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Abstract

This study presents a major update and full evaluation of a speech intelligibility (SI) prediction 

model previously introduced by Scheidiger, Carney, Dau, and Zaar [(2018), Acta Acust. United 

Ac. 104, 914–917]. The model predicts SI in speech-in-noise conditions via comparison of 

the noisy speech and the noise-alone reference. The two signals are processed through a 

physiologically inspired nonlinear model of the auditory periphery, for a range of characteristic 

frequencies (CFs), followed by a modulation analysis in the range of the fundamental frequency 

of speech. The decision metric of the model is the mean of a series of short-term, across-CF 

correlations between population responses to noisy speech and noise alone, with a sensitivity-

limitation process imposed. The decision metric is assumed to be inversely related to SI and 

is converted to a percent-correct score using a single data-based fitting function. The model 

performance was evaluated in conditions of stationary, fluctuating, and speech-like interferers 

using sentence-based speech-reception thresholds (SRTs) previously obtained in 5 normal-hearing 

(NH) and 13 hearing-impaired (HI) listeners. For the NH listener group, the model accurately 

predicted SRTs across the different acoustic conditions (apart from a slight overestimation of 

the masking release observed for fluctuating maskers), as well as plausible effects in response 

to changes in presentation level. For HI listeners, the model was adjusted to account for 

the individual audiograms using standard assumptions concerning the amount of HI attributed 

to inner-hair-cell (IHC) and outer-hair-cell (OHC) impairment. HI model results accounted 

remarkably well for elevated individual SRTs and reduced masking release. Furthermore, plausible 

predictions of worsened SI were obtained when the relative contribution of IHC impairment 

to HI was increased. Overall, the present model provides a useful tool to accurately predict 

speech-in-noise outcomes in NH and HI listeners, and may yield important insights into auditory 

processes that are crucial for speech understanding.
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1. Introduction

A large number of speech intelligibility (SI) prediction models have been proposed over 

the past decades, usually with the aim to provide tools for assessing transmission channels 

(e.g., in telecommunications and room acoustics) and signal-enhancement algorithms and/or 

to better understand the healthy human auditory system in terms of speech processing in 

various conditions. Most of these models rely on a simplistic linear representation of the 

peripheral stages of the human auditory system, employing a linear filterbank to simulate 

the frequency selectivity of the auditory system (e.g., ANSI, 1997; Rhebergen et al., 2006; 

Taal et al., 2011). Some of the most powerful and versatile linear models combine the 

initial filterbank stage with a subband envelope extraction followed by another filterbank 

that analyses the slower level fluctuations in the subband signals (e.g., Houtgast et al., 1980; 

Elhilali et al., 2003; Jørgensen and Dau, 2011; Jørgensen et al., 2013; Relaño-Iborra et al., 

2016; review: Relaño-Iborra and Dau, 2022, this issue). The model predictions are obtained 

by comparing the noisy or processed speech signal with a reference signal, usually the 

clean speech or the noise alone, and obtaining either a type of signal-to-noise ratio (SNR, 

e.g., ANSI, 1997; Rhebergen et al., 2006; Houtgast et al., 1980; Jørgensen and Dau, 2011; 

Jørgensen et al., 2013) or a correlation-type metric (Taal et al., 2011; Relaño-Iborra et al., 

2016). The decision metric can then be transformed to SI in percent correct based on data 

and predictions from a given fitting condition, e.g., speech in stationary speech-shaped noise 

(SSN).

The SI models mentioned above have been created using simplistic linear pre-processing 

with a focus on accounting for as many acoustic conditions as possible in a population of 

normal-hearing (NH) listeners. However, the healthy auditory system is strongly nonlinear 

due to cochlear amplification attributed to outer hair cells (OHCs) and the saturating 

nonlinear nature of the inner hair cells (IHCs). Hearing impairment, on the other hand, 

which is far from being fully understood in all its complexity, typically induces a partial 

linearization of the system due to an OHC-loss-induced reduction in cochlear amplification 

(review: Heinz, 2010). Therefore, linear models provide a suboptimal starting point for 

accounting for effects of hearing impairment, as they may already be considered “impaired” 

in a sense and thus are functionally limited in accounting for (supra-threshold) effects of 

hearing impairment beyond audibility limitations. Only a few researchers have attempted 

to incorporate more sophisticated nonlinear models of the auditory periphery in an SI-

prediction framework. Relaño-Iborra et al. (2019) adapted the computational auditory signal 

processing and perception model (CASP; Jepsen et al., 2011), an auditory model with 

nonlinear OHC (but not IHC) behavior that contains an envelope-frequency analysis stage, 

for predicting SI using a processed-speech vs. clean-speech correlation approach. The 

resulting speech-based CASP (sCASP) model showed accurate predictions across many 

acoustic conditions and plausible trends across different presentation levels for NH listeners, 

while its predictive power regarding effects of hearing impairment on SI has not been 
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fully explored yet (Relaño-Iborra and Dau, 2022, this issue). Another nonlinear model of 

the auditory periphery is the auditory-nerve model (ANM), which has been developed to 

describe the temporal properties of auditory-nerve rate functions and spike trains in cats and 

other species (Carney, 1993; Zilany et al., 2009; Zilany et al., 2014). The ANM simulates the 

nonlinear behavior of both OHCs and IHCs and can thus can functionally account for level 

effects as well as for OHC and IHC impairment. Zilany and Bruce (2007) incorporated the 

ANM in the framework of Elhilali et al. (2003) and showed promising predictions for word 

recognition across different presentation levels in NH and hearing-impaired (HI) listeners. 

Hines and Harte (2012) used the ANM in combination with their image-processing based 

Neurogram Similarity Index Measure (NSIM) to predict phoneme identification scores 

across different presentation levels in NH listeners. Bruce et al. (2013) used an ANM-based 

model framework to predict effects of masking release on consonant identification in NH 

and HI listeners. Hossain et al. (2016) conceived a reference-free model using a bispectrum 

analysis of the ANM-based neurogram to predict phoneme identification scores for groups 

of NH and HI listeners.

Carney et al. (2015) proposed a model of vowel coding in the midbrain, which was shown 

to be robust over a wide range of sound levels as well as background noise. The model is 

heavily based on the interaction of sound level, basilar membrane nonlinearities controlled 

by the OHCs, and the saturating nonlinearity of the IHCs in the ANM, which yield very flat 

responses at characteristic frequencies (CFs) close to vowel formant frequencies, whereas 

responses that fluctuate strongly at the fundamental frequency (F0) are found at CFs in 

between vowel formants. As also argued in Carney (2018), these fluctuation profiles can be 

revealed by a bandpass (or band-enhanced) filter centered around F0, which is a simplistic 

representation of responses of inferior-colliculus (IC) neurons, many of which exhibit band-

pass tuning to amplitude modulations. Inspired by these observations, Scheidiger et al. 

(2018) proposed a modeling framework that mimics the above process using the ANM 

followed by a bandpass modulation filter. The processing was applied to the noisy speech 

and the noise-alone signals, and the decision metric was based on the across-CF correlation 

between the internal representations of the two signals. Scheidiger et al. (2018) showed 

accurate predictions for NH listeners across different noise types and promising predictions 

for some, but not all, of the considered HI listeners.

The current study proposes a matured version of the modeling approach conceived by 

Scheidiger et al. (2018), removing some of the unnecessary complexity of the original model 

and adding a crucial component that limits the sensitivity of the across-CF correlation metric 

used for predicting SI. The study furthermore systematically investigated the predictive 

power of the updated SI model, simulating SRTs measured in NH listeners (Jørgensen et 

al., 2013) and in HI listeners (Christiansen and Dau, 2012) using sentences in SSN, 8-Hz 

sinusoidally amplitude-modulated noise (SAM), and the speech-like international speech 

test signal (ISTS; Holube et al., 2010). This evaluation was conducted by comparing 

measured and predicted NH and HI group SRTs, as well as by comparing individual 

HI listener SRTs with the corresponding model predictions. Similarly, the measured and 

predicted masking release (MR), i.e., the SI benefit induced by fluctuating interferers (SAM, 

ISTS) as compared to a stationary interferer (SSN), was explicitly compared. In addition to 

predicting the measured data, the model’s reaction to a number of presentation levels (in NH 
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configuration) and the effect of interpreting the hearing losses with different proportions of 

IHC and OHC impairment were also analyzed.

2. Method

2.1. Model description

A flowchart of the proposed model is shown in Fig. 1. The inputs to the model are the 

noisy speech stimulus (SN) and the noise alone (N), which serves as a reference signal. 

The two signals are processed through the ANM (Zilany et al., 2014), which represents the 

auditory periphery in terms of peripheral frequency tuning and various non-linear aspects 

of the cochlear mechanics and the hair cell responses. The ANM also receives a spline-

interpolated version of the audiogram at the considered characteristic frequencies (CFs), 

which determines the model’s internal configuration in terms OHC and IHC impairment. 

Thirteen logarithmically spaced CFs between 0.51 and 8 kHz were considered here. For 

each CF, 18 fibers were simulated using 13 high-, 3 medium-, and 2 low-spontaneous-rate 

fibers (HSR, MSR, and LSR, respectively; Liberman, 1978). The instantaneous firing rates 

at the output of the IHC-AN synapse model were averaged across the simulated fibers, 

down-sampled from a sampling rate of 100 kHz to 1 kHz, and considered for further 

processing as the auditory-nerve signals snAN (cf, t) and nAN (cf, t), with cf representing the 

CF number and t denoting the discrete time sample.

To simulate the IC neurons, snAN (cf, t) and nAN (cf, t) were processed through a 6th-order 

bandpass filter with a Q-factor of 1, centered at the average F0 of the target speech (here: 

119 Hz, see below), resulting in snIC (cf, t) and nIC(cf, t). Next, a short-term power 

calculation was performed by segmenting the filter outputs into 20-ms time frames in 10-ms 

steps (i.e., using 50% overlap) and averaging the squared values within each segment k, 

resulting in the short-term IC power representations snIC,P (cf, k) and nIC,P (cf, k).

The noisy-speech and noise-alone signals were then compared by means of an across-CF 

short-term correlation with a sensitivity-limitation term, defined as

r(k) = corr SNprofile (k) + L, Nprofile (k) + L , (eq. 1)

where the vectors SNprofile (k) = [snIC,P (1, k), snIC,P (2, k), … , snIC,P (N cf, k)] and Nprofile 

(k) = [nIC,P (1, k), nIC,P (2, k), … , nIC,P (N cf, k)] represent the across-CF fluctuation 

profiles described in Carney et al. (2015) and Carney (2018), with Ncf denoting the number 

of CFs, and the vector L = max 1
T ∑t = 1

T snAN(cf, t) ⋅ 1, 2, …, Ncf  with T denoting the number 

of samples, represents the sensitivity-limitation term. The role of L in eq. 1 is to ensure 

a convergence to r(k) = 1 when the noisy-speech and noise-alone fluctuation profiles are 

zero (no fluctuations). The larger the magnitude of the fluctuation profiles in relation to 

the maximum long-term spike rate of the noisy speech (snAN), the more the correlation 

between the noisy-speech and noise-alone fluctuation profiles determines r(k). The resulting 

across-CF correlation values r(k), obtained for each segment, are then simply averaged to 

1CFs below 500 Hz were omitted to ensure that the modulation filter center frequency was at least 4 times lower than the lowest CF to 
avoid overlap.
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yield the decision metric of the model, a single value r = 1
K ∑k = 1

K r(k) with K denoting the 

number of segments.

Assuming an inverse relationship between r and SI, as a high correlation between noisy 

speech and noise alone implies little access to target-speech information, and vice versa, the 

decision metric r is converted to SI (in percent) according to

SI = 100%
1 + ea ⋅ r + b , (eq. 2)

where a and b are freely adjustable parameters that were estimated once based on a 

fitting condition with known SI scores, obtained in SSN for NH listeners, using nonlinear 

regression (see below).

2.2. Reference data

Data collected from five NH listeners (between 24 and 33 years old) were taken from 

Jørgensen et al. (2013). Data collected from 13 HI listeners (between 51 and 73 years, 

63.8 years on average) with largely symmetric sensorineural hearing losses ranging from 

mild to severe (see Fig. 2) were taken from Christiansen and Dau (2012). Both studies 

used natural, meaningful, Danish fiveword sentences, spoken by a male speaker with an 

average F0 of 119 Hz (Nielsen and Dau, 2009). Three interferers were considered here: (i) 

Speech-shaped noise (SSN), a stationary masker with a long-term spectrum identical to the 

average spectrum of all sentences, (ii) an 8-Hz sinusoidally amplitude-modulated (SAM) 

SSN, and (iii) the international speech test signal (ISTS, Holube et al., 2010), a largely 

unintelligible signal that consists of randomly con-catenated syllables taken from multiple 

recordings spoken by different female speakers in various languages (average F0: 207 Hz). 

SRTs were measured using an adaptive procedure with the target speech presented at 60 

dB sound pressure level (SPL) to the NH listeners and at 80 dB SPL to the HI listeners, 

whereas the level of the interferers was adapted. All stimuli were presented diotically via 

headphones.

2.3. Model simulations

All model simulations were run using MATLAB (MathWorks, Natick, MA), with the help 

of a computer cluster for the ANM simulations. Ten sentences of the speech corpus were 

chosen for the model simulations. All simulation results were averaged across these ten 

sentences in order to obtain a stable decision metric before converting it to SI (see eq. 

2). The simulated input SNRs ranged from −21 dB to 12 dB in 3-dB steps, covering 

the measured SRTs obtained for all listeners and conditions. The level of the noise-alone 

reference signal was adjusted to be identical to the overall level of the noisy speech, thus 

approximating the noise level for negative SNRs and the speech level for positive SNRs. 

The maximal difference between the level of the noise in the mixture and the level of the 

noise-alone reference signal was about 12 dB and occurred at the highest considered SNR of 

12 dB. The overall level was selected instead of the actual level of the noise in the mixture to 

ensure that the (nonlinear) ANM processing applied to the noise-alone reference signal was 

as similar as possible to the ANM processing applied to the mixture.
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2.3.1. Normal-hearing configuration—The standard configuration of the ANM (in 

“human” mode, see Ibrahim and Bruce, 2010) was used to predict SRTs measured in NH 

listeners and to probe the model with respect to effects of changes in presentation level. 

Model predictions were obtained for target speech levels of 0, 20, 40, 60, 80, and 100 dB 

SPL, with 60 dB SPL corresponding to the speech level used in the experiment. The decision 

metric was converted to SI as described in Sec. 2.1. (eq. 2), with parameters fit based on 

the SSN condition and a speech level of 60 dB SPL in the NH ANM configuration. The 

fitting parameters were calculated using a nonlinear regression between percent-correct data 

measured for a range of SNRs (−8, −6, −4, −2, 0, and 2 dB) in young NH listeners (see 

sentence-correct scores in Fig. 7 in Nielsen and Dau, 2009) and the corresponding model 

decision metrics. Finally, SRTs were calculated for all conditions as the 50%-correct points 

on the predicted psychometric functions.

2.3.2. Hearing-impaired configuration—The configuration of the ANM (in “human” 

mode, see Ibrahim and Bruce, 2010) was adapted according to the across-ear average 

audiograms of the individual HI listeners (as the hearing losses were largely symmetric). To 

this end, the audiogram was spline-interpolated at the considered CFs and the ANM’s OHC 

and IHC impairment parameters (Cohc and Cihc) were found based on the “fitaudiogram2” 

MATLAB function provided with the ANM. As the relative contributions of OHC and IHC 

impairment to the total hearing loss cannot be determined based on the audiogram alone, it 

was assumed that 67% of the total hearing loss was related to OHC impairment and 33% 

to IHC impairment (Zilany et al., 2007; Bruce et al., 2013). However, to probe the model’s 

behavior for different combinations of OHC and IHC impairment, two additional cases were 

considered, with (i) OHC impairment accounting for 33% and IHC impairment for 67% and 

(ii) OHC impairment and IHC impairment each accounting for 50% of the total hearing loss. 

As in the corresponding experiment (Christiansen and Dau, 2012), the target speech level 

was set at 80 dB SPL. The decision metric was converted to SI scores and then to SRTs 

using the same procedure and the same fitting parameters as for the NH case, see Sec. 2.3.1.

3. Results

3.1. Model predictions for the NH and HI groups

This section compares the measured data with the model predictions for the two groups of 

NH and HI listeners. The comparison is conducted in terms of (i) SRTs as a function of the 

SSN, SAM, and ISTS conditions and (ii) in terms of MR, defined as MR SAM = SRTSSN − 

SRTSAM and MRISTS = SRTSSN − SRTISTS. The left panel of Fig. 3 demonstrates that the 

NH group (open squares) performed better and thus reached lower SRTs than the HI group 

(open diamonds). For both groups, the highest SRTs were observed for SSN, followed by 

SAM with lower SRTs, and ISTS with the lowest SRTs. However, the differences in SRTs 

across conditions were substantially larger in the NH group than in the HI group, which is 

also reflected in a substantially higher MR observed for the NH than for the HI listeners 

(right panel of Fig. 3). The SRTs predicted by the model2 (filled symbols in the left panel 

2Note that the simulated SRT for NH listeners in the SSN condition is merely a fit as this condition and model configuration 
represents the fitting condition. All other simulated SRTs are actual predictions.
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of Fig. 3) were in line with the NH and HI group data, capturing both the effect of the 

different noise conditions per group and the differences between groups, even in terms of 

the standard deviations across HI listeners. However, the predicted SRTs for the SAM and 

ISTS interferers tended to be slightly lower than the measured SRTs, which was consistent 

across groups. Therefore, while the MR for the SAM and ISTS conditions and its reduction 

due to hearing loss (squares vs. diamonds in the right panel of Fig. 3) was well captured, the 

predicted MR was generally somewhat too high.

3.2. Model predictions for individual HI listeners

As seen in Fig. 3, there was a large variability across individual listeners’ SRTs within the 

HI group, the extent of which was also reflected in the model predictions. To determine 

whether the model predictions merely reflect the group variability by coincidence or whether 

they indeed account for individual listener data, Fig. 4 shows the SRTs (left panel) and 

MRs (right panel) predicted for the individual HI listeners as a function of their measured 

counterparts. As can be seen in the left panel of Fig. 4, the individual HI listeners’ 

SRTs cover wide ranges of 10, 15, and 20 dB for the SSN (red), SAM (green), and 

ISTS (blue) condition, respectively. The predicted SRTs show a similar picture, with high 

condition-specific correlations of 0.67 (SSN, p=0.01) and 0.8 (SAM, ISTS; p=0.001) and 

an even higher across-condition correlation of 0.84 (p < 0.0001). For comparison, the 

original model version showed condition-specific correlations between 0.3 and 0.5 (p > 

0.05) and an across-condition correlation of 0.58 (p < 0.001), cf. Scheidiger et al. (2018). 

The mean absolute error (MAE), which was calculated as the average of the absolute 

values of the differences between measured and predicted SRTs to quantify the average 

deviation from a perfect prediction in dB, indicated the best predictions for SSN (1.9 dB), 

followed by SAM (2.8 dB) and ISTS (4.7 dB), with an across-condition MAE of 3.1 dB. 

For comparison, the original model version showed MAEs of 2.17 (SSN), 5.48 (SAM), and 

7.12 dB (ISTS), cf. Scheidiger et al. (2018). It should be noted that the condition-specific 

MAEs are directly proportional to the SRT ranges induced by the three conditions. The 

qualitative agreement between model predictions and measured data was slightly better 

when looking at the predicted and measured MR for the individual HI listeners, shown in the 

right panel of Fig. 4. Here, the specific correlations were 0.83 (SAM, p=0.0005) and 0.85 

(ISTS, p=0.0002) and the across-condition correlation was 0.88 (p < 0.0001). However, the 

general overestimation of the MR in the model (cf. Sec. 3.1) can also be observed here, as 

almost all data points are above to the diagonal, indicating that predicted MR values were 

higher than measured values, and leading to MAEs of 2.2 dB (SAM), 3.7 dB (ISTS), and 3 

dB (combined).

For reference, Fig. 5 depicts the SRTs measured for the individual HI listeners as a function 

of their average hearing loss, as represented by their pure-tone threshold average (PTA) 

across all audiometric frequencies between 125 and 8000 Hz. It can be observed that, for 

values above roughly 40 dB HL, the PTA is directly related to an elevation in SRTs and a 

reduction in MR. This relation is reflected in correlations between PTA and SRTs (between 

0.62 and 0.85, 0.0229>p> 0.0002) that are in the range of the correlations observed between 

the model predictions and the measured SRTs (cf. Fig. 4). However, because the PTA is 

independent of the speech-test condition, the across-condition correlation between PTA and 
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SRTs is non-existent (r = −0.04, p=0.83), whereas the model correctly predicts the effects of 

individual hearing loss on the different speech-test conditions.

3.3. Effect of presentation level in NH configuration

To probe the model’s reaction to variations in presentation level, model predictions were 

also obtained in the NH configuration for a range of speech levels. This range of levels 

was not included in the experimental reference data; however, it has been demonstrated that 

speech intelligibility breaks down at low broadband levels somewhat above 20 dB SPL, 

due to insufficient audibility (e.g., Nilsson et al., 1994). Furthermore, a so-called “roll-over” 

effect has been shown at high speech levels, between 80 and 100 dB SPL, resulting in 

elevated SRTs as compared to medium speech levels (e.g., French and Steinberg, 1947; 

Speaks et al., 1967; Festen, 1993). Figure 6 depicts the predicted SRTs (squares) for speech 

levels between 0 and 100 dB SPL (in 20-dB steps) along with the reference SRTs measured 

at a speech level of 60 dB SPL (dashed lines, cf. Fig. 3). Triangles indicate that the predicted 

SRT was either very high or not applicable due to very low predicted SI scores. For speech 

levels of 0 and 20 dB SPL, no SRTs were obtained in any of the noise conditions, as the 

predicted SI scores were around 0% at all tested SNRs (with a slight increase at positive 

SNRs in all noise conditions for a speech level of 20 dB SPL). For speech levels of 40 and 

60 dB SPL the predicted SRTs were well aligned with the SRTs measured at 60 dB SPL. 

For speech levels of 80 dB SPL a slight trend toward elevated predicted SRTs was observed, 

which differed across noise conditions. For speech presented at 100 dB SPL, a significant 

elevation of the predicted SRTs was observed in all noise conditions. Overall, the predictions 

obtained for the different speech levels therefore matched the expectations derived from 

literature.

3.4. Effect of different hearing-threshold interpretations

The predictions shown for HI listeners in Sec. 3.1 and 3.2 were based on the commonly 

used assumption that 67% of the total hearing loss is due to OHC impairment and 33% 

due to IHC impairment. Here, the effect of using three different configurations of OHC and 

IHC impairment, namely 67% / 33%, 50% / 50%, and 33% / 67%, is demonstrated. Figure 

7 shows the effects of these different configurations using three examples of predictions 

obtained for individual HI listeners with a range of hearing losses (HI3, top: PTA = 29 dB 

HL; HI13, middle: PTA = 52 dB HL; HI9, bottom: PTA = 67 dB HL). For all listeners and 

noise conditions, the predictions obtained with the default configuration 67% / 33% (shown 

as solid lines) indicate the highest SI scores, followed by the 50% / 50% condition (dashed 

lines), while the lowest SI scores were predicted for the 33% / 67% configuration (dash-

dotted lines). These results suggest that when the relative contribution of IHC impairment 

increases (and that of OHC impairment decreases), the model predicts a reduction in SI. 

When comparing the three panels in Fig. 7, the magnitude of the effect depends on the 

severity of the hearing loss, which increases from top to bottom.

The best of the three mentioned OHC/IHC impairment configurations was picked for 

each HI listener by finding the configuration that yielded the smallest absolute difference 

between measured and predicted SRTs, averaged across noise conditions. For six listeners, 

the standard configuration of 67% OHC and 33% IHC impairment was most suitable; for 
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another six listeners, the configuration with 50% / 50% IHC impairment provided the best 

SRT match; for a single listener, the configuration of 33% OHC and 67% IHC impairment 

was selected. Figure 8 depicts a re-plot of the scatter plot shown in the left panel of 

Fig. 4, using the model predictions obtained with the best-fitting OHC/IHC impairment 

configuration for each HI listener. It can be seen that all correlations (condition-specific 

and across condition) increased as compared to Fig. 4. The mean absolute error decreased 

overall as well as for the SAM and ISTS conditions, but increased slightly for the SSN 

condition.

4. Discussion

4.1. Model performance and behavior

The proposed SI model, which is based on Scheidiger et al. (2018) and Carney et al. (2015), 

was evaluated based on NH data (Jørgensen et al., 2013) and HI data (Christiansen and 

Dau, 2012) in three different noise conditions. Based only on a single conversion function 

(“fitting”), obtained using NH listener data collected in SSN, and incorporating the HI 

listeners’ audiograms in the front-end processing, the model accounted very well for (i) NH 

group SRTs across SAM and ISTS interferers and thus for MR, (ii) generally elevated SRTs 

in the HI group, and (iii) HI group SRTs across SSN, SAM, and ISTS interferers and thus 

for the hearing-loss-induced reduction in MR. The model furthermore captured the large 

across-listener variability in SRTs within the HI group in terms of the standard deviation, 

and indeed predicted individual SRTs as well as individual MRs with good precision. 

However, the model globally showed a slight overestimation of the MR for both NH and HI 

listeners, especially in the case of the ISTS interferer. Overall, these results represent a major 

improvement over the predictive power shown by Scheidiger et al. (2018) for the same data 

using a predecessor of the proposed model, especially when it comes to predictions of HI 

listeners’ SRTs.

In addition to the described predictions of experimental data, the responses of the model to 

changes in presentation level was assessed (in the NH configuration). The model predicted 

floor-level SI scores for target speech levels of 0 and 20 dB SPL, largely stable SRTs 

for 40 and 60 dB SPL in the range of the NH listeners’ SRTs (collected at 60 dB SPL), 

somewhat elevated SRTs for 80 dB SPL and substantially elevated SRTs for 100 dB SPL. 

This modeling result is well in line with experimental results from the literature, showing 

SRTs in quiet of about 24 dB(A) (Nilsson et al., 1994) and elevated SRTs at high speech 

levels, between 80 and 100 dB SPL (i.e., the “roll-over” effect, e.g., French and Steinberg, 

1947; Speaks et al., 1967; Festen, 1993). Furthermore, while the default interpretation of the 

HI listeners’ audiograms was based on the commonly used assumption that 67% of the total 

hearing loss is caused by OHC impairment and 33% by IHC impairment (Zilany et al., 2007; 

Bruce et al., 2013), the effect of modifying this assumption was also assessed. The model 

predicted a detrimental effect on SI for increasing HI due to IHC impairment, and a suitable 

listener-specific selection of the hearing-loss interpretation was shown to further improve 

the correspondence between simulated and measured SRTs. As the underlying principle of 

stable rate patterns considered here is heavily based on IHC transduction (cf. Zilany et al., 

2014; Carney et al., 2015; Carney, 2018), this model behavior was already hypothesized 
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in Scheidiger et al. (2018). The model might thus also be interesting for investigating the 

effects of damaged IHCs and synapses (for reviews see Lopez-Poveda, 2014; Carney, 2018).

4.2. Model design in relation to other studies

The design of the model differs substantially from most other established SI prediction 

models due to its use of a sophisticated nonlinear auditory model as a front end. Some 

comparable efforts have been published (Zilany et al., 2007; Hines and Harte, 2012; Bruce 

et al., 2013; Hossain et al., 2016; Relaño-Iborra et al., 2019) but not yet fully evaluated for 

sentence recognition in different maskers. The use of the noise alone as a reference signal is 

reminiscent of various SI prediction models that derive an SNR-type decision metric (e.g., 

ANSI, 1997; Rhebergen et al., 2006; Jørgensen and Dau. 2011; Jørgensen et al., 2013). 

However, other correlation-based SI prediction models typically use the clean speech as a 

reference (e.g., Taal et al., 2011; Relaño-Iborra et al., 2016; Relaño-Iborra et al., 2019), 

such that the decision metric describes the qualitative similarity between responses to the 

noisy/processed speech and to the clean speech and is thus directly related to SI. These 

models have the advantage of being applicable in conditions beyond additive interference, 

such as various signal distortions (see Relaño-Iborra et al., 2016). The proposed model 

instead adopts the somewhat unusual strategy of combining the noise-alone reference with 

a correlation-based decision metric, thus computing the qualitative similarity between noisy 

speech and noise alone, which is inversely related to SI. This approach has the advantage 

that both noisy speech and noise alone may be processed through the front end in the 

same HI configuration, as no assumption about the intelligibility of the reference signal 

has to be made. In contrast, a clean-speech reference signal would always have to be 

processed through the front end in NH configuration, as it acts as an “ideal” reference and 

the HI configuration would potentially compromise this assumption. However, a correlation 

between two signals that were processed by the model in different configurations is at risk of 

trivially representing the difference between the two configurations.

The decision metric of the proposed model, which was inspired by the observation of stable 

across-CF rate patterns in the IC (Carney et al., 2015; Carney 2018), explicitly compares 

the fluctuation strength around F0 across CF. This approach is in contrast with other SI 

models that have a modulation-analysis stage, which typically apply a channel-by-channel 

analysis and consider only/mainly the “classical” lower speech-modulation rates using a 

modulation filterbank approach (e.g., Houtgast et al., 1980; Jørgensen and Dau., 2011; 

Jørgensen et al., 2013; Relaño-Iborra et al., 2016; review: Relaño-Iborra and Dau, 2022, 

this issue). Some powerful SI models do analyze the spectral variations of their internal 

representations, such as the sCASP (Relaño-Iborra et al., 2019) and the spectro-temporal 

modulation index (STMI; Elhilali et al., 2003). However, their across-frequency analyses 

differ strongly from the approach proposed here, as the sCASP correlates time-frequency 

representations of processed and clean speech at the output of each considered modulation 

filter and the STMI compares the power of the processed and clean speech after spectro-

temporal modulation analysis. A noteworthy aspect of the model design is its implicit use 

of periodicity cues, represented by the IC filter around the F0 of speech. Several studies 

have attempted to disentangle the relative contributions of temporal envelope (ENV) and 

temporal fine structure (TFS) cues to speech intelligibility by separating the ANM outputs 
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into different frequency ranges to represent (low-frequency) ENV and (high-frequency) TFS 

cues (e.g., Hines and Harte, 2012; Swaminathan and Heinz, 2012; Wirtzfeld et al., 2017). 

The results of Hines and Harte (2012) and Swaminathan and Heinz (2012) suggested that 

the ENV representation was sufficient in many conditions, whereas Wirtzfeld et al. (2017) 

demonstrated that the addition of TFS information contributed substantially to predicting 

phoneme identification in suitable processing conditions (speech chimaeras). The proposed 

model does not explicitly consider TFS cues in its analysis of fluctuation profiles: the 

considered IC bandpass filter around 119 Hz operates only on ANM outputs for CFs of 

500 Hz and above, such that there is no overlap between the TFS passing through the 

peripheral filter (i.e., components near the AN-fiber CF) and the IC filter. Instead, the 

phase-locking occurring at the selected range of CFs analyzed by the IC filter is generally 

F0 phase-locking, following the beating pattern that results from the interaction between 

individual (harmonic) components within a given peripheral filter. This temporal response 

falls in the ENV category in principle; however, the IC filter frequency is substantially 

higher than commonly used for ENV processing (e.g., Wirtzfeld et al., 2017). If there is one 

dominant harmonic component within the peripheral filter’s frequency range, the AN-fibers 

instead tend to phase-lock mainly to the TFS of that component, such that the otherwise 

observed F0 phase-locking disappears, i.e., the dominant component “captures” the AN-fiber 

(Leong et al., 2020; Maxwell et al., 2020; Carney 2018; Carney et al. 2015). It should be 

noted that TFS-based SI models may take advantage of some of the information contained 

in the fluctuation profiles considered by the proposed model. However, the availability of 

these cues in a classical TFS sense would be limited to the phase-locking range, whereas 

the fluctuation profiles are not limited by the roll-off in TFS phase-locking and are thus 

expected to work across a wider range of CFs. Furthermore, the fluctuation profiles do 

not require a dedicated “decoding” mechanism, whereas it has yet to be clarified how a 

TFS-based code would be decoded.

Finally, the sensitivity-limitation term included in the decisionmetric calculation is a crucial 

addition to the model as compared to Scheidiger et al. (2018), which adds substantial 

predictive power to the model regarding effects of low presentation levels and severe hearing 

losses by essentially imposing a noise floor on the across-CF correlation. This noise floor 

was defined based on the maximum long-term auditory-nerve spike rate and was thus 

driven by the individual stimulus. However, an alternative simulation approach with a fixed 

sensitivity-limitation term yielded comparable results (with some loss of predictive power). 

Additional modifications relative to the previous model version by Scheidiger et al. (2018) 

had only minor effects and were related (i) to the numbers and proportions of simulated 

HSR, MSR, and LSR fibers (previous version: 30/10/10; current version: 13/3/2) with the 

aim to save computation time and improve the physiological plausibility (Liberman, 1978) 

and (ii) to the number of ears considered in the model (previous version: binaural with 

long-term better-ear selection; current version: monaural using average audiograms), aiming 

to simplify the approach as the present data set was collected using diotic headphone 

presentation and the HI listeners had symmetric hearing losses.
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4.3. Future considerations

Several improvements and future investigations of the proposed model should be considered. 

While the model has been evaluated here in a range of conditions and for various hearing 

losses, the stimuli differed only in broadband level between the NH and HI groups (60 vs. 

80 dB SPL), while there was no difference whatsoever in the stimuli across HI listeners. To 

challenge the model with different stimuli and to minimize potential effects of audibility, 

the model should in a next study be evaluated using HI data measured with individualized 

amplification. A potentially limiting factor when predicting other data sets could be the 

current monaural design of the model. It may therefore be worthwhile to define a binaural 

version of the model that can exploit a short-term better-ear advantage in dichotic listening 

conditions.

The present study used a standard interpretation of the audiogram in terms of the 

contributions of OHCs and IHCs to hearing loss, which may be appropriate for many 

listeners according to Johannesen et al. (2014). However, this study also demonstrated 

substantial predicted effects of adjusting the OHC and IHC contributions to hearing loss, and 

indicated that the model predictions could potentially be further improved by individually 

adjusting the OHC and IHC impairment parameters. It may thus be beneficial to fine-tune 

the model using measures beyond the audiogram (e.g. Sanchez-Lopez et al., 2020) to define 

OHC and IHC status rather than making simplistic assumptions. As synaptopathy (Henry, 

2022; Bramhall et al., 2019; Carney, 2018) has been a much discussed potential aspect of 

supra-threshold hearing loss recently, it should be noted that the proposed model does not 

predict a noteworthy difference between the mix of HSR, MSR, and LSR fibers reported 

here and a simple HSR-based version (not shown here), suggesting that loss of MSR and 

LSR fibers typically associated with synaptopathy would not influence the responses of this 

model.

Lastly, due to its explicit analysis of fluctuations in the range of the target-speech F0, the 

model may have the potential to predict different levels of difficulty in segregating the target 

speech from speech interferers that may be induced by different amounts of overlap in F0. 

While the male target speaker vs. female-speaker-based ISTS interferer condition simulated 

in the present study represents a case of almost perfect perceptual separability in this sense 

and is thus well captured by several models (e.g., Jørgensen et al., 2013; Relaño-Iborra et al., 

2016), it has been proven difficult to account for more fine-grained differences in periodicity 

between target and masker with established SI-prediction models (e.g., Steinmetzger et al., 

2019; Relaño-Iborra, 2019).

5. Conclusions

The present study presented a matured version of a speech-intelligibility prediction model 

previously proposed by Scheidiger et al. (2018). The model is based on a sophisticated 

nonlinear auditory model that allows incorporation of hearing loss, combined with a back 

end that quantifies the similarity between across-frequency fluctuation profiles of noisy 

speech and noise alone. The model showed accurate predictions of speech reception 

thresholds (SRTs) measured in normal-hearing listeners across a number of speech-in-

noise conditions as well as plausible effects in response to changes in presentation level. 

Zaar and Carney Page 12

Hear Res. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, the model accounted accurately for SRTs measured in hearing-impaired (HI) 

listeners solely by incorporating the listeners’ audiograms in the front-end processing. 

Additional simulations indicate that a fine-tuning of the hearing-loss representation in the 

model using measures beyond the audiogram may allow investigation of effects of inner- 

and outer-hair-cell impairment on speech intelligibility in detail. Further investigations are 

required to (i) assess the model’s predictive power with respect to speech-intelligibility data 

collected with hearing-loss-based individualized amplification, (ii) extend the model toward 

a binaural version, (iii) incorporate supra-threshold hearing-loss measures, and (iv) test 

the model’s predictive power in conditions that are challenging in terms of speech-stream 

segregation.
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Figure 1. 
Flowchart of the model.
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Figure 2. 
Audiograms of the 13 HI listeners measured by Christiansen and Dau (2012), averaged 

across left and right ears. The thin gray lines show the individual audiograms; the thick 

black line shows the across-listener average. Error bars represent ±1 standard deviation from 

the mean.
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Figure 3. 
Group-level SRT and MR data and predictions. Left panel: Measured and predicted SRTs for 

NH and HI listeners as a function of noise condition. Right panel: Measured and predicted 

MRs obtained with SAM and ISTS interferers for NH and HI listeners. NH data and 

predictions are represented by open/filled squares, HI data and predictions by open/filled 

diamonds. Error bars indicate ±1 standard deviation across HI listeners.
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Figure 4. 
Measured vs. predicted SRTs (left panel) and MRs (right panel) for the 13 individual 

HI listeners. The different noise conditions are shown in color (red: SSN; green: 

SAM; blue: ISTS). Condition-specific and across-condition correlation coefficients (r) and 

mean absolute errors (MAE) are shown in the respective panels to quantify the model 

performance. The dashed diagonal line represents perfect agreement between measured in 

predicted values.
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Figure 5. 
Pure-tone threshold average (PTA) vs. measured SRTs for HI listeners. The different noise 

conditions are shown in color (red: SSN; green: SAM; blue: ISTS). Condition-specific and 

across-condition correlation coefficients (r) are shown in the respective panels to quantify 

the relationship between PTA and SRTs.
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Figure 6. 
SRTs predicted in NH configuration as a function of target speech level for SSN (left), SAM 

(middle), and ISTS (right) conditions. The black dashed lines indicate the SRTs measured in 

NH listeners (at a speech level of 60 dB SPL). The black squares represent predicted SRTs, 

whereas the red triangles indicate SRTs that were either very high or not applicable because 

predicted SI scores were too low.
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Figure 7. 
Simulated psychometric functions for three selected HI listeners using different relative 

contributions of OHC and IHC impairment. The noise conditions are color-coded (red: SSN; 

green: SAM; blue: ISTS). The relative contributions of the OHC/IHC impairment were 

67% / 33% (solid lines), 50% / 50% (dashed lines) and 33% / 67% (dash-dotted lines).
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Figure 8. 
Measured vs. predicted SRTs using the best fitting OHC/IHC impairment configuration in 

the model for each of the 13 HI listeners. The different noise conditions are shown in color 

(red: SSN; green: SAM; blue: ISTS). Condition-specific and across-condition correlation 

coefficients (r) and mean absolute errors (MAE) are shown in the respective panels to 

quantify the model performance. The dashed diagonal line represents perfect agreement 

between measured and predicted values.
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