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Identification of motor progression in Parkinson’s disease
using wearable sensors and machine learning
Charalampos Sotirakis 1, Zi Su1, Maksymilian A. Brzezicki 1, Niall Conway1, Lionel Tarassenko2, James J. FitzGerald1,3 and
Chrystalina A. Antoniades 1✉

Wearable devices offer the potential to track motor symptoms in neurological disorders. Kinematic data used together with
machine learning algorithms can accurately identify people living with movement disorders and the severity of their motor
symptoms. In this study we aimed to establish whether a combination of wearable sensor data and machine learning algorithms
with automatic feature selection can estimate the clinical rating scale and whether it is possible to monitor the motor symptom
progression longitudinally, for people with Parkinson’s Disease. Seventy-four patients visited the lab seven times at 3-month
intervals. Their walking (2-minutes) and postural sway (30-seconds,eyes-closed) were recorded using six Inertial Measurement Unit
sensors. Simple linear regression and Random Forest algorithms were utilised together with different routines of automatic feature
selection or factorisation, resulting in seven different machine learning algorithms to estimate the clinical rating scale (Movement
Disorder Society- Unified Parkinson’s Disease Rating Scale part III; MDS-UPDRS-III). Twenty-nine features were found to significantly
progress with time at group level. The Random Forest model revealed the most accurate estimation of the MDS-UPDRS-III among
the seven models. The model estimations detected a statistically significant progression of the motor symptoms within 15 months
when compared to the first visit, whereas the MDS-UPDRS-III did not capture any change. Wearable sensors and machine learning
can track the motor symptom progression in people with PD better than the conventionally used clinical rating scales. The methods
described in this study can be utilised complimentary to the clinical rating scales to improve the diagnostic and prognostic
accuracy.
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INTRODUCTION
The progression of Parkinson’s disease (PD) is currently monitored
using clinical rating scales which are used to assess the cardinal
motor and non-motor symptoms. The current gold standard is the
Movement Disorder Society-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS)1.
Accurate assessment with rating scales depends on the

clinician’s experience and interpretation may be complicated by
inter-rater disagreement2. Rating scale data are coarse-grained,
and on an ordinal rather than interval scale. Collectively, these
factors introduce variability and delay the confident detection of
progression; at the group level in clinical studies, they may restrict
the types of statistical analysis that can be performed. Objective
measures that are on a continuous interval scale would be highly
desirable both for the assessment of individual patients in clinical
practice and for measuring the efficacy of therapeutic interven-
tions in clinical trials.
In recent years, wearable sensors have emerged as a promising

tool for quantitative characterisation of motor status in PD3,4. The
portability and affordability of wearable sensors make it possible
to assess the spatio-temporal features of walking and balance in
the laboratory or clinic, and remotely at the comfort of patients’
homes. The ultimate vision is to use these detailed and
personalised kinematic measurements to individualise disease
diagnostic and prognostic tools and measure the effectiveness of
treatment.
Most wearable devices used to monitor PD patients output

many objective numerical measures, leading to very large

datasets. Not all features extracted by these devices are mean-
ingful for clinical diagnosis and treatment. Analysis of high-
dimensionality datasets usually requires initial feature reduction
steps to avoid type 1 error while maintaining sensitivity. There is a
need for the development of analysis techniques to extract
clinically useful information from the high-dimensional data
generated by these wearable sensors5.
Machine learning (ML) algorithms have been applied to data

collected by wearable inertial measurement units (IMUs), which
are combinations of triaxial accelerometers, gyroscopes, and
magnetometers, often with multiple IMUs connected wirelessly
in a body-area network6,7. ML algorithms may be trained with the
clinical rating scales used in PD diagnosis as labels, using the
movement features collected by IMUs when patients perform
standard clinical assessment tasks8,9. Previous work from our lab
and others has demonstrated that the analysis of IMU data can
discriminate between healthy older adults, individuals with PD of
different disease severity, and individuals with other Parkinsonian-
like disorders, such as PSP10–13. Suitably-trained ML algorithms can
identify freezers14 and fallers15, and detect signs of bradykinesia16

among PD individuals cross sectionally. Further, gait features
extracted from the IMU data can be used prospectively to identify
older adults at risk of developing PD17. Overall, these studies have
shown that the combination of wearable device data with ML
algorithms can duplicate clinical rating scales and discriminate
between different disorders and phenotypes. The current long-
itudinal study investigates the use of kinematic features collected
during walking and standing tasks to objectively track the
progression of PD motor symptoms over time.
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We have previously shown that kinematic features derived from
the data collected by wearable devices placed on the participant’s
trunk, wrists, and feet, together with machine learning algorithms
can be used to track the progression of Progressive Supranuclear
Palsy motor symptoms18. The current study aims to extend this
knowledge, using walking and postural sway features derived
from data collected by six IMUs, to identify the earliest signal of
motor symptom progression in individuals with PD measured
every three months, over a period of 18 months. First, seven
different models based on ML algorithms with automatic feature
selection and/or factorisation were investigated to validate the
association of the wearable sensor-derived data with the MDS-
UPDRS-III scale. Second, we aimed to establish whether the
model-estimated scores could be used to track the progression of
the PD motor symptoms. The hypotheses that were put forward
were that a) the model-estimated scores based on wearable
sensor-derived motor features could mimic the MDS-UPDRS-III
score and b) the model-estimated scores would identify motor
symptom progression earlier than the MDS-UPDRS-III score.

RESULTS
IMU data were obtained from 91 Individuals with idiopathic PD
over a period of 18 months. Visits were scheduled at 3-month
intervals (thus a total of 7 planned visits including baseline, i.e., the
first visit). Participants were excluded if they missed more than 2
consecutive visits; this resulted in 74 going forward for further
analysis. Demographics and clinical data are presented in Table 1.

Automatic feature selection
Out of the total of 122 measured features (a list of which can be
found in the Supplementary Table 1), the group means of 29
features were found to linearly increase or decrease significantly
(p < 0.05) over time at a group level (Supplementary Fig. 1). These
29 “progressing features” were analysed further. Seven different
regression analyses with automatic feature selection were
performed and their results compared.

– A multivariate linear regression (LR) model using the two
features with the most statistically significant progression over
time was developed to estimate the MDS-UPDRS-III scale as its
output (model 1). The features showing the most significant
progression of their group means over time were the
variabilities (in terms of standard deviation) of a) the terminal
double support, and b) the swing phase, for the contralateral
(to the side of motor symptom onset) lower limb.

– From the subset of the 29 progressing features, 6 were
identified (i.e., an extra 4 added to the two features of model
1). This was achieved using forward feature selection, with
early stopping (model 2). Model 2 was more accurate in
estimating the MDS-UPDRS-III score in at least 5 visits than
model 1.

– A Random Forest (RF) Regressor with all 29 progressing
features as its input (model 3) was also investigated.

– Principal Component Analysis (PCA) was applied to a) the
entire set of 122 features, and b) the subset of the 29
progressing features. This returned 31 and 10 factors,
respectively, accounting for 90% of the total variance (See
Supplementary Fig. 2). Again, both Linear Regression and
Random Forest regression were used to estimate the MDS-
UPDRS-III clinical rating scale, using the principal components
as independent variables. This resulted in 4 models: a) model 4
using LR with 10 factors, b) model 5 using RF with 10 factors, c)
model 6 using LR on 31 factors and d) model 7 using RF on 31
factors.

Table 2 shows the performance of each model used to estimate
the MDS-UPDRS-III rating scale as its output. Performance metrics
were calculated as the average Root Mean Square Error on the
validation set using 5-fold cross validation analysis. Model 3 (RF
regression to the progressing features) performed best with an
average RMSE of 10.02 (Table 2) and was used to quantify motor
symptom progression in all subsequent analyses.
To make sure that the model was able to estimate the clinical

score more accurately than an individual feature on its own, the
same cross-validation procedure was performed with a simple
linear regression using each feature in turn as an MDS-UPDRS-III
estimator. Figure 1 illustrates the estimation error (in terms of
average RMSE across the 5-fold cross validation iterations) for each
feature, Principal Component, and the RF (model 3). Among the 29
progressing features, stride length (RMSE; contralateral: 11.23,

Table 1. Demographics of PD participants.

PD demographics (N= 74) at Visit 1 Mean (standard deviation)

Age 64.6 (7.8)

Sex (Male/Female) 42/32

Height (cm) 172 (9.6)

Weight (kg) 75.9 (12.5)

Time since diagnosis (months) 56 (49)

Side of Symptom onset (R/L) 32/42

Dominant side (R/ L/ Ambidextrous) 65/7/2

MDS-UPDRS part III 24.4 (12.0)

MoCA 26.9 (2.3)

Demographics, clinical characteristics at Visit 1 and cognitive scores of PD
patients. Mean values and standard deviation (in parenthesis). MDS-UPDRS
Movement Disorders Society Unified Parkinson’s Disease Rating Scale,
MoCA Montreal Cognitive Assessment.

Table 2. Model performance.

Set of features Dimensionality reduction Predictor RMSE (std)

Progressing features (29 features) Feature selection (2 features) LR (model1) 11.86 (0.67)

Feature selection (6 features) LR (model2) 11.17 (0.80)

All progressing (29 features) RF (model3) 10.02 (0.88)

PCA (10 factors) LR (model4) 11.25 (0.68)

RF (model5) 10.92 (0.65)

Original features (122 features) PCA (31 factors) LR (model6) 10.80 (0.91)

RF (model7) 10.32 (0.76)

The table shows the regression results when automatically selecting features.
RMSE Root Mean Square Error, std standard deviation.
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ipsilateral: 11.33), foot strike angle (RMSE; contralateral: 11.44,
ipsilateral: 11.50) and the toe off angle (RMSE; ipsilateral: 11.30)
were found to be more important independent predictors of MDS-
UPDRS-III score.

Actual and model estimated UPDRS progression
Figure 2 shows the progression of the actual and the estimated
MDS-UPDRS-III scores and an aggregate score of the actual MDS-
UPDRS-III items that measure gait and posture functions (Gait,
Freezing of Gait, Posture, Postural Stability). The mean scores,
estimated by Model 3, demonstrated a monotonic increase from
visit 1 to visit 7, in contrast to the means of the total MDS-UPDRS-
III values assigned by the expert clinicians. Repeated measures
analysis revealed that the model was able to provide an earlier
signal of disease progression when compared to the actual MDS-
UPDRS-III. A Friedman repeated measures test for related samples
demonstrated that there was a significant change across visits for
both the actual MDS-UPDRS-III values (χ2= 28.83, p < 0.001), and
the RF-estimated values (χ2= 15.59, p= 0.016). Pairwise compar-
isons, after adjusting the significance threshold for multiple
comparisons (Benjamini-Hochberg with 1% False Discovery Rate)
showed that the actual MDS-UPDRS-III score did not increase at
any visit when compared to baseline (Visit 1). In contrast, the RF-
estimated MDS-UPDRS-III score was increased at V6 (p < 0.001)
and V7 (p < 0.001) with respect to baseline. The group-median RF-
estimations demonstrated a rate of change of 0.33 points per Visit
(i.e., per 3 months).
The Gait and Posture items aggregate score progressed

significantly but this progression was not purely monotonic,

rather the score increased at V5 (p= 0.001) and V7 (p < 0.001)
compared to the baseline but V6 was not significant. We further
calculated the interquartile range (difference between the 25th
and 75th percentile) for each visit for the clinical rating scale and
the model estimations. The results emphasised that the MDS-
UPDRS-III data are more variable compared to the RF estimations
(MDS-UPDRS-III interquartile range per visit: V1= 14.75,
V2= 13.75, V3= 16.75, V4= 14.5, V5= 16.5, V6= 15, V7= 22.75;
RF estimations: V1= 7.14, V2= 6.29, V3= 7.98, V4= 5.80,
V5= 8.37, V6= 9.69, V7= 7.68).

DISCUSSION
This study demonstrates a novel and objective method to quantify
motor symptom progression in PD using a combination of
wearable sensor data and ML algorithms. We applied automatic
feature selection processes to the sensor data to cope with the
plethora of measured kinematic features. The model that
estimated the MDS-UPDRS-III score with the lowest RMSE (model
3) was then adopted to process the longitudinal sensor data from
sequential visits. Results showed that the model was able to
identify the worsening of PD motor symptoms over time from
those data, unlike the actual MDS-UPDRS-III scores themselves.
The ability of ML methods to learn patterns from kinematic data

and estimate disease severity has also been shown in previous
studies in parkinsonian disorders17–20. In our study, the RF
regressor (model 3) resulted in the lowest root mean square error
(RMSE= 10.02) across the five cross-validation iterations, when
compared to the other models (see Table 2) and all individual
features (see Fig. 1). Random Forest regressors are able to account

Fig. 1 Radar plot of RMSE scores. The RMSE scores for each kinematic feature, principal component, and the model (Random Forest, model
3) estimations are shown. The Random Forest estimations estimated the MDS-UPDRS-III with the best accuracy.
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for the collinearities that exist in high-dimensional sensor datasets
and have previously shown excellent discriminatory performance
in similar situations11,12,21.
The primary aim of this study was to develop a method to track

the progression of walking and postural sway kinematic features
over time. Model 3 identified motor symptom progression as early
as 15 months after baseline, while the clinical rating scale did not
capture these signs of progression by the end of the period
studied (see Fig. 2). Further, a computed sum of the gait and
posture sub-items of the MDS-UPDRS revealed a progression
which did not demonstrate monotonicity across visits. The better
performance of the RF model to track the progression of the
motor symptoms can be explained by the reduced variability of
the modelled data, compared to the MDS-UPDRS-III. This was
evidenced by the variability of the model estimations that was less
than half of the variability manifested by the MDS-UPDRS-III at all
visits (in terms of inter-quartile range). Effectively, the model
output (i.e., estimated MDS-UPDRS-III score) increases monotoni-
cally from one visit to the next, whereas the actual MDS-UPDRS-III
scores demonstrate visit-to-visit fluctuations and hence no clear
evidence of progression of motor symptoms emerges. By
decreasing the noise, the model results seem promising for the
identification of an earlier motor progression signal in PD. The
integration of wearable sensors, clinical rating scales and machine
learning presents a promising method to assess the effectiveness
of therapeutic interventions that target motor symptoms in PD.
The results of the current study also highlight the individual

features that contribute most to an accurate estimate of the MDS-
UPDRS-III-score: the angle of the foot at foot strike and toe off, and
the stride length. Stride length has been previously reported to be
a reduced in people with PD compared to healthy controls22. The
foot strike angle measures the pitch angle of the foot at the point
of initial contact with the ground, with smaller values indicating
that the foot reaches the floor at a flatter angle. Importantly, foot
strike angle decreases from one visit to the next (see Supplemen-
tary Fig. 1) suggesting that the foot pitch angle decreases as a
function of disease duration, rendering patients increasingly prone
to trips and falls23. A lower foot strike angle has been shown to be
a discriminative characteristic of PD24 and a marker of disease
severity11.
Out of the 29 features that showed statistically significant

progression across visits, 19 reflect walking variability (measured
in terms of standard deviation in this study; see Supplementary
Fig. 1). Step to step variability has been previously shown to scale
with disease severity in PD25 while Deep Brain Stimulation can
reduce it26. Furthermore, step to step variability is also an
important predictor of falls15. Despite their significant progression
across visits variability measures were not found to correlate well
with the MDS-UPRDS-III score (Fig. 1). This means that although
walking variability may be an important feature to identify motor

symptom progression in PD, it may not be routinely captured
during clinical examination and without the help of digital
technology. From the list of postural sway features, the
mediolateral sway velocity (coronal plane) was the single postural
feature that progressed significantly across visits and was there-
fore included in the model as an independent predictor. More-
over, mediolateral sway velocity has been previously shown to be
an important biomarker of falls in PD27.
Kinematic features collected by wearable devices and analysed

using a well-known Machine Learning algorithm can provide early
signs of PD motor symptom progression, enabling the assessment
of the effectiveness of medical treatment. We propose the
methodology presented in this study as a complementary tool
for assessment of PD patients in the clinic.

METHODS
91 Individuals with PD were recruited through the Oxford
Quantification in Parkinsonism (OxQUIP) study, conducted at the
John Radcliffe Hospital, Oxford, UK. The study was approved by a
research ethics committee and the Health Research Authority (REC
16/SW/0262). All participants were informed about the study’s
aims and protocols, and gave their informed written consent to
participate in the study. Participants were included if they a) were
diagnosed with Parkinson’s Disease, b) received anti-parkinsonian
medication, c) had no major musculo-skeletal problems that
precluded them from walking or standing and d) could walk and
stand unassisted during the clinical tests. All participants were
asked to visit the lab once every three months over a period of
18 months, completing a total of 7 visits. Participants were also
tested using the Montreal Cognitive Assessment (MoCA) test
when entering the study, to ensure that they were not demented
(MoCA > 24) at the time of giving their consent. All patients were
receiving antiparkinsonian medication at the time of their first visit
to the lab and continued receiving their medication up to the end
of the study.

Apparatus and task
Participants were rated using the MDS-UPDRS-III score (motor part
of the overall MDS-UPDRS score). They were subsequently asked
to perform two movement tasks, to assess walking and postural
sway. The walking task lasted for 2 minutes and was performed on
a straight level surface, in a 15-metre-long corridor, making turns
when necessary. To measure postural sway, the participants were
instructed to stand still for 30 seconds with their eyes closed. A
footplate was initially placed between each participant’s feet to
ensure standardised inter-foot distance across participants and
removed immediately before starting the data collection for each
task. An experienced clinical researcher was standing or walking

Fig. 2 Progression of the clinical and model estimated scores. Boxplots illustrate the progression of the gait and posture items (left), the
actual MDS-UPDRS-III (middle) and RF-estimated (right) MDS-UPDRS-III scores. Asterisks denote the significant adjusted pairwise comparisons
to baseline.
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on the participant’s side for safety reasons, and to ensure eye
closure during the postural sway task.
For both movement tasks, an array of 6 IMU sensors (OpalTM,

APDM, Portland, Oregon, USA) was used to collect the kinematic
data. The sensors were placed on both wrists and feet, the
sternum, and the lumbar region. Each sensor provides triaxial
accelerometer, gyroscope and magnetometer data at a sampling
frequency of 128 Hz.

Data analysis
All analyses were performed using custom software written in
Python (v3.8).
Several participants dropped out during the study or missed

one or more visits. Participants with more than two consecutive
missed visits were excluded. If a participant missed only one or
two visits, imputation was performed using linear interpolation,
i.e., data were imputed considering the feature values for the
same participant at the previous and the next available visit. This
resulted in a total number of 74 participants being included in the
analysis. Figure 3 schematically illustrates the participant inclusion
criteria for the study.

Pre-processing
From the MDS-UPDRS-III score, items 3.1 and 3.2 (measuring
Speech and Facial expression, respectively) were omitted because
these functions are less related to walking and swaying. The total
MDS-UPDRS-III was calculated as the sum of the values of all other
items. Furthermore, an aggregate score of the posture and
walking features was calculated, as the sum of the following items:
3.10 “Gait”, 3.11 “Freezing of Gait”, 3.12 “Postural Stability” and
3.13 “Posture”.
The MobilityLab software extracted 122 kinematic features for

both walking and postural sway tasks. As a first step in pre-
processing, stride length features (mean and variability) were
normalised by the participant’s height, expressed in metres.
Additionally, the right and left limb-specific features were
relabelled Ipsilateral and Contralateral, depending on the partici-
pants’ self-reported side of symptom onset. Ipsilateral refers to the
side which developed symptoms first.

Dimensionality reduction and feature selection
The high dimensionality of kinematic features and the collinearities in
the dataset (Fig. 4), necessitated a feature selection step. As a first

step of the dataset dimensionality reduction, the 122 feature values
were averaged across participants for each visit. The features for
which the group means were found to linearly increase or decrease
significantly (Linear Regression p< 0.05) across the seven visits were
considered to be “progressing features”. 29 progressing features
were stored for further analysis.
Different automatic feature selection strategies and models

were subsequently investigated in order to select the combination
that performed best, based on the Root Mean Square Error (RMSE)
derived by cross-validation analysis. Figure 5 illustrates the steps
of dimensionality reduction.
First, the two most significant features shown to progress with

time (i.e., regress linearly across visits) based on the group average
were used to estimate the MDS-UPDRS-III score, using a multi-
variate linear regression.
Second, a forward feature selection with early stopping was

used as described in our previous study18. Briefly, the dataset was
split into a training set composed of the wearable sensor data
acquired in 6 out of the 7 visits, and a validation set corresponding
to the data acquired during the remaining visit. This meant that
there were 7 training datasets (consisting of data acquired in 6 out
of 7 visits) and 7 corresponding validation datasets (consisting of
the data acquired during the remaining visit in each case). For
each of the 7 iterations, a simple linear regression algorithm was
used to select those features that gave the most accurate
estimation of the MDS-UPDRS-III score. Each of the 7 models
was initialised with the single feature which had previously shown
the best progression across visits (lowest p-value: the terminal
double support of the contralateral limb (% of gait cycle time). The
algorithm then iterated through the list of the remaining
progressing features and added the one that reduced the RMSE
by the greatest amount. This process was repeated 7 times, until
all visits served as a validation set once. Effectively, this step
provided a list of features to estimate the MDS-UPDRS-III for each
visit. The features that were present in at least 5 of the 7 visits
were stored as important features to be used in model validation.
Third, Principal Component Analysis (PCA) was introduced as a

procedure to reduce the dimensionality of the original datasets
using fewer uncorrelated factors, called principal components.
PCA was applied both to the entire set of 122 features, and on the
29 progressing features, resulting in two sets of principal
components. We selected the number of principal components
that explained 90% of the total variance of each dataset.
Finally, as a part of a Random Forest Regressor the relative

importance of the features is determined based on the amount of

Fig. 3 Experimental setup. a Schematic diagram illustrating the participant selection process. b Illustration of the 6 IMU sensor placement
(Image created with BioRender.com). IMU Inertial Measurement Unit.
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impurity (in terms of squared error) reduction in each decision
tree. This is then averaged across the ensemble decision trees to
determine the eventual features importance. The entire set of 29
progressing features was used and no further selection process

performed prior to RF regression because this algorithm is known
to deal well with high-dimensionality datasets and collinearities
among the features.

Cross validation
A five-fold repeated cross-validation process was used to evaluate
each model and select the one that most accurately estimated the
MDS-UPDRS-III values. The entire dataset (74 participants, 7 visits)
was randomly split into 5 subsets. Four subsets (80% of the data)
were subsequently used as the training set, while the remaining
subset (20%) served as the validation set. This process was
repeated 5 times, and so all sub-sets were each used as part of the
training and the validation set once. The model that performed
best in estimating MDS-UPDRS-III scores (model 3) was selected to
analyse the dataset longitudinally.

Statistics
The normality of distribution was tested using the Shapiro-Wilks
test and the model-estimated MDS-UPDRS-III score was found to
be non-normally distributed at most visits (Shapiro-Wilks for MDS-
UPDRS-III: V1= 0.067, V2= 0.021, V3= 0.036, V4= 0.818,
V5= 0.184, V6= 0.005, V7= 0.013; Shapiro-Wilks for RF model
estimations: V1= 0.015, V2= 0.008, V3= 0.769, V4= 0.001,
V5= 0.142, V6= 0.008, V7= 0.003). The inter-quartile range was
calculated for each visit as means to estimate the noise for both
MDS-UPDRS-III and the model estimations. A Friedman test for

Fig. 5 Feature selection and analysis pipeline. Different feature
selection, factorisation and modelling strategies were investigated
resulting in 7 different models. The model that estimated MDS-
UPDRS-III more accurately (with the smallest RMSE) was selected for
further analysis.

Fig. 4 Correlation heatmap. The correlations among the 29 features and the MDS-UPDRS-III found to linearly increase or decrease
significantly (p < 0.05) over time are shown. Blue and red coloured cells illustrate negative and positive correlation respectively.
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related samples was therefore used to address whether the
model-estimated MDS-UPDRS-III values exhibited progression
across visits. Pairwise comparisons were further assessed between
each visit and the baseline (i.e., visit 1), using the Wilcoxon signed
rank test. A Benjamin-Hochberg correction for multiple compar-
isons was applied using a 1% False Discovery Rate (FDR).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Original data presented in this paper, is from the ongoing OxQUIP study and cannot
be shared until completion of the whole study and full dissemination of results. This
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Qualified researchers will be able to contact the Principal Investigator at the
University of Oxford.
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