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Manipulating directional flow in a two-
dimensional photonic quantumwalk under a
synthetic magnetic field

Quan Lin1, Wei Yi 2,3 & Peng Xue 1

Matter transport is a fundamental process in nature. Understanding and
manipulating flow in a synthetic media often have rich implications for mod-
ern device design. Here we experimentally demonstrate directional transport
of photons in a two-dimensional quantumwalk, where the light propagation is
highly tunable through dissipation and synthetic magnetic flux. The direc-
tional flow hereof underlies the emergence of the non-Hermitian skin effect,
with its orientation continuously adjustable through the photon-loss para-
meters. By contrast, the syntheticmagnetic flux originates from an engineered
geometric phase, which, by inducing localized cyclotronorbits, suppresses the
bulk flow through magnetic confinement. We further demonstrate how the
directional flow and synthetic flux impact the dynamics of the Floquet topo-
logical edge modes along an engineered boundary. Our results exemplify an
intriguing strategy for engineering directed light transport, highlighting the
interplay of non-Hermiticity and gauge fields in synthetic systems of higher
dimensions.

Open systems are ubiquitous in nature, and exhibit rich and complex
behaviors unknown to their closed counterparts1. The recent pro-
gresses in non-Hermitianphysics offer fresh insights into open systems
from a unique perspective, giving rise to exotic symmetries and new
paradigms of topology2–9. A much studied non-Hermitian phenom-
enon of late is the non-Hermitian skin effect (NHSE)9–32, whereby a
macroscopic number of eigenstates become exponentially localized
toward the boundaries. The NHSE has significant impact on the band
topology9–11, the spectral symmetry33–35, and dynamics36–38. One of the
most salient dynamic signatures of the NHSE is the directional bulk
flow13,38–40, which is closely connected to the global topology of the
spectrum on the complex plane31,32. Such directional dynamics can
have potential applications in topological transport and device design,
but the generation and control of this peculiar form of bulk flow,
particularly in higher dimensions, remain experimentally unexplored.

In this work, we experimentally demonstrate the tuning of direc-
tional transport in photonic quantum walks on a synthetic two-
dimensional square lattice. The oriented bulk dynamics underlies the

NHSE of the two-dimensional quantum walk—the unidirectional flow
leads to the accumulation of eigenstates toward boundaries in the
corresponding direction. By tuning the photon-loss parameters, we
show how the direction of the flow (hence the direction of the NHSE)
canbe continuously adjusted. In particular,when thedirectionalflow is
tuned to the diagonal of the square lattice, the system exhibits the
much-discussed corner skin effect22. By engineering the quantum-walk
setup, we also introduce a synthetic flux to the lattice41–45, which we
observe to suppress the directional dynamics. Such suppression is the
result of the competition between two localization mechanisms:
magnetic confinement and the NHSE46,47. Specifically, the synthetic
magnetic flux gives rise to local cyclotron orbits, which are incompa-
tible with the persistent bulk flow underlying NHSE46. We quantita-
tively characterize the tunability of the light propagation through loss
and flux, and further demonstrate their impact on the dynamics of
topological edgemodes along the boundary. Our experiment confirms
the magnetic suppression of NHSE and further illustrates the flexible
control over the NHSE-related bulk flow in higher dimensions.
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Results
Time-multiplexed two-dimensional quantum walk
In discrete-time quantum walks, the walker state ψðtÞ

�� �
evolves

according to ψðtÞ
�� �

=Ut ψð0Þ
�� �

, where t indicates the discrete time
steps, andU is thus identified as the Floquet operator that periodically
drives the system. We consider such a quantum walk on a two-
dimensional square lattice, with the Floquet operator

U =MySyPCMxSxC: ð1Þ

Here the shift operators are defined as Sj =
P

rj0ih0j � jr� ejihrj+ j1i
h1j � jr+ ejihrj, with r= ðx,yÞ 2 Z2 labeling the coordinates of the lattice
sites, j∈ {x, y}, and ex = (1, 0) and ey = (0, 1). The shift operators move
the walker in the corresponding directions, depending on the walker’s
internal degrees of freedom on the basis of f 0j i, 1j ig (dubbed the coin
states). These coin states are subject to rotations under the coin

operator C = 1ffiffi
2

p 1 1
1 �1

� �
� 1r, where 1r =

P
rjrihrj. The gain–loss

operators are given by (here j∈ {x, y})

MjðγjÞ=
eγj 0

0 e�γj

� �
� 1r, ð2Þ

which makes the quantum walk non-unitary for finite γx or γy.
A key ingredient to our scheme is the phase-shift operator,

defined as

P =
X
r

ei2παx 0

0 e�i2παx

 !
� jrihrj, ð3Þ

which enforces a position-dependent geometric phase on the walker,
so that the latter acquires a phase 2πα when going around any single
plaquette of the square lattice (see Fig. 1a and see the “Methods”
section). Similar to that of the Hofstadter model41, the accumulated
phase shift of the walker on the lattice is equal to the Aharonov–Bohm
phase of a charged particle in a uniform magnetic field, with a
magnetic flux α threaded through each plaquette.We therefore regard
α as the synthetic flux, which takes value in the range ½0, 1Þ.

We experimentally implement the two-dimensional quantumwalk
above using photons. As illustrated in Fig. 1, the overall architecture is
that of a fiber network39,40,48–51, through which attenuated single-
photon pulses are sent, with each full cycle around the network
representing a discrete time step. The coin states f 0j i, 1j ig are encoded
in thephotonpolarizations f Hj i, Vj ig. The spatial degrees of freedomof
the square lattice are encoded in the time domain, following a time-
multiplexed scheme. This is achievedbybuilding path-dependent time
delays into the four different paths (labeled x ± 1 and y ± 1 in Fig. 1a)
within the network (see the “Methods” section for details). The
superpositions of multiple well-resolved pulses within the same dis-
crete time step thus represent thoseofmultiple spatial positions at the
given time step (see Fig. 1b).

The shift and coin operators are implemented with beam splitters
(BSs) and wave plates (WPs), and the phase operator with one of the
electro-optical modulators (EOM1 in Fig. 1). We further implement
polarization-dependent loss operators M 0

j = e
�γjMj in each path, using

a combination of theWPs and the EOMs. The time-evolved state driven
byU is then related to that in the experiment by adding a factor eðγx + γyÞt

to the latter.
For all experiments, avalanche photo-diodes (APDs) with tem-

poral and polarization resolutions are employed to record the prob-
ability distribution of the walker states. This enables us to construct
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Fig. 1 | Two-dimensional non-Hermitian quantum walk with a synthetic gauge
field. a Schematics for possible movements of a walker at spatial position (x, y)
during each time step. b A time-multiplexed implementation of the two-
dimensional photonic quantum walk. The photons are initialized at position (0, 0)
in the superposition of the polarizations ð Hj i+ i Vj iÞ=

ffiffiffi
2

p
. Once coupled into the

setup through a low-reflectivity beamsplitter (BS, reflectivity 3%), their polarization
state is manipulated by a half-wave plate (HWP). The photonic wave packets are
split by a polarizing beam splitter (PBS) and routed through a pair of single-mode

fibers (SMF) of length 287.03 and 270m, respectively, implementing a temporal
step in the xdirection. A temporal step in the ydirection is implementedby another
two-PBS loop based on the same principle but in the free space instead of fibers. At
each step, photons are partially coupledout to a polarization resolving detection of
the arrival time via avalanche photodiodes (APDs). ND neutral density filter, AOM
optical switch acousto-optic modulator, EOM electro-optic modulator.
c Illustration of the operation sequence of the time-multiplexed quantum walk.
Here VEOM is the control voltage applied to the EOMs.
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the site-resolved population of the synthetic lattice, with

Pexpðx,y,tÞ=
Nðx,y,tÞP
x,yNðx,y,tÞ

, ð4Þ

where N(x, y, t) is the total photon number on site (x, y) at time t.
Before discussing our experimental observations, two remarks

are in order. First, by using attenuated laser pulses, our experiment is
performed in the classical regime, as we simulate the dynamics and
interference of single photons using the coherence of laser pulses.
Nevertheless, what we implement here can still be regarded as quan-
tum walk, not only because the term is widely adopted for similar
setups in the literature48–51. More importantly, it highlights the differ-
ence between our experiment and that of classical randomwalk.While
quantum walks are deterministic in their time evolution (driven
repeatedly by the Floquet operator), a random walk is intrinsically
stochastic. The twoalso differ drastically in the spreading of thewalker
distribution52,53.

Second, the overall time-multiplexed setup and the synthetic-flux
engineering are similar to those reported in ref. 43 where purely dis-
sipative nearest-neighbor couplings are implemented. However, while
ref. 43 exactly built a tight-binding model, for our discrete-time
quantum-walk setup, a transparent tight-binding perspective can only
be achieved in the high-frequency limit (see the “Methods” section).

NHSE and tunable photon transport
In the absence of flux, quantum walks driven by U already show
directional transport under finite photon losses. In Fig. 2a,we show the
measured populations of the synthetic lattice sites after t = 16 time
steps. Starting from a local initial state at r = (0, 0), the propagation in
the synthetic spatial dimensions is symmetric along the four lattice
directions (Fig. 2a). However, under finite photon-loss parameters, the
final-time photon distribution becomes asymmetric with a preferred
direction. For instance, when γx = γy ≠0, as shown in Fig. 2b, the flow is
diagonal to the square lattice. By tuning the ratio of γy/γx, we can
continuously adjust the direction of the asymmetric pattern. This is
explicitly shown in Fig. 2c, where we define the directional displace-
ment

dðtÞ=
X
x,y

rPexpðx,y,tÞ: ð5Þ

As γy/γx varies, the direction of the displacement at the final time step
can be continuously tuned (see the left panel of Fig. 2c). In our
experiment, we adjust γy/γx in the range of [−1, 1] for 16-time-step
quantum walks. Correspondingly, the measured polar angle of d
changes from 3π/4 to −3π/4 (the right panel of Fig. 2c).

The observed loss-induced directional flow is closely related to
the NHSE in two dimensions. While it is straightforward to show that
the orientation of the directional transport also indicates the direction
of the eigenstate accumulation under the open boundary condition
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Fig. 2 | Tunable directional flow and NHSE. The walker with the polarization
ð Hj i + i Vj iÞ=

ffiffiffi
2

p
starts from the lattice site (0, 0) with α =0. Probability distributions

are measured after 16 time steps. a Probability distribution for a Hermitian two-
dimensional quantum walk with γx = γy =0. b Probability distribution following a
non-Hermitian quantum walk with γx = γy =0.125. c Directional displacements after
the final time step (t = 16) for quantum walks with varying γx and γy. (Left) Color

contour of the azimuthal angle of the displacement d on the x–y plane. (Right)
Measured (blue arrows) and simulated (gray arrows) the displacement along the
red vertical line of the color contour (left panel). d Probability distribution fol-
lowing a non-Hermitian quantumwalk in the presence of domain walls (marked by
red dashed lines), with γx =0.125 for x ≥ −6, γx = −0.125 for x < −6, γy =0.125 for
y ≥ −6, and γy = −0.125 for y < −6.
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(see Supplementary Note 2), from an experimental perspective, we
observe the dynamic localization of the walker toward the boundary
when a domain-wall boundary condition is imposed (see Fig. 2d).
Combined with the theoretical spectral analysis that there are no
topological edge states present under the parameters of Fig. 2d, it is
clear that the localization is due to the NHSE.

Magnetic suppression of the directional transport
In Fig. 3a–d, we show the final population distribution with the syn-
thetic flux switched on, following 16-time-step quantum walks. Com-
pared to Fig. 2, the directional flow appears to be increasingly
suppressed under larger α, regardless of its direction. In Fig. 3e, f, we
show the absolute values of the directional displacement d as func-
tions of α, for various loss parameters. The suppression is the largest
when α is tuned in between 0 and 0.5. Such a suppression reflects the
competition between the magnetic confinement and the persistent
bulk flow and can be used for the manipulation of the photon
transport.

Note thatweonly plot themeasurements forα∈ [0, 0.5], since the
on-site-occupation dynamics (and hence the directional displacement)
are the same under α and α + 0.5 (see Supplementary Note 3). Fur-
thermore, the underlying competition between the magnetic con-
finement and NHSE can be clarified by numerically analyzing the
response of eigenspectra and eigenstate distribution to the magnetic
flux (see Supplementary Note 2).

Impact on topological edge states
In the absence of loss, the Floquet operator U describes an anomalous
Floquet Chern insulator, characterized by the Floquet topological
invariant45,54,55, which can be calculated for each quasienergy gap and is
fully responsible for the topological edge states. Here we experimen-
tally investigate how the NHSE under loss and magnetic confinement
impacts the topological edge states. For this purpose, we engineer a

domain-wall configuration by choosing different values of α on either
side of x =0.

As shown in Fig. 4a, for lossless quantum walks, a pair of topolo-
gical edge modes emerge, moving in opposite directions along the
boundary. This is consistent with the prediction of the Floquet topo-
logical invariant (see the “Methods” section and Supplementary
Note 2). When only the loss parameter γx is turned on, the NHSE
induces a horizontal directional flow toward the region with x <0.
From themeasured population following a 16-time-step quantumwalk
(see Fig. 4b), both the bulk flow and the topological edge states are
clearly visible. Since the directional flow is perpendicular to the
boundary, it has no direct impact on the motion of the topological
edge states. This is no longer the case when both γx and γy become
finite, as in Fig. 4c. Here, besides a diagonal bulk flow indicating the
corner skin effect, the topological edgemodes moving in the negative
(positive) y direction are enhanced (suppressed) by the NHSE.

In Fig. 4d–f, we show the final probability distribution under a
larger synthetic flux α. Compared to Fig. 4a–c, the bulk propagation is
significantly suppressed, whereas the topological edge modes are
largely unaffected by flux. This suggests that magnetic confinement is
helpful for the dynamics detection of topological edge modes in sys-
tems with the NHSE.

Discussion
We have experimentally demonstrated how the interplay of synthetic
flux and dissipation enables full control over the directional transport
underlying the NHSE. Since the quantum walk simulates an anomalous
Floquet Chern insulator, we further illustrate how the motion of topo-
logical edge modes on the boundary is affected by the tuning para-
meters.While thehigh tunability canbe exploited for topological device
design, our implementation of a dissipative anomalous Floquet Chern
insulator further raises theoretical questions as to how theNHSE affects
the bulk-boundary correspondence herein. Our experiment also paves
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the way for engineering more exotic forms of the non-Hermitian skin
effect in higher dimensions22 using quantum-walk dynamics.

Methods
Experimental setup
We adopt a time-multiplexed scheme for the experimental realization
of photonic quantum walks39,40,48–51. As illustrated in Fig. 1, the photon
source is provided by a pulsed laser with a central wavelength of
808 nm, a pulse width of 88 ps, and a repetition rate of 15.625 kHz. The
pulses are attenuated by a neutral density filter, such that an average
photon number per pulse is less than 2.4 × 10−4, which ensures a neg-
ligible probability of multi-photon events. The photons are coupled in
and out of a time-multiplexed setup through a BS with a reflectivity of
3%, corresponding to a low coupling rate of photons into the network.
Such a low-reflectivity BS also enables the out-coupling of photons for
measurement. A HWP with the setting angle π/8 is used to implement
the coin operator C.

Four different paths in a fiber network correspond to the four
different directions a walker can take in one step on a two-dimensional
lattice. Two-PBS loops are used to realize polarization-dependent
optical delays. The shift operator Sx is implemented by separating
photons corresponding to their two polarization components and
routing them through the fiber loops, respectively. Polarization-
dependent time delay is then introduced. Since the lengths of the two
fiber loops are 287.03 and270.00m, respectively, the timedifferenceof
photons traveling through two fiber loops is 80 ns. The shift operator Sy
is implemented by another two-PBS loop based on the same principle,
where the vertical component of photons is delayed relative to the
horizontal component by a 1.61m free space path difference. The cor-
responding time difference in the y direction is then 4.83 ns.

The position-dependent phase operator P is implemented using
the first electro-optical modulator (EOM1). The rise/fall times of EOM
(4 ns) are much shorter than the time difference between adjacent
positions (80 and 4.83 ns for x and y directions, respectively), which
enables us to control the parameter ϕ precisely.

To realize a polarization-dependent loss operation M 0
xðγxÞ=

e�γxMxðγxÞ, twoHWPs and an EOMare introduced into each fiber loop.
Here HWPs are used to keep the polarizations of photons unchanged
before and after they pass through the fiber loops. For γx >0, for the
short loop, the voltage of EOM3 is tuned to 0. Thus, after passing
through the first PBS, horizontally polarized photons are all trans-
mitted by the second PBS and are subject to further time evolution.
Whereas for the long loop, by controlling the voltage of EOM2 to
satisfy cos θ=2= e�2γx , we flip part of the photons ð1� e�4γx Þ with ver-
tical polarization into horizontal ones. They are subsequently trans-
mitted by the second PBS and leak out of the setup. Otherwise, for
γx <0, horizontally polarizedphotons are all transmitted by the second
PBS and are subject to further time evolution in the long loop. By
contrast, for the short loop, part of the photons ð1� e4γx Þ with vertical
polarization is flipped by EOM3, transmitted by the second PBS and
subsequently leaked out of the setup. We use the same method to
realize M 0

yðγyÞ.
Tomeasure theprobability distribution,we switchon theAOMfor

4.9μs following a given time step. The time-resolved pulses within this
window are then recorded and translated to the corresponding spatial
position. The measurement time for a specific time step is one and a
half hours, limited by the stability of our setup. The environmental
noise and those that originate from the dark counts of the detectors
are uniformly distributed in time and are easily eliminated during data
analysis.

We compare the ideal theoretical distribution with the measured
distribution via the similarity,

SðtÞ=
X
x,y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pthðx,y,tÞPexpðx,y,tÞ

q
, ð6Þ

which quantifies the equality of two probability distributions. Here
S =0 stands for completely orthogonal distributions, and S = 1 for
identical distributions.Weobserve S ≥0.914 inFig. 2, S ≥0.922 inFig. 3,
and S ≥0.930 in Fig. 4, respectively. Here the theoretical value
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p ðjHi + ijV iÞ � jx =0ijy=0i under a domain-wall geometry. Specifically, in a–c, we
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respectively.
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Pth(x, y, t) is given by

Pthðx,y,tÞ=
X

m=H,V

jðhrj � hmjÞe�ðγx + γyÞt jψðtÞij2P
r,mjðhrj � hmjÞe�ðγx + γyÞt jψðtÞij2 , ð7Þ

where ψðtÞ
�� �

is the time-evolved walker state under U.
In our experiment, photon loss is caused by the loss of photons

through an optical element. Our round-trip single-loop efficiency is
about 0.66 even for a unitary quantum walk. This is calculated by
multiplying the transmission rates of each optical component used in
the round trip, including the transmission rates of the BS (~0.97), the
collection efficiency from free space to fiber (~0.78), the EOM (~0.96),
and all other optical components (~0.91). We therefore estimate the
single-loop efficiency as 0.78 × 0.97 ×0.96 ×0.91≃0.66.

Floquet topological invariant
The walker state evolves according to

jψðtÞi =Ut jψð0Þi= e�iHeff t jψð0Þi, ð8Þ

where Heff = i lnU is defined as the effective Hamiltonian. While the
quantumwalk is identified as theperiodicallydriven Floquet dynamics,
the eigenenergies of Heff constitute the quasienergy spectrum of the
Floquet system. We fix the branch cut of the logarithm such that the
quasienergy spectrum lies within the range [−π,π).

To calculate the Floquet topological invariant, we follow refs. 45,
54, 55, and define

U 0 = ei
~EMySyP

0CMxSxC, ð9Þ

where ei~E shifts the quasienergy spectrum by�~E. Themodified phase-
shift operator is

P0ðβ,αÞ=
X
r

exp iσz ðβbx=qc+2παxÞ
� �� rj i rh j, ð10Þ

where α = p/q, β = 2π/s, and ⌊x/q⌋ is the greatest integer less than or
equal to x/q. Here p and q are coprime integers, and s is a sufficiently
large integer (in our case, for α = 1/3, s = 15 is sufficient).

We denote the eigenvalues of U 0 as e�iEj , and the topological
invariant for the quasienergy gap (corresponding to U) comprising ~E
can be calculated through

R=
1
2π

X2sq
j = 1

Ejð1=s,α,~EÞ �
X2sq
j = 1

Ejð0,α,~EÞ
 !

: ð11Þ

Under an open boundary condition, the value of R indicates the
number of anomalous Floquet edge states emerging within the
quasienergy gap.

In Fig. 2d, all quasienergy gaps are closed, hence there are no
topological edge states along the boundaries, and the gap topological
invariants are ill-defined. In Fig. 4, for the x ≤0 (x >0) region of the
domain-wall configurations, we have p = 1, q = 20 (p = −1, q = 20) in
Fig. 4a–c, andp = 1, q = 3 (p = −1, q = 3) in Fig. 4d, e, f, respectively.While
there are now a host of quasienergy gaps, for any given gap, the
topological invariants R of the two regions are always finite and differ
by a sign (see Supplementary Note 4). As a consequence, Floquet
topological edge modes emerge along the domain-wall boundary.

We find that the Floquet topological invariant R is capable of
predicting the anomalous topological edge states under all our
experimental parameters, despite the presence of the NHSE. Whether
the NHSE can have a significant impact on R beyond our experimental
parameters (particularly when the photon loss is further increased) is
an interesting theoretical question that we leave to future studies.

A tight-binding perspective
In general, for a discrete-time quantum walk driven by U, the effective
Hamiltonian can be defined as U = e�iHeff , such that the quantum walk
constitutes a stroboscopic simulation of the time evolution governed
by Heff. While Heff can be formally derived, it is typically complicated
and does not yield much insight.

Nevertheless, we can work in the high-frequency limit, assuming
each time step to be short enough that the time evolution can be
Trotterized and kept to the lowest order.More explicitly, wedefine the
effective Hamiltonians for the following combinations of components
in U, with

C = e�iH1 , MxSx = e
�iH2 , MySyP = e�iH3 : ð12Þ

The time evolution within each time step is then approximately driven
by the effective Hamiltonian

H0
eff =

1
4
ð2H1 +H2 +H3Þ, ð13Þ

where

H1 =
π

2
ffiffiffi
2

p 1�
ffiffiffi
2

p
1

1 �ð1 +
ffiffiffi
2

p
Þ

 !
� 1r, ð14Þ

H2 =
X
x,y

eγx
i
2 0

0 � i
2

 !
� x � 1,y
�� �

x,y
	 ��"

�e�γx
i
2 0

0 � i
2

 !
� x,y
�� �

x � 1,y
	 ��#,

ð15Þ

H3 =
X
x,y

ei2παxeγy
i
2 0

0 � i
2

 !
� x,y� 1
�� �

x,y
	 ��"

�e�i2παxe�γy
i
2 0

0 � i
2

 !
� x,y
�� �

x,y� 1
	 ��#:

ð16Þ

HereH2 andH3, respectively, describe asymmetric hopping along the x
and y directions, which can be considered as themicroscopic origin of
the NHSE and the directional flow. In addition, a Peierls phase emerges
in the hopping terms inH3, which enforces the synthetic magnetic flux
illustrated in Fig. 1a. Thus, while H0

eff ≠Heff and does not fully account
for the discrete-time quantum-walk dynamics, it offers an approx-
imate, but more transparent understanding of the quantum-walk
dynamics from the perspective of a tight-binding model.

Data availability
The data that support the findings of this study are available from the
corresponding authors.

Code availability
The codes that support the findings of this study are available from the
corresponding authors.

References
1. Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Sys-

tems (Oxford University Press, 2007).
2. Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep.

Prog. Phys. 70, 947 (2007).
3. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat.

Phys. 14, 11–19 (2018).
4. Miri, M.-A. & Alù, A. Science 363, eaar7709 (2019).
5. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys.

69, 3 (2020).

Article https://doi.org/10.1038/s41467-023-42045-4

Nature Communications |         (2023) 14:6283 6



6. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and
topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

7. Zhou, H. & Lee, J. Y. Periodic table for topological bands with non-
Hermitian symmetries. Phys. Rev. B 99, 235112 (2019).

8. Lee, T. E. Anomalous edge state in a non-Hermitian lattice. Phys.
Rev. Lett. 16, 133903 (2016).

9. Yao, S. & Wang, Z. Edge states and topological invariants of non-
Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

10. Yao, S., Song, F. &Wang, Z. Non-Hermitian Chern bands. Phys. Rev.
Lett. 121, 136802 (2018).

11. Yokomizo, K. & Murakami, S. Non-Bloch band theory of non-
Hermitian systems. Phys. Rev. Lett. 123, 066404 (2019).

12. Lee, C. H. & Thomale, R. Anatomy of skin modes and topology in
non-Hermitian systems. Phys. Rev. B 99, 201103 (2019).

13. Longhi, S. Probing non-Hermitian skin effect and non-Bloch phase
transitions. Phys. Rev. Res. 1, 023013 (2019).

14. Deng, T.-S. & Yi, W. Non-Bloch topological invariants in a non-
Hermitian domain wall system. Phys. Rev. B 100, 035102 (2019).

15. Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Bior-
thogonal bulk-boundary correspondence in non-Hermitian sys-
tems. Phys. Rev. Lett. 121, 026808 (2018).

16. McDonald, A., Pereg-Barnea, T. & Clerk, A. Phase-dependent chiral
transport and effective non-Hermitian dynamics in a bosonic
Kitaev–Majorana chain. Phys. Rev. X 8, 041031 (2018).

17. Alvarez, V. M., Vargas, J. B. & Torres, L. F. Non-Hermitian robust
edge states in one dimension: anomalous localization and eigen-
space condensation at exceptional points. Phys. Rev. B 97,
121401 (2018).

18. Li, L., Lee, C. H., Mu, S. & Gong, J. Critical non-Hermitian skin effect.
Nat. Commun. 11, 5491 (2020).

19. Yang, Z., Zhang, K., Fang, C. & Hu, J. Non-Hermitian bulk-boundary
correspondence and auxiliary generalized Brillouin zone theory.
Phys. Rev. Lett. 125, 226402 (2020).

20. Longhi, S. Self-healing of non-Hermitian topological skin modes.
Phys. Rev. Lett. 128, 157601 (2022).

21. Li, Y., Liang, C., Wang, C., Lu, C. & Liu, Y.-C. Gain-loss-induced
hybrid skin-topological effect. Phys. Rev. Lett. 128, 223903 (2022).

22. Zhang, K., Yang, Z. & Fang, C. Universal non-Hermitian skin effect in
two and higher dimensions. Nat. Commun. 13, 2496 (2022).

23. Helbig, T. et al. Generalized bulk-boundary correspondence in non-
Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

24. Xiao, L. et al. Non-Hermitian bulk-boundary correspondence in
quantum dynamics. Nat. Phys. 16, 761–766 (2020).

25. Ghatak, A., Brandenbourger, M., Van Wezel, J. & Coulais, C.
Observation of non-Hermitian topology and its bulk-edge corre-
spondence in an active mechanical metamaterial. Proc. Natl Acad.
Sci. USA 117, 29561 (2020).

26. Weidemann, S. et al. Topological funneling of light. Science 368,
311–314 (2020).

27. Wang, K. et al. Generating arbitrary topological windings of a non-
Hermitian band. Science 371, 1240–1245 (2021).

28. Hofmann, T. et al. Reciprocal skin effect and its realization in a
topolectrical circuit. Phys. Rev. Res. 2, 023265 (2020).

29. Zou, D. et al. Observation of hybrid higher-order skin-topological
effect in non-Hermitian topolectrical circuits. Nat. Commun. 12,
7201 (2021).

30. Zhang,X., Tian, Y., Jiang, J.-H., Lu,M.-H.&Chen, Y.-F.Observationof
higher-order non-Hermitian skin effect. Nat. Commun. 12,
5377 (2021).

31. Zhang, K., Yang, Z. & Fang, C. Correspondence between winding
numbers and skinmodes in non-Hermitian systems. Phys. Rev. Lett.
125, 126402 (2020).

32. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin
of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

33. Longhi, S. Non-Bloch PT symmetry breaking in non-Hermitian
photonic quantum walks. Opt. Lett. 44, 5804 (2019).

34. Hu, Y.-M.,Wang,H.-Y.,Wang, Z., &Song, F.Geometric origin of non-
Bloch PT symmetry breaking. arXiv:2210.13491.

35. Xiao, L. et al. Observation of non-Bloch parity-time symmetry and
exceptional points. Phys. Rev. Lett. 126, 230402 (2021).

36. Li, T., Sun, J.-Z., Zhang, Y.-S. & Yi, W. Non-Bloch quench dynamics.
Phys. Rev. Res. 3, 023022 (2021).

37. Wang, K. et al. Detecting non-Bloch topological invariants in
quantum dynamics. Phys. Rev. Lett. 127, 270602 (2021).

38. Liang, Q. et al. Dynamic signatures of non-Hermitian skin effect
and topology in ultracold atoms. Phys. Rev. Lett. 129, 070401
(2022).

39. Lin, Q. et al. Observation of non-Hermitian topological Anderson
insulator in quantum dynamics. Nat. Commun. 13, 3229 (2022).

40. Lin, Q. et al. Topological phase transitions and mobility edges in
non-Hermitian quasicrystals. Phys. Rev. Lett. 129, 113601 (2022).

41. Hofstadter, D. R. Energy levels and wave functions of Bloch elec-
trons in rational and irrational magnetic fields. Phys. Rev. B 14,
2239 (1976).

42. Chalabi, H. et al. Synthetic gauge field for two-dimensional time-
multiplexed quantum random walks. Phys. Rev. Lett. 123,
150503 (2019).

43. Leefmans, C. et al. Topological dissipation in a time-multiplexed
photonic resonator network. Nat. Phys. 18, 442–449 (2022).

44. Chalabi, H. et al. Guiding andconfiningof light in a two-dimensional
synthetic space using electric fields. Optica 7, 506–513 (2020).

45. Sajid, M., Asbóth, J. K., Meschede, D., Werner, R. F. & Alberti, A.
Creating anomalous Floquet Chern insulators with magnetic
quantum walks. Phys. Rev. B 99, 214303 (2019).

46. Shao, K. et al. Cyclotron quantization and mirror-time transition on
nonreciprocal lattices. Phys. Rev. B 106, L081402 (2022).

47. Lu, M., Zhang, X.-X. & Franz, M. Magnetic suppression of non-
Hermitian skin effects. Phys. Rev. Lett. 127, 256402 (2021).

48. Schreiber, A. et al. Photons walking the line: a quantum walk with
adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010).

49. Weidemann, S., Kremer, M., Longhi, S. & Szameit, A. Topological
triple phase transition in non-Hermitian Floquet quasicrystals. Nat-
ure 601, 354–359 (2022).

50. Schreiber, A. et al. A 2D quantum walk simulation of two-particle
dynamics. Science 336, 55–58 (2012).

51. Chen,C. et al.Observationof topologically protectededge states in
a photonic two-dimensional quantum walk. Phys. Rev. Lett. 121,
100502 (2018).

52. Brun, T. A., Carteret, H. A. & Ambainis, A. Quantum to classical
transition for random walks. Phys. Rev. Lett. 91, 130602 (2003).

53. Venegas-Andraca, S. E. Quantum walks: a comprehensive review.
Quant. Inf. Process. 11, 1015–1106 (2012).

54. Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge
states and the bulk-edge correspondence for periodically driven
two-dimensional systems. Phys. Rev. X 3, 031005 (2013).

55. Asbóth, J. K. & Alberti, A. Spectral flow and global topology of the
Hofstadter butterfly. Phys. Rev. Lett. 118, 216801 (2017).

Acknowledgements
We thank Chen Fang for the helpful discussions. This work has been
supported by the National Natural Science Foundation of China (Grant
Nos. 92265209, 12025401, 11974331, and 12088101).

Author contributions
Q.L. performed theexperiments.W.Y. developed the theoretical aspects
and performed the theoretical analysis, andwrote part of the paper. P.X.
supervised the project, designed the experiments, analyzed the results,
and wrote part of the paper.

Article https://doi.org/10.1038/s41467-023-42045-4

Nature Communications |         (2023) 14:6283 7



Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-42045-4.

Correspondence and requests for materials should be addressed to
Wei Yi or Peng Xue.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-42045-4

Nature Communications |         (2023) 14:6283 8

https://doi.org/10.1038/s41467-023-42045-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Manipulating directional flow in a two-dimensional photonic quantum walk under a synthetic magnetic field
	Results
	Time-multiplexed two-dimensional quantum walk
	NHSE and tunable photon transport
	Magnetic suppression of the directional transport
	Impact on topological edge states

	Discussion
	Methods
	Experimental setup
	Floquet topological invariant
	A tight-binding perspective

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




