.876 0.768 36.388 0.000
Complexity 13 7.449 2.714 0.785 0.617 17.696 0.001
Refractive index 13 1.373 0.002 0.584 0.342 5.706 0.036

Table 10.

Statistical parameters used in QSPR model for F(G).

Physiochemical property N A b r r 2 F P
Solubility in water 11 −98.456 0.645 0.202 0.041 0.381 0.552
Boiling point 13 386.780 0.310 0.211 0.044 0.512 0.489
Density 13 0.740 0.002 0.605 0.366 6.357 0.028
Melting point 13 1.929 0.336 0.197 0.039 0.443 0.519
Molar mass 13 143.313 0.570 0.776 0.602 16.662 0.002
Flash point 13 187.734 0.187 0.211 0.045 0.513 0.489
Topological polar surface area 13 7.378 0.163 0.315 0.099 1.211 0.295
Heavy atom count 13 8.273 0.044 0.844 0.713 27.269 0.000
Complexity 13 −52.270 1.387 0.788 0.620 17.985 0.001
Refractive index 13 1.340 0.001 0.572 0.327 5.336 0.041

Table 11.

Statistical parameters used in QSPR model for H(G).

Physiochemical property N A b r r 2 F P
Solubility in water 11 170.472 −8.336 0.063 0.004 0.035 0.855
Boiling point 13 339.625 14.367 0.274 0.075 0.891 0.365
Density 13 0.636 0.069 0.615 0.378 6.693 0.025
Melting point 13 125.068 −2.332 0.038 0.001 0.016 0.901
Molar mass 13 136.206 18.255 0.695 0.483 10.290 0.008
Flash point 13 159.276 8.682 0.274 0.075 0.891 0.365
Topological polar surface area 13 22.495 3.446 0.187 0.035 0.397 0.542
Heavy atom count 13 3.821 1.806 0.972 0.946 190.910 0.000
Complexity 13 −29.312 40.254 0.640 0.409 7.625 0.019
Refractive index 13 1.428 0.019 0.332 0.110 1.365 0.267

Figure 4.

Figure 4

Correlation of physiochemical properties with TIs. (a) Complexity on TI. (b) Melting point on TI. (c) Solubility in water on TI. (d) Molar mass on TI. (e) Boiling point on TI. (f) Density on TI. (g) Refractive index on TI. (h) Flash point on TI. (i) Topological polar surface area on TI. (j) Heavy atom count on TI.

3.1.1. Regression Models for ABC(G)

Solubility in water=86.314+.295ABCG,Boiling point=343.135+8.246ABCG,Density=0.626+.041ABCG,Melting point=49.859+3.180ABCG,Molar mass=125.565+11.392ABCG,Flash point=161.403+4.983ABCG,Topological polar surface area=6.608+2.991ABCG,Heavy atom count=3.597+1.077ABCG,Complexity=65.744+25.904ABCG,Refractive index=1.386+.014ABCG. (10)

3.1.2. Regression Models for RA(G)

Solubility in water=187.3069.686RAGBoiling point=328.548+14.870RAGDensity=0.610+0.069RAGMelting point=104.5980.217RAGMolar mass=120.460+19.059RAGFlash point=152.595+8.984RAGTopological polar surface area=11.439+4.395RAGHeavy atom count=2.545+1.858RAGComplexity=56.575+41.290RAGRefractive index=1.428+.018RAG. (11)

3.1.3. Regression Models for SCI(G)

Solubility in water=122.6603.065SCIGBoiling Point=344.671+12.804SCIGDensity=0.631+.065SCIGMelting point=97.816+.435SCIGMolar mass=134.489+17.041SCIGFlash point=162.321+7.738SCIGTopological Polar Surface Area=19.082+3.511SCIGHeavy Atom Count=4.041+1.649SCIGComplexity=42.909+38.510SCIGRefractive index=1.403+.020SCIG. (12)

3.1.4. Regression Models for GA(G)

Solubility in water=83.186+.365GAGBoiling point=361.053+5.359GAGDensity=.667+.029GAGMelting point=91.378+.499GAGMolar mass=148.492+7.486GAGFlash point=172.207+3.239GAGTopological polar surface area=25.199+1.396GAGHeavy atom count=5.637+.713GAGComplexity=24.023+17.495GAGRefractive index=1.390+.010GAG. (13)

3.1.5. Regression Models for M1(G)

Solubility in water=9.471+0.920M1GBoiling point=370.704+.975M1GDensity=0.677+.006M1GMelting point=42.770+.535M1GMolar mass=141.046+1.549M1GFlash point=178.030+.589M1GTopological polar surface area=15.411+.364M1GHeavy atom count=6.361+.135M1GComplexity=50.995+3.707M1GRefractive index=1.355+.002M1G. (14)

3.1.6. Regression Models for HM(G)

Solubility in water=60.409+.275HMGBoiling point=393.103+.154HMGDensity=.749+.001HMGMelting point=25.196+.138HMGMolar mass=154.568+.284HMGFlash point=191.549+.093HMGTopological polar surface area=17.964+.068HMGHeavy atom count=8.695+.023HMGComplexity=30.761+.701HMGRefractive index=1.351+.000HMG. (15)

3.1.7. Regression Models for M2(G)

Solubility in water=20.127+.868M2GBoiling point=402.839+.585M2GDensity=.786+.004M2GMelting point=48.750+.410M2GMolar mass=172.188+1.083M2GFlash point=197.430+.354M2GTopological polar surface area=28.830+.208M2GHeavy atom count=9.699+.089M2GComplexity=7.449+2.714M2GRefractive index=1.373+.002M2G. (16)

3.1.8. Regression Models for F(G)

Solubility in water=98.456+.645FGBoiling point=386.780+.310FGDensity=0.740+.002FGMelting point=1.929+.336FGMolar mass=143.313+.570FGFlash point=187.734+.187FGTopological polar surface area=7.378+.163FGHeavy atom count=8.273+.044FGComplexity=52.270+1.387FGRefractive index=1.340+.001FG. (17)

3.1.9. Regression Models for H(G)

Solubility in water=170.4728.336HGBoiling point=339.625+14.367HGDensity=.636+.069HGMelting point=125.0682.332HGMolar mass=136.206+18.255HGFlash point=159.276+8.682HGTopological polar surface area=22.495+3.446HGHeavy atom count=3.821+1.806HGComplexity=29.312+40.254HGRefractive index=1.428+.019HG. (18)

3.2. Standard Error of Estimate (SEE), Correlation Determination, and Comparison

A measure of variation for an observation calculated around the computed regression line is said to be the standard error estimate. It examines the extent of accuracy of predictions made about the calculated regression line in Table 12.

Table 12.

Standard error of estimate.

Topological indices Standard error of estimate
Solubility in water Boiling point Density Melting point Molar Mass Flash point Topological polar surface area Heavy atom count Complexity Refractive index
ABC(G) 90.3417 42.7913 0.075526 51.3723 15.38515 25.8647 15.0241 0.425 38.783 0.044068
RA(G) 90.1415 42.5820 0.076173 51.5652 15.58503 25.7384 15.1681 0.308 40.682 0.045658
M 1(G) 89.9110 43.0604 0.072886 51.2414 14.57363 26.0265 15.0952 0.588 34.984 0.041146
M 2(G) 89.4259 43.4031 0.072591 51.1779 14.65046 26.2331 15.2673 0.756 32.902 0.039002
HM(G) 88.9703 43.3450 0.073716 50.8925 14.10078 26.1981 15.0522 0.774 32.215 0.038999
H(G) 90.1651 42.6330 0.075143 51.5279 15.94348 25.7689 15.3246 0.366 40.841 0.045334
SCI(G) 90.3127 42.7115 0.074144 51.5640 15.58663 25.8162 15.2560 0.361 39.401 0.044396
F(G) 88.4891 43.3293 0.075867 50.5571 13.98699 26.1888 14.8049 0.841 32.738 0.039441
GA(G) 90.3398 42.8683 0.072862 51.5548 15.61538 25.9106 15.3196 0.456 38.327 0.043184

4. Conclusions

It is noted that Randic index RA(G) provides high correlated value of heavy atom count at r = 0981. F(G) index provides maximum correlated value for molar mass r = 0.776 and complexity r = 0.788. No correlation was found between TIs and density, polar surface area, flash point, boiling point, melting point, refractive index, and solubility in water.

In this work, the TIS for fungicides were computed, and they were contrasted with a linear QSPR model. Using the data gathered in this manner, the pharmaceutical industry will be able to create new medications to discover preventative treatments for the aforementioned illness. The variety of topological indicators for these medications is strongly affected by the correlation coefficient. The results offer a technique to evaluate physiochemical features for new discoveries of other disorders and are eye-opening for researchers working on drug science in the pharmaceutical sector.

Contributor Information

Saima Parveen, Email: saimashaa@gmail.com.

Rakotondrajao Fanja, Email: frakoton@yahoo.fr.

Data Availability

All the data used to support the findings of the study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  • 1.Ribas e Ribas A. D., Spolti P., Del Ponte E. M., et al. Is the emergence of fungal resistance to medical triazoles related to their use in the agroecosystems? A mini review. Brazilian Journal of Microbiology . 2016;47(4):793–799. doi: 10.1016/j.bjm.2016.06.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Zambolim L., Juliatti F. C., Guerra W. How to cope with the vulnerability of site specific fungicides on the control of Asian soybean rust. Int. J. Res. Agron. . 2021;4(1):14–25. doi: 10.33545/2618060x.2021.v4.i1a.44. [DOI] [Google Scholar]
  • 3.Reis E. M., Zanatta M., Reis A. C. Addition of mancozeb to DMI+ QoI, and SDHI+ QoI co- formulations improving control of Asian soybean rust. Journal of Agricultural Science . 2020;13(1):195–201. doi: 10.5539/jas.v13n1p195. [DOI] [Google Scholar]
  • 4.Paíga P., Rodrigues M. J. E., Correia M., Amaral J. S., Oliveira M. B. P., Delerue-Matos C. Analysis of pharmaceutical adulterants in plant food supplements by UHPLC-MS/MS. European Journal of Pharmaceutical Sciences . 2017;99:219–227. doi: 10.1016/j.ejps.2016.12.024. [DOI] [PubMed] [Google Scholar]
  • 5.Liu T., Diao J., Di S., Zhou Z. Stereoselective bioaccumulation and metabolite formation of triadimefon in Tubifex tubifex. Environmental Science & Technology . 2014;48(12):6687–6693. doi: 10.1021/es5000287. [DOI] [PubMed] [Google Scholar]
  • 6.Hergueta-Castillo M. E., López-Rodríguez E., López-Ruiz R., Romero-González R., Garrido Frenich A. Targeted and untargeted analysis of triazole fungicides and their metabolites in fruits and vegetables by UHPLC-orbitrap-MS2. Food Chemistry . 2022;368 doi: 10.1016/j.foodchem.2021.130860.130860 [DOI] [PubMed] [Google Scholar]
  • 7.Ravi V., Chidambaram N., Çolakoğlu Ö., Ahmed H., Jaganathan S., Jaganathan J. QSPR study and distance-based new topological descriptors of some drugs used in the COVID-19 treatment. Journal of Mathematics . 2023;2023:15. doi: 10.1155/2023/1187415.1187415 [DOI] [Google Scholar]
  • 8.Parveen S., Farooq F. B., Awan N. U. H., Fanja R., Choudhary M. F. Topological indices of drugs used in rheumatoid arthritis treatment and its QSPR modeling. Journal of Mathematics . 2022;2022:11. doi: 10.1155/2022/1562125.1562125 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Havare O. C. The inverse sum indeg index (\(ISI\)) and \(ISI\) energy of Hyaluronic Acid-Paclitaxel molecules used in anticancer drugs. Open Journal of Discrete Applied Mathematics . 2021;4(3):72–81. doi: 10.30538/psrp-odam2021.0065. [DOI] [Google Scholar]
  • 10.Havare O. C. Çoklu doğrusal regresyon kullanılarak monokarboksilik asitlerin bazı termodinamik özelliklerin belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi . Jun. 2019;8(2):466–471. doi: 10.17798/bitlisfen.500500. [DOI] [Google Scholar]
  • 11.West D. B. Introduction to Graph Theory, Prentice Hall . New Jersey, USA: Upper Saddle River; 2001. [Google Scholar]
  • 12.Trinajstic N. Chemical Graph Theory . Boca Raton, FL, USA: CRC Press; 2018. [Google Scholar]
  • 13.Estrada E., Torres L., Rodriguez L., Gutman I. An atom-bond connectivity index: modeling the enthalpy of formation of alkanes. Indian Journal of Chemistry . 1998;37:p. 855. [Google Scholar]
  • 14.Randic M. On Characterization of molecular branching. Journal of the American Chemical Society . 1975;97:6609–6615. [Google Scholar]
  • 15.Zhou B., Trinajstic N. On general sum-connectivity index. Journal of Mathematical Chemistry . 2010;47:210–218. [Google Scholar]
  • 16.Furtula B., Gutman I. A forgotton topological index. Journal of Mathematical Chemistry . 2015;53:213–220. [Google Scholar]
  • 17.Gutman I. Degree based topological indices. Croatica Chemica Acta . 2013;86(4):351–361. doi: 10.5562/cca2294. [DOI] [Google Scholar]
  • 18.Fajtlowicz S. On conjectures of grafitti II. Congressus Numerantium . 1987;60:189–197. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All the data used to support the findings of the study are included within the article.


Articles from International Journal of Analytical Chemistry are provided here courtesy of Wiley

RESOURCES