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Electroencephalography studies link sensory processing issues in schizophrenia to increased noise level—noise here is background
spontaneous activity—as measured by the signal-to-noise ratio. The mechanism, however, of such increased noise is unknown. We
investigate if this relates to changes in cortical excitation-inhibition balance, which has been observed to be atypical in schizophrenia,
by combining electroencephalography and computational modeling. Our electroencephalography task results, for which the local field
potentials can be used as a proxy, show lower signal-to-noise ratio due to higher noise in schizophrenia. Both electroencephalography
rest and task states exhibit higher levels of excitation in the functional excitation-inhibition (as a proxy of excitation-inhibition
balance). This suggests a relationship between increased noise and atypical excitation in schizophrenia, which was addressed by using
computational modeling. A Leaky Integrate-and-Fire model was used to simulate the effects of varying degrees of noise on excitation-
inhibition balance, local field potential, NMDA current, and . Results show a noise-related increase in the local field potential, excitation
in excitation-inhibition balance, pyramidal NMDA current, and spike rate. Mutual information and mediation analysis were used to
explore a cross-level relationship, showing that the cortical local field potential plays a key role in transferring the effect of noise to the
cellular population level of NMDA.
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Introduction
Imagine yourself having a conversation at a party. Standing
among the other guests, you strain to hear what your friend
is saying. The background chatter drowns them out; they ask
you questions, but you can’t always hear them clearly, so you
don’t always respond. This example of important stimuli in
your environment being drowned out by irrelevant background
activity illustrates what subjects with schizophrenia (SCZ) may
experience more intensely than healthy individuals. Though
many studies have shown impaired sensory processing in SCZ
(Javitt 2009; Lakatos et al. 2009, 2013; Palaniyappan et al. 2013;
Javitt and Freedman 2015; Martínez et al. 2015; Thoenes and
Oberfeld 2017), the underlying mechanism of this impairment
is still unknown.

A few electroencephalography (EEG) studies (Winterer et al.
1999; Winterer et al. 2000; Wolff et al. 2022) have provided
evidence that the source of this impairment is an increase of the
ongoing spontaneous neural activity. This spontaneous neural
activity—here termed task-irrelevant neuronal “noise” (David
et al. 2006) (as distinct from artifact noise (Faisal et al. 2008))—co-
occurs with activity evoked by a stimulus, here termed “signal.”
A lower ratio of these two components (as measured by the
signal-to-noise ratio or SNR) has been seen in participants with
SCZ in multiple tasks, sensory modalities, and datasets, along
with higher noise (Winterer et al. 2000; Winterer and Weinberger
2004; Molina et al. 2016; Wolff et al. 2022). What, though, are the
neuronal and computational mechanisms of such altered SNR

with increased noise in SCZ? Addressing this open question is the
goal of our study.

One key feature in mediating changes from the cellular level to
the more systemic level is the excitation-inhibition balance (EIB;
Anticevic et al. 2015; Sohal and Rubenstein 2019; Adams et al.
2022; Friston 2022). Various studies using computational model-
ing (Rolls et al. 2008; Qian et al. 2020), molecular investigations
(NMDA, GABA) in animal models (Kehrer et al. 2008; Davenport
et al. 2019), and human PET (Narendran et al. 2020) studies suggest
an atypical EIB with abnormally increased excitation in SCZ.
Despite this work, it is unknown whether EIB abnormalities in SCZ
can be measured directly, such as at the systemic level of EEG.
Moreover, given that noise can be observed in EEG (Winterer et al.
1999; Winterer et al. 2000; Winterer et al. 2004; Wolff et al. 2022),
a close relationship between abnormal EIB and increased noise in
SCZ can be hypothesized.

To investigate the relationship of noise and EIB in SCZ, we here
uniquely combine empirical EEG data at the systemic level with
computational modeling at the neural population level. For the
first time, we measure both SNR/noise and EIB in EEG recordings
of SCZ participants. This is complemented by computational
modeling which, using a neural population network (based on
the Leaky Integrate-and-Fire (LIF) model (Gerstner and Kistler
2002)), demonstrates causal relationship of increased noise with
abnormally high excitation in the EIB. The link of systemic EEG
and the cellular-population model was established by local field
potentials (LFPs), which provide the physiological basis of the EEG
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signal (Friston et al. 2015). The LFP reflects the summation of
the extracellular electrical field of many neurons (Nunez and
Srinivasan 2006; Buzsáki et al. 2012). In a population of cortical
pyramidal neurons, this can be modeled as the sum of the abso-
lute values of inhibitory and excitatory currents (Mazzoni et al.
2008, 2010, 2011). The LFP can thus be measured at the level of a
population of pyramidal neurons, and so can serve as proxy for
the EEG recording in a computational model (Glomb et al. 2022).

The goal of our study is to investigate the changes in SNR
and EIB, including their relationship in SCZ. For that, we combine
empirical EEG measures (SNR, functional excitation-inhibition
ratio or fE/I) and analogous measures (SNR, EIB) (and other more
cellular; NMDA current, spike rate or SR) in the population-based
computational model. Our first specific aim was to investigate
amplitude in event-related potentials (ERPs), SNR, and EIB on
the more systemic level of EEG resting state and two different
tasks, including an auditory oddball task. We had two hypotheses:
(i) SCZ participants would have lower peak amplitude in the task-
relevant stimulus (deviant) compared with healthy controls; and
(ii) the SNR in SCZ participants would be lower than healthy
controls due to higher noise rather than reduced signal. Further-
more, for the first time, we measured the fE/I (Bruining et al.
2020) in human EEG data of SCZ participants. We hypothesized
that participants with SCZ would have a higher fE/I with higher
levels of excitation than healthy controls; according to the NMDA
hypothesis, greater NMDA receptor hypofunction would lead to
greater excitation (Jami et al. 2021) and, as per our hypothesis,
increased noise.

To examine and quantify the relationship of noise and EIB,
we simulated a neural population network comprised of pyrami-
dal cells and interneurons. Such networks have been extremely
popular as simplified models of local networks in the neocortex
(Ledoux and Brunel 2011). The network was simulated based on
the LIF model; it is usually used in simulation studies (Brunel
2000; Gerstner and Kistler 2002). In this network, noise refers
to the background spontaneous activity in the cortex (Chance
et al. 2002; Calvin and Redish 2021) arising from randomly-timed
excitatory inputs to pyramidal and interneuron populations, thus
affecting the activity of these populations (Calvin and Redish
2021). There is agreement that this background activity is medi-
ated through AMPA receptors (Wang 1999; Compte et al. 2000;
Vierling-Claassen et al. 2008; Deco et al. 2014; Calvin and Redish
2021). This AMPA receptor mediation is modeled as an uncorre-
lated Poisson process (Wang 1999; Brunel 2000; Compte et al. 2000;
White et al. 2000; Vierling-Claassen et al. 2008; Ledoux and Brunel
2011; Deco et al. 2014; Murray et al. 2014; Zou and Wang 2016;
Calvin and Redish 2021).

This neural network simulation was done to probe the effect of
varying strengths of input current (serving as a proxy for noise) to
pyramidal and interneuron neural populations. From the result-
ing activity of the neural population network, we measured the
(i) excitation-inhibition ratio (EI ratio), (ii) LFP, (iii) NMDA current,
and (iv) SR of the pyramidal population. Given that the LFP (as
the bridge to EEG) are mainly mediated by pyramidal cells rather
than interneurons (Martínez-Cañada et al. 2021), we focused our
measurements on pyramidal cells.

We hypothesized that increasing degrees of noise applied to
pyramidal population would lead to (i) higher levels of exci-
tation in EIB, (ii) stronger LFP, (iii) greater NMDA current, and
(iv) increased SR thus entailing a causal relationship between
noise and EIB/LFP.

Cross-level relationships of the cellular population level of
NMDA with the cortical level of EIB and LFP were substantiated by

mediation analysis and further by calculating mutual information
(MI) and dynamic time warping (DTW) during varying degrees of
noise. This was driven by our hypothesis that increasing degrees
of noise lead to changes in the EIB and especially its excitatory
component (Anticevic et al. 2015), which, in turn, relates to both
the cellular population level of NMDA currents and the cortical
level of the LFP. This bidirectional approach—from the systemic
level of EEG recordings to the cortical level of the LFP (bottom-up;
Dalal and Haddad 2022), and from the cellular population level of
the neural network activity to the cortical level of the LFP (top-
down; Dalal and Haddad 2022)—allows us to connect these two
methodologies through the LFP.

A general schematic diagram of this study is shown in Fig. 1.

Materials and methods
EEG analysis
EEG datasets
Each participant in the EEG datasets provided written informed
consent prior to the acquisition of data. In addition, the use of
the included datasets and analyses in this study were approved
by the Research Ethics Board of the Institute of Mental Health
Research at the University of Ottawa (REB # 2021002). All EEG
data were recorded using a Brain Vision EasyCap with 32 Ag/AgCl
electrodes at a sampling rate of 500 Hz. Electrode AFz served
as the ground and an additional nose electrode served as the
reference during recording. Additional channels were added to
increase the accuracy of the independent component analysis
(ICA) decomposition: vertical ocular (above and below the left eye),
and horizontal ocular (the outer canthi of the right and left eyes).
The impedance of all channels was maintained at less than 5kΩ

during recording.
For the functional excitation-inhibition balance (fE/Ib) anal-

yses, three types of continuous EEG data were used. Resting-
state data were first. Prior to beginning the tasks, participants
completed 3-min resting-state EEG recordings with their eyes
closed (Jaworska et al. 2018). These three continuous minutes of
eyes closed resting state data was used for the fE/Ib analysis.

Next, the EEG activity from an auditory oddball task (Jaworska
et al. 2013) was isolated. The task was presented to participants
using Presentation software (Neurobehavioral Systems, Albany,
CA, USA). Participants were presented with 800 tones. Eighty per-
cent of the tones—standards—were 1,000 Hz and 70 -B pure tones
336 ms in length. Ten percent (80) were deviant tones at 700 Hz
(70-dB pure tones lasting for 336 ms, identical to standards).
Participants were instructed to respond to the deviant tones by
a button press. The remaining 10% (80) were novel non-target—
participants did not respond by a button press—environmental
sounds (i.e. dog bark, horn, etc.) at 65–75 dB for 169–399 ms. The
intertrial interval between stimuli was 1 s. To match the 3 min of
resting state, 3 min of continuous activity from the middle of the
task was isolated and used for fE/Ib analysis.

Finally, the third type of data used in the fE/Ib computation
was an auditory gating task (Choueiry et al. 2019). Only data
from the first placebo session were used; therefore, there was no
effect of medication in this data. One hundred and twenty a-a
vowel pairs (/a/; F = 140 Hz; 170-ms duration) were administered
binaurally through headphones at 80 dB (SPL). Vowel pairs (a-a;
S1–S2) were presented at intra-pair intervals of 0.5 s and inter-pair
intervals of 10 s. During the paradigm presentation, patients were
instructed to ignore the sounds and to visually fixate on the center
of a black computer screen while remaining seated and relaxed.
As was done in the auditory oddball data, 3 min of continuous
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Figure 1. General diagram showing different levels of analyses. The left side represents the macroscale level or EEG level with actual data from human
participants; the right part represents the microscale level of our neural population with simulated data, and the center shows common measurements
between the two levels. Left part: EEG recording of healthy control and SCZ subjects. EEG data revealed decreased SNR in SCZ compared with healthy
subjects. A significantly lower SNR has been found in SCZ participants compared with healthy controls in several publications (Winterer et al. 1999,
2000; Winterer and Weinberger 2004; Wolff et al. 2022), and here we replicated those results. Also, fE/I was measured, and results showed enhanced
fE/I in SCZ compared with the healthy (control) group. Right side: neural population level simulation data. The box (top) represents a schematic of the
network architecture. Arrows and filled circles in this network indicate excitatory and inhibitory connections, respectively. Neurons receive the noise
current through AMPA receptors, and each neuron receives its own noise realization, independent of that received from others. Afferent current for
interneurons is zero and it is applied only to pyramidal cells. Different strengths of noise were applied to the populations and NMDA current, SR, EI
ratio, LFP, and SNR were measured. Middle part: shared measurements between neural population network and EEG levels. LFP (bottom), EI ratio, and
SNR were measured in both levels.

activity from the middle of the task was isolated and used for fE/Ib
analysis.

EEG preprocessing
All EEG data preprocessing was completed using EEGLAB (v2019)
(Delorme and Makeig 2004). This required MATLAB (The Math-
Works) v2018a, including the use of the Optimization, Statistics,
and Signal Processing Toolboxes. To ensure that our findings were
not due to any artifacts from the hardware or recording of the EEG
data, we employed a rigorous preprocessing regime to remove as
many artifacts from the EEG data as possible prior to beginning
analysis.

Raw EEG data were imported to EEGLAB. The continuous data
were then low- and high-pass Hamming windowed sinc Finite
Impulse Response (FIR) filtered from 0.1 to 80 Hz. Flat and noisy
electrode channels were then removed. Flat electrode channels
were removed if they were flat longer than 5 s. Noisy chan-
nels were removed if they had the following properties: corre-
lation of mean over 5 s of less than 0.85 with other channels

(Bigdely-Shamlo et al. 2015); mean value over 5 s greater than
4 standard deviations (SD) from the mean of all channels. The
removed channels were then spherically interpolated.

Cleanline (Mullen 2012) at 60 Hz was then used to remove
electrical line noise. The parameters were sliding window length
and step of 4 s (no overlap), default smoothing factor of 100,
default P-value of 0.01 for detecting significant sinusoid, and
an FFT default padding factor of 2. After cleanline was used,
the EEG data were re-referenced to the average activity of all
channels.

Finally, all stationary artifacts, specifically eye movements
(blinks and saccades), were reduced using ICA and the Multiple
Artifact Rejection Algorithm (MARA; Winkler et al. 2011; Winkler
et al. 2014). MARA is a plug-in associated with EEGLAB that
uses a supervised machine learning algorithm—the model
was trained on expert ratings of 1,290 components—to label
ICA components with a probability of being an artifact. If the
probability is greater than 50%, the artifact is automatically
rejected.
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ERPs, SNR, signal, and noise
For the ERP and SNR analyses, the data from the auditory oddball
task (as described above) was used. Only the standard and deviant
stimuli were used, with a baseline of −400 ms before stimulus
onset to stimulus onset. Sixty randomly selected trials for both
stimuli were used for each participant. Both the ERP, the SNR, and
the signal and noise were computed at one electrode according to
methods (Wolff et al. 2022) studies: Pz for the ERP (Jaworska et al.
2013) and Fp1 for the SNR, signal, and noise (Wolff et al. 2022).
For the ERP, the maximum amplitude between 300 and 600 ms
was measured. For the SNR, signal and noise, the area-under-the-
curve (AUC) between 0 and 200 ms was calculated.

Functional excitation-inhibition balance
computation
After preprocessing the resting state, and the auditory oddball and
gating task data, 3 min of continuous data were isolated from each
file for the fE/Ib computation. This was done as the resting state
data was 3 min long; therefore, the two task blocks were cut to
have the same length, with the 3 min isolated from the middle of
the blocks.

The fE/Ib was computed according to the methods of Bruining
et al. (Bruining et al. 2020) and using their MATLAB function,
which is located at https://github.com/rhardstone/fEI. In their
recent paper (Bruining et al. 2020), a method to quantify an fE/Ib
in human EEG data was shown. This computation of fE/Ib is done
from neuronal oscillations, specifically in the alpha frequency
band (8–13 Hz). Briefly, the alpha band filtered amplitude enve-
lope of continuous activity is first demeaned. The continuous
activity is then split into windows of 5 s and 80% overlap, with
each window being normalized by its mean. Each window is
then detrended, and the SD of each window is calculated. This
is then known as the normalized fluctuation function (nF(f )) and
serves as a proxy for long-range temporal correlations on short
timescales and amplitude. The fE/Ib is the calculated as one
minus the Pearson correlation coefficient between all nF(f )s and
all windowed amplitude values.

To remain consistent with the methods of the above paper,
the data were first re-referenced to Cz. Next, the continuous
data were filtered in the alpha range (8–13 Hz) using MATLAB
function bandpass. The reason we first filtered the data in the
alpha range of 8-13 Hz was to follow the methods of Bruining
et al (Bruining et al. 2020) exactly. In their methods section (pre-
processing and analysis of EEG data, page 12), Bruining et al state
that they extracted the alpha band amplitude envelope between
8 and 13 Hz for all subsequent analyses, so we did the same to
maintain consistency with their method.

The absolute value of the Hilbert transform was then extracted
and served as input to the fE/I function. The window length of the
sliding window was 5 s, with an overlap of 0.8, which are the same
parameters used in the original publication for fE/I (Bruining et al.
2020). As this was the first known application of the fE/I method
to another clinical group (schizophrenia), in order to get the best
comparison with their results, we followed their method to the
letter.

This calculation was done for all 32 channels.

Neural network population modeling
Network simulation
The computational modeling approach was used to investigate
the effect of background noise on the network response. To study
the dependence of the network activity in response to different

strengths of the noise current, we simulated a neural popula-
tion network and measured NMDA current, EI ratio, SR, LFP, and
SNR. To determine different levels of correlation and relationship,
Pearson’s correlation and mediation analysis were used. Then, MI
was computed to probe if these measurements share information.
DTW was used as a confirmation of the MI results.

To check if different factors which leads to increased EI ratio
cause similar relationship, more simulations were done in the
next step by changing GABA receptor conductance. We expected
a reduction in pyramidal GABA conductance increases the EI ratio
and changes both LFP and NMDA current. So, we controlled if here
LFP and NMDA have similar relationship to previous simulations,
and we repeated all analysis for it.

A network model based on previous studies (Wang 1999;
Compte et al. 2000; Murray et al. 2014; Calvin and Redish 2021)
was implemented, with the network architecture as depicted
inside the top right box in Fig. 1. The network consisted of
two populations, one of excitatory pyramidal cells and another
of inhibitory interneurons. Simulations include 1,024 (NE)
pyramidal cells and 256 (NI) interneurons, yielding a ratio of
NE/Ni = 4.

To simulate network activity, we used LIF model neurons which
is a popular model to simulate neural populations (Brunel 2000;
Gerstner and Kistler 2002). The transmembrane voltage of each
neuron obeys the following current balance equation:

Cm
dVm

dt
= −ILeak − INMDA − IGABA − IAff − INoise (1)

where Cm represents the membrane capacitance, Vm is the mem-
brane voltage, IGABA is the current from GABA receptors, INMDA

represents the current from NMDA receptors, and ILeak is the leaky
membrane current. IAff is the current from afferent neurons, and
INoise is the current caused by noisy cell firings impinging on this
neuron, mediated by AMPA receptors. In the present study, the
effect of change in INoise on the network output was investigated.

Neurons receive their recurrent excitatory inputs through
AMPA and NMDA receptors and their inhibitory inputs through
GABA receptors.

When Vm reaches the threshold voltage Vth, the neuron is
said to generate an action potential and release neurotransmit-
ters onto other downstream neurons. After generating an action
potential, the interneuron or pyramidal cell enters an absolute
refractory period (τ ref). When the neuron returns to its resting
potential (Vrest), the absolute refractory period ends. The neuron
specific parameters are given in Table 1. Model parameters are
taken from reference (Calvin and Redish 2021).

The voltage-dependent leak current is modeled as

ILeak = gL (Vm − VL) (2)

where VL is the reversal potential of the leak channels, and gL is
the passive membrane conductance. The leak current parameters
are indicated in Table 1.

The current from NMDA receptors was given by

INMDA = gNMDAsNMDA (Vm − VE)

1 + [Mg] e−0.062Vm /3.57
(3)

where gNMDA represents the receptor conductance, sNMDA is the
gating variable (the fraction of receptors in the open state), VE

is the synaptic reversal potential, and [Mg] is the concentration
of Mg2+ (magnesium) ions in the extracellular fluid. Channel

https://github.com/rhardstone/fEI
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Table 1. Different parameters of the model and its receptors.

Model parameter Value

Vth for all neurons −50 mV
Vrest for all neurons −60 mV
τ ref for all neurons 2 ms
VI for all neurons −70 mV
Cm for pyramidal cells 0.5 nF
Cm for interneurons 0.2 nF
VL for all neurons −70 mV
gL for pyramidal cells 25 nS
gL for interneurons 20 nS

NMDA receptor
Parameter Value
VE 0 mV
[Mg] 1 mM
αx 1 ms−1

τx 2 ms
αs 1
τ s 80 ms
gNMDA for pyramidal cells 370 nS
gNMDA for interneurons 300 nS

GABA receptor
Parameter Value
VI for all neurons −70 mV
τ I for all neurons 10 ms
gGABA for pyramidal cells 1.25 uS
gGABA for interneurons 1 uS

AMPA receptor
Parameters Value
VE 0 mV
τAMPA 2 ms
Noise firing rate 1.8 kHz

kinetics is modeled by

dx
dt

= αx

∑
i

δ (t − ti) − x/τx (4)

ds
dt

= αsx (1 − s) − s/τs (5)

where δ shows Dirac delta function; x is an intermediate gating
variable, and s is the fraction of open channels. The ti are the
presynaptic spike times indexed by the spike number i. τx is the
mean lifetime of the receptors changing from the closed-to-open
state, and in fact controls the rise time of NMDA receptors channel
conductance. τ s is the mean lifetime of the receptors changing
from the open-to-closed states and is the decay time of NMDA
currents. αx is the jump in value of the x kinetic with each received
spike, and αs controls the saturation of the receptor.NMDA receptor
parameters as indicated in Table 1. The currents from GABA receptors
were modeled using first-order kinetics:

IGABA = gGABA sGABA (Vm − VI) (6)

where gGABA is the receptor conductance, sGABA is the synaptic
gating variable, and VI is the synaptic reversal potential. The
gating variable sGABA was simulated using first-order kinetics, and
increases by the weight of the connection with each presynaptic
action potential and exponentially decreases otherwise. It is gov-
erned by

ds
dt

= αI

∑
j

δ
(
t − t−j

)
(1 − s) − s/τI (7)

where tj
− is presynaptic spike time, i.e. the summation is over

presynaptic spike times. αI controls the rate of increase of s at
each incoming spike, and is set to 1, whereas τ I is its average life
expectancy. GABA receptor parameters are indicated in Table 1. In
this study, the effect of reduction in GABA receptor conductance
on each population was examined, as well to see how the network
respond to these alterations. For this purpose, the conductance
was reduced to zero in steps of 20% of baseline value (1.25 uS for
pyramidal cells and 1 uS for interneurons).

Iaff is the current from afferent signals, i.e. other neurons in the
EI network, and equally affects the entire excitatory population.
In simulations, this current was considered steady over time and
set to 0.3 nA for pyramidal cells and zero for interneurons (Calvin
and Redish 2021).

The background activity or noise current INoise, usually is mod-
eled as an uncorrelated excitatory Poisson process (Brunel 2000;
White et al. 2000; Vierling-Claassen et al. 2008; Ledoux and Brunel
2011; Deco et al. 2014; Zou and Wang 2016; Calvin and Redish
2021), and mediated through AMPA receptors (Wang 1999; Compte
et al. 2000; Vierling-Claassen et al. 2008; Deco et al. 2014; Calvin
and Redish 2021). This current was given by the equation:

INoise = gNoise sAMPA (Vm − VE) (8)

where gNoise is the receptor conductance, sAMPA (the fraction of
open channels) is the synaptic gating variable, and VE is the synap-
tic reversal potential. The kinetic was modeled as a first-order
(similar to GABA kinetics) that increased by the weight of the con-
nection from each spiking presynaptic pyramidal cell and expo-
nentially decreased otherwise. It was assumed that excitatory
postsynaptic potentials caused by noisy incoming spikes were
uncorrelated with each other (Wang 1999; Brunel 2000; Compte
et al. 2000; Deco et al. 2014; Murray et al. 2014; Calvin and Redish
2021) and arrived at a mean rate of 1.8 kHz to each neuron (Calvin
and Redish 2021).AMPA receptor parameters are shown in Table 1. As
shown in Equation (8), the amplitude of the current is proportional
to the conductance. Interneuron noise conductance is 2.38 nS, and
pyramidal noise conductance is 3.1 nS. We consider this condition
as a baseline state (default network model). To change the noise
current applied to the pyramidal and interneuron populations,
their noise conductance is changed in steps of 0.5 nS to obtain
values lower and higher than the baseline state, and the output
activity is analyzed for each setting. Conductance does not exceed
10 nS (White et al. 2000); therefore, in this study, it was varied
between 1.6 and 8.1 nS for pyramidal cells and between 0.38
and 7.38 nS for interneurons. Within this range, where neurons
are not silent, they exhibit asynchronous firing patterns (refer to
Supplementary Fig. 7).

In the original model (Calvin and Redish 2021) on which our
study is based, AMPA receptor conductance from intra-circuit
connections were not modeled, as it was found that activity could
be maintained without them (Deco et al. 2014). Their inclusion
would entail unnecessary complications in the modeling of the
excitatory and inhibitory balance (Calvin and Redish 2021). How-
ever, the noise current (INoise) in the model is considered to be
mediated by AMPA receptors (Wang 1999; Compte et al. 2000;
Vierling-Claassen et al. 2008; Deco et al. 2014; Murray et al. 2014;
Calvin and Redish 2021).

Network architecture
The network was simulated with all-to-all connectivity. Connec-
tion weights between presynaptic and postsynaptic neurons from

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data


10482 | Cerebral Cortex, 2023, Vol. 33, No. 20

one neural population to itself or another population were nor-
malized such that the sum of connection weights to any given
neuron from a population was set to 1 (Calvin and Redish 2021).

Simulations
Changes in membrane voltages and receptor kinetics were inte-
grated using the second-order Runge–Kutta method. The inte-
gration time step was set to 0.01 ms. All neural networks were
constructed in Python 3. Some of the analyses were done in
MATLAB R2018b.

Simulations were run for 1,200 ms, and the first 200 ms was
omitted in the analysis to exclude the transient part. Character-
istics of the simulated network were assessed in the remaining
1,000-ms interval. However, to assure that the response does not
change over longer time scales, some simulations were repeated
for 5,000 ms. Simulations were repeated for five runs, i.e. five
different realizations of the noise process. The following were
extracted from pyramidal population output for each simulation
(averaging across five runs): NMDA current, EI ratio, SR, LFP,
and SNR.

NMDA current
This current is modeled by equation (3), and the mean across the
pyramidal population was measured.

Excitation-inhibition ratio
The excitation inhibition ratio was defined as the mean of excita-
tory currents on pyramidal cells divided by the mean of inhibitory
current on pyramidal cells (Lam et al. 2022) (i.e. summation of
the mean values of NMDA and noise currents divided by mean of
GABA current).

Spike rate
SR represents the mean number of spikes per second, and quan-
tifies the neuronal activity (Braun et al. 2022).

Local field potential
We employed a conventional approach to compute LFP, which has
been widely utilized in prior research studies (Mazzoni et al. 2008,
2010, 2011). The LFP was defined as the sum of absolute values of
NMDA and GABA currents on the pyramidal population (Mazzoni
et al. 2008, 2010, 2011).

Signal-to-noise ratio
To assess the SNR at the neural population level, we utilized
a pulse waveform as our signal. The pulse had a duration of
250 ms and an amplitude of 0.25 nA (Fig. 5A). Following 700 ms
of simulations, the pulse was applied to the pyramidal population.
We subsequently computed the SNR by comparing the average SR
of the pyramidal population in response to the signal with that of
the background noise. The calculation of SNR is represented by
Equation (9):

SNR = 10 × log10
mean SR in response to signal
mean SR in response to noise

(9)

Mediation analysis
After measuring NMDA, EI ratio, SR, and LFP, we did mediation
analysis to investigate their relationships.

Two models of relationship between an independent
variable (x) and dependent variable (y) are illustrated in

Supplementary Fig. 1. The total effect or simple association
between two variables of x and y is shown in Supplementary
Fig. 1(A), which indicates the independent variable affects the
dependent variable directly. Supplementary Fig. 1(B) depicts
mediation model. Mediation models are useful to investigate
whether an association between two variables is transmitted
via a third variable (mediator) (Shrout and Bolger 2002). In many
systems, the relationship between two variables, x and y, may be
transferred through a third intervening variable (Supplementary
Fig. 1B). This variable is called the mediator (m). In the mediation
model, x is called the initial variable, and y is the outcome
or dependent variable. A mediation model path diagram, with
standard notation for path coefficients (a, b, a∗b, and c’), is shown
in supplement Fig. 1. The coefficient of path from x to y without
mediator (total effect) is c. The coefficients of paths from x
to m, m to y, and the direct path from x to y with controlling
for the mediator are presented by a, b, and c’, respectively. The
coefficient of the indirect path from x to y is a∗b. If the indirect
effect is statistically significant, then m is considered a mediator
(Lemardelet and Caron 2022). If indirect effect is significant but
the direct effect controlling for the mediator is not significant,
then full mediation occurs. If both are significant, this suggests
partial mediation. Standard errors (SE) are shown in parentheses.

In this paper, the M3 MATLAB toolbox was used to do mediation
analysis (Shrout and Bolger 2002; Kenny et al. 2003). We aimed to
test how the effect of alterations in EI ratio (as a key parameter
for network function; Anticevic et al. 2015) is transferred to either
NMDA current or LFP. The significance of mediation results was
tested with the bootstrapping method with 10,000 bootstraps as
implemented in the aforementioned M3 toolbox.

Before doing mediation analysis, Pearson’s correlation between
all the variables (NMDA current, EI ratio, SR, and LFP) was calcu-
lated and its significance was explored.

Mutual information
Information theory states that if two variables are related and
one of them is known, information reduces uncertainty in the
other variable. (Timme and Lapish 2018). This reduction in uncer-
tainty is called MI. In other words, MI measures the amount of
shared information in two variables. In addition, it can measure
nonlinear interactions, so is not restricted to monotonic relation-
ships. This is the advantage of MI in comparison to Pearson’s or
Spearman’s correlations. Pearson’s correlation can just measure
linear dependence, whereas Spearman’s correlation is limited
to monotonic non-linear dependences. In contrast, MI measures
general dependence, including linear and non-linear dependence
(Kraskov et al. 2004; Timme and Lapish 2018).

With an important role in neuroscience, MI can quantify the
information in the nervous system (Dimitrov et al. 2011). MI is
defined by equation (10):

MI (I, J) =
∑
i∈I

∑
j∈J

p
(
i, j

)
log2

p
(
i, j

)

p(i)p(j)
(10)

where MI (I, J) represents the MI between two variables i and j; p(i)
and p(j) are marginal probabilities, and p(i, j) is the joint probability
of the values i and j. The MI is symmetric, i.e. MI(I, J) = MI(J, I), and
it is the same as entropy for I = J (Kraskov et al. 2004).

In this study, we use MI to measure the amount of shared
information between each key variables in response to different
strengths of noise current. The MI was calculated using PyInform
library in Python 3.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
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A shuffling approach was used to determine that the MI results
are significant and not random. To shuffle we changed the order
for the series that were used in the MI function randomly, and
then calculated the MI. We did this for 1,000 times and then got
the significant range for these random correspondences. Finally,
we checked if the original results differ from the shuffled results
significantly.

Dynamic time warping
DTW measures similarity, and it is among the most common
measurements of similarity. DTW is a distance-based measure-
ment between two sequences, and it calculates an optimal match
between given sequences (Tao et al. 2021).

DTW aligns elements in two sequences and calculates the
Euclidean distance between aligned elements. Actually, it finds
the best or optimal match between sequences by minimizing a
cost. The cost is defined as the sum of the absolute Euclidean
distance (Salvador and Chan 2007). The optimal match between
two sequences satisfies the various rules and restrictions (Webb
and Petitjean 2021) which were met by our data and followed in
our analyses.

In this study, we used DTW to confirm MI results. In addition,
to avoid the effect of different ranges of variables on DTW, at
first, values were normalized by dividing by the maximum in each
variable. DTW was then computed. The shuffling method was
used here as well.

Results
Part I: measuring noise and EIB in human
EEG of SCZ and healthy controls
ERPs from EEG in auditory oddball task in of SCZ
To start, we first replicated ERP results in the auditory oddball task
to verify the task and dataset. A two-way ANOVA was performed
to analyze the effect of group (CON, SCZ) and stimulus (deviants,
standards) on maximum amplitude between 300-600 ms. It (Fig. 2,
top row) revealed that there was a statistically significant inter-
action between the effects of group and stimulus (F(1,1) = 11.868,
P = 8.551 × 10−4). Simple main effects analysis showed that group
did have a statistically significant effect on maximum amplitude
(F(1,1) = 26.769, P = 1.294 × 10−6), as did stimulus (F(1,1) = 60.519,
P = 9.245 × 10−12).

Therefore, the ERP results showed a significantly lower ampli-
tude in the P300 in SCZ participants for deviant stimuli, with a
difference between stimuli, and an interaction. This replicates
findings from a previous study (Wolff et al. 2022).

SNR, signal, and noise in EEG of auditory oddball task in
SCZ
Next, we aimed to replicate previous findings on lower SNR in SCZ
(Winterer et al. 2000; Winterer and Weinberger 2004; Wolff et al.
2022). To do so, the SNR AUC between 0 and 200 ms at electrode
Fp1 was calculated for both deviants and standards (Fig. 2, second
row). A two-way ANOVA was performed to analyze the effect of
group and stimulus. The ANOVA revealed that there was not a
statistically significant interaction between the effects of group
and stimulus (F(1,1) = 0.253, P = 0.616). Simple main effects analy-
sis showed that group did have a statistically significant effect on
SNR AUC (F(1,1) = 12.389, P = 6.679 × 10−4) whereas stimulus did
not (F(1,1) = 0.423, P = 0.517).

After computing the comparisons between groups in their SNR,
we wanted to determine if the significant differences found were
due to a difference in signal, noise, or both. To do so, we again did

a two-way ANOVA on the signal (Fig. 2, third row) and the noise
(Fig. 2, bottom row) in the same electrode and time interval.

No effect of group (F(1,1) = 2.081, P = 0.153), stimulus (F(1,1) =
0.169, P = 0.682), or interaction between them (F(1,1) = 0.247,
P = 0.620) was found in the signal AUC. In contrast, a significant
effect of group (F(1,1) = 4.343, P = 0.040) was found in the noise
AUC. There was no effect of stimulus (F(1,1) = 0.059, P = 0.809) nor
interaction between them (F(1,1) = 0.075, P = 0.785). This finding
shows that the difference in SNR between groups is due to a
difference in noise, not in signal.

In sum, our SNR analysis replicated previous findings that
participants with SCZ have a lower SNR than healthy controls.
Furthermore, we showed that this lower SNR is due to higher
noise, not lower signal, in the task.

fE/Ib in rest and two tasks of SCZ EEG
Next, to measure the EIB in EEG in resting state data and two
task states, the fE/Ib (Bruining et al. 2020) was computed (Fig. 3).
For statistical comparison of the fE/Ib in rest, oddball and gating,
the electrode with the largest absolute difference between groups
(CON minus SCZ) (column 3, white X) was chosen to analyze.
Simple Wilcoxon rank sum tests (Fig. 3, fourth column violin
plots) showed that there was no statistically significant difference
at electrode FC6 between the fE/Ib in rest (P = 0.136), but there
was a significant difference at electrode F3 in the oddball task
(P = 0.033) and at electrode FC6 in the gating task (P = 0.012).

First, the relationship between rest and the auditory oddball
task was measured. A two-way ANOVA was performed to analyze
the effect of group (CON, SCZ) and condition (rest, task) on
fE/I. The ANOVA revealed that there was not a statistically
significant interaction between the effects of group and condition
(F(1,1) = 0.646, P = 0.424). Simple main effects analysis showed
that group did have a statistically significant effect on fE/I
(F(1,1) = 6.128, P = 0.015), but that condition did not (F(1,1) = 1.564,
P = 0.214).

Next, the relationship between rest and the auditory gating
task was measured. A two-way ANOVA revealed no statistically
significant interaction between the effects of group and condition
(F(1,1) = 0.096, P = 0.758). Simple main effects analysis showed
that group did have a statistically significant effect on fE/I
(F(1,1) = 9.920, P = 0.002), as did condition (F(1,1) = 5.110, P = 0.026).

In sum, our findings in the fE/Ib show no difference between
groups in rest, but a significant difference between groups in both
oddball and gating tasks. The fE/Ib in both tasks was higher in
the SCZ group indicating higher levels of excitation in SCZ (when
compared with healthy subjects).

Part II: measuring the effect of noise on the EIB
in a neural population network model
General background and simulations performed
Is the increased noise causally related to the increased excitation
in the EIB of schizophrenia? To address this question, we here link
those noise results with a neural population network simulation
through the LFP. The LFP can be used as a proxy for the EEG signal
(Glomb et al. 2022), and the average activity of the population of
a neural network can be modeled by the LFP (Glomb et al. 2022).
This suggests that the LFP can have a key role in cross-level noise
processing by for instance transferring the impact of noise from
the cellular population level to the cortical and systemic level.

We first examine neural population responses to varying
strengths of noise current. A neural network consisting of 1024
pyramidal cells and 256 interneurons (4:1 ratio) was simulated.
Noise receptor conductance was 3.1 nS for pyramidal cells
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Fig. 2. ERPs and SNR in auditory oddball task. Top row: ERPs in deviants (left) and standards (middle), with bar plot (right), and ANOVA statistics on the
maximum amplitude between 300 and 600 ms at electrode Pz (Jaworska et al. 2013). In the ERPs, it was found there was a significant effect of both group
(pg) and stimulus (ps), and a significant interaction (pI). Second row: SNR in deviants (left) and standards (middle), with bar plot (right), and ANOVA
statistics on the area under the curve (AUC) between 0 and 200 ms at electrode Fp1 (Wolff et al. 2022). In the SNR AUC, a significant effect of group
was found. There was no significant effect of stimulus, nor was there a significant interaction. As noted in the methods, the SNR is the ratio of two
timeseries, the signal (third row) and the noise (bottom row). To determine, then, which of these components was significantly different between groups,
they were independently examined. The signal at electrode Fp1 was investigated, and there was found to be no significant difference between groups
or stimuli (third row, right bar plot). In contrast, there was found to be a significant difference between the healthy controls (CON) and schizophrenia
participants (SCZ) in the noise (bottom row, right bar plot). Therefore, the difference in the SNR is due to a difference in noise, not signal. The line in
each plot represents the mean for that specified group. Gray area: time interval during which the maximum amplitude (ERP) or AUC (SNR, signal, noise)
were calculated. Box plots: CON = left bars, black; SCZ = right bars, gray. Error bars are standard error. ∗P < 0.05; ∗∗P < 0.01; n.s.: Not significant.

and 2.38 nS for interneurons. This was considered the baseline
state (default network model) (Wang 1999; Compte et al. 2000;
Calvin and Redish 2021). Simulations were done for five runs
(each with distinct background noise) and results were averaged.
Both populations show an asynchronous firing state in which
individual neurons fire incoherently, leading to no particularly
salient pattern in the network firing activity. The mean (±SD) SR
is 4.68 ± 0.08 spikes/s for interneurons and 1.66 ± 0.09 spikes/s
for pyramidal cells. This imitates the observed activity in such
networks (Mazzoni et al. 2008).

In one set of simulations, we investigated how the changes in
the noise current (the global change in the noise conductance,
i.e. changing the conductance on both populations) affected the

network activity, that is, the capacity of the network to respond
to changes in the noise input current. The noise current was
varied by altering receptor conductance in steps of 0.5 nS (1.6–8.1
nS for pyramidal cells, 0.38–7.38 nS for interneurons). Then, the
NMDA current, EI ratio, SR, and LFP (as indices for different levels)
were measured in response to varying strengths of noise current.
Some of these changes, however, may restore the EIB, but changing
the conductance of each population separately will change it.
Therefore, in another set of simulations, we kept constant noise
conductance for interneurons at 2.38 nS and varied pyramidal
noise conductance. Here, we explore the NMDA current, EI ratio,
SR, and LFP changes measured in pyramidal population in two
sets of aforementioned simulations: (i) global changes of noise
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Fig. 3. fE/Ib as measured according to the methods of Bruining (Bruining et al. 2020). Three minutes of continuous EEG activity was measured in the
resting state (Rest, top row), an auditory oddball task (Oddball task, second row), and an auditory gating task (Gating task, bottom row). The fE/I was
measured in all 32 electrodes and plotted topographically (left three columns). From left to right, column 1 are healthy controls (CON), column 2
are schizophrenic participants (SCZ), and column 3 is the difference between them (CON—SCZ). Statistically, the electrode with the largest difference
between groups (column 3, white X) was chosen to analyze. In Rest, at electrode FC6 there was no significant difference between groups. When comparing
the EIB in rest and in task, an ANOVA (group, condition) was done (right column bar plots). For the Oddball task, a significant effect of group (pg) was
found. There was no significant effect of condition (pc), nor was there a significant interaction (pI). In the Gating task, there was a significant effect of
group and condition, but no significant interaction. Violin plots: cross in the middle = mean; box = median. Box plots: CON = left bars, black; SCZ = right
bars, gray. Error bars are standard error. ∗P < 0.05; ∗∗P < 0.01.

currents and (ii) just changing the noise applied to the pyramidal
population.

Different levels of noise modulate the EIB and
pyramidal population activity
As we expected, an increase in pyramidal noise conductance
leads to an increase in the EI ratio, while an increase in the
interneuron noise conductance shows a reduction in the EI ratio
(Fig. 4A). However, for some changes in both parameters (pyra-
midal, interneuron noise conductance’s), the EI ratio does not
change compared with the baseline condition (as shown in black
color in Fig. 4A). In Fig. 4(A), the area under the black curve
shows increased EI ratio that corresponds to the EEG data pre-
sented above (whereas the area above the black curve depicts
decreased EI ratio). We observed similar results for the NMDA
current (Fig. 4B), LFP (Fig. 4C), and SR (supplement Fig. 2A).

In simulations with constant interneuron noise conductance,
we observe that, with an increase in the pyramidal noise, the
EI ratio in the pyramidal population increases monotonically
(Fig. 4D). As noise is an excitatory input, it increases the NMDA
currents (Fig. 4E), and as a result, the ratio of excitatory to
inhibitory currents increases. Enhancing the input noise current
to the pyramidal population elevates the NMDA current initially
whereas for high levels of noise, the NMDA current saturates
remaining roughly constant (Fig. 4E). For low levels of noise
(corresponds to the conductance values < 2.6 nS in Fig. 4E),
pyramidal cells do not fire action potentials; their NMDA
current is therefore zero. With the increase in pyramidal noise
conductance, the SR of the pyramidal population increases
monotonically (Supplementary Fig. 2B). This finding aligns with

previous research conducted by (Chance et al. 2002; Smirnova
et al. 2015). For small values of pyramidal noise conductance
(lower than 2.6 nS), the pyramidal population has no activity, and
the SR is zero (Supplementary Fig. 2B). This may be due to a very
low level of excitation input currents to the pyramidal cells, such
that inhibitory inputs predominate (Fig. 4D). In this condition,
NMDA current is zero as well (Fig. 4E).

Finally, the LFP was calculated as the sum of the absolute
values of NMDA and GABA currents on the pyramidal population.
In response to changes in pyramidal noise currents, the LFP
increases initially, whereas for high levels of noise, the NMDA
current shows very small changes (Fig. 4F) and exhibits a trend
similar to the NMDA current (Fig. 4E).

In general, these results indicate higher responsivity of pyrami-
dal population NMDA current, SR, EIB and LFP to higher strengths
of noise current. This suggests a causal relationship between
increased levels of excitation in EIB with increased degrees of
noise.

We expect a decrease in SNR as the strength of noise increases.
Thus, to evaluate the SNR, we administered the pulse depicted in
Fig. 5(A) as the signal to the pyramidal population and quantified
the SNR (Fig. 5C). Additionally, Fig. 5(B) represents the raster plot
depicting the response of the pyramidal population to both the
signal and background noise.

In addition to these simulations, we also examined the effect
of reduction in GABA current which has been reported in SCZ
(Vierling-Claassen et al. 2008; Anticevic et al. 2015). We repeated
simulations with varying strengths of GABA current applied to
each population. To reduce the GABA current, we decreased the
GABA conductance in steps of 20% of the baseline condition
(results are depicted in supplement Fig. 3). These results illustrate

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
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Fig. 4. Pyramidal population response to different levels of input noise current. (A), (B), and (C) show color maps as a function of pyramidal and
interneuron noise conductance. (A) EI ratio; with an increase in pyramidal noise conductance, the EI ratio increases, and with an increase in interneuron
noise conductance, the EI ratio decreases. With an increase in the noise conductance of both populations at some points, the EIB restores, which is
depicted in black color. (B) NMDA current, and (C) LFP have similar changes to EI ratio. (D), (E), and (F) depict the same measurements as in (A), (B), and
(C), respectively, as a function of just pyramidal noise conductance, and with constant interneuron noise conductance. (D) EI ratio; elevation in input
noise increases the EI ratio. (E) NMDA current increases with an increase in input noise. (F) LFP increases in general; however, for high levels of noise, it
changes in a small range. The circle shows baseline state, and error bars indicate ±SD. In some cases, SD is very small.

that by reducing the GABA current applied to the pyramidal
population, the EI ratio, NMDA current, LFP, and SR increase
because the pyramidal population receives less inhibitory cur-
rents and is thus more active. Additionally, the results indicate
that under these conditions, the SNR decreases (Supplementary
Fig. 4). However, decreasing GABA conductance of interneurons
leads to their increased activity. Therefore, interneurons exert
stronger inhibition on pyramidal cells, and this stronger inhibition
then leads to decreased activity of these pyramidal cells with
decreases (rather than increases) in the EIB and its excitatory
component.

Cross-level relationships I—mediation analysis
In the next step, we need to assess how noise is related and
transferred between the different levels, as indexed by our four
measures. We hypothesized that noise changes the EIB, which,
in turn, changes the other measures at both cellular population
(NMDA) and cortical (LFP) levels. To investigate cross-level rela-
tionships, we, in the first step, used correlation and mediation
analysis. To see correlations between these measures which rep-
resent different levels, Pearson’s correlation coefficients between
each pair and their P-values were computed (Table 2), and results
showing all levels are correlated. In Table 2, those exhibiting
significant correlations are highlighted.

These levels are not independent, but what is their relation-
ship? To probe this, we focused on mediation analysis to inves-
tigate cross-level relationship of NMDA and LFP in mediating the
effect of noise on EIB. We are interested in NMDA current, because
it is a neural population level measurement and furthermore,
based on NMDA hypothesis, it is associated with SCZ (Fišar 2022).
Results reveal that (i) EI ratio has a total effect on NMDA current;
(ii) there is a mediation (Fig. 6A and B); and (iii) the LFP is a
mediator between them. Together, these results show that the LFP
can mediate the effects of the EI ratio on NMDA current. One can
thus say that the LFP can transfer the effect of noise from cortical
levels to cellular population levels. Therefore, the LFP is mediator
between different levels; this is further supported by their high
correlation and MI.

Finally, a similar analysis was done for simulation results with
reducing GABA current (shown in Supplementary Fig. 5). These
results also confirm that the LFP can be mediators to transfer the
effect of the EI ratio on NMDA current.

Cross-level relationships II—MI and DTW
The mediation analysis indicated the relationships between the
NMDA current and LFP, and the key role of LFP and NMDA current
in mediating between different levels to transfer the impact of
noise. Results show that the LFP and NMDA current are correlated

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
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Fig. 5. SNR analysis. (A) Representation of the pulse used as the signal. (B) Raster plot illustrating the response of the pyramidal population to the
background noise and the signal depicted in (A). (C) Relationship between the SNR and the strength of the background noise, demonstrating a decrease
in SNR as the background noise increases.

Table 2. Pearson’s correlation coefficients between each pair of NMDA current, EI ratio, SR, and LFP in response to different strength of
noise current applied to the pyramidal population; ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

NMDA EI ratio SR LFP

NMDA 1 0.776
∗∗∗

0.799
∗∗∗

0.999
∗∗∗

EI ratio 1 0.937
∗∗∗

0.763
∗∗∗

SR 1 0.777
∗∗∗

LFP 1

and that the LFP can transfer the effects of higher levels on the
NMDA current. Here, to substantiate the relationship between the
NMDA current and LFP, we computed the MI between them for
each set of simulations.

So, global change in noise current (i.e. changing noise conduc-
tance of both populations) gave a matrix (for simulations shown
in the left column in Fig. 4) or a sequence (for the right column
in Fig. 4, one for NMDA current and one for LFP). Then, the MI
between them was computed to confirm their interdependence.
Here, the order of the sequences represents different strengths of
noise.

To further strengthen the MI results, we also shuffled the
NMDA and LFP, and calculated MI between the original NMDA
current and shuffled version of LFP and vice versa and both
shuffled. To shuffle the LFP or NMDA, we changed the order of
the LFP or NMDA sequence randomly. We shuffled 1000 times,
each time the MI between the original NMDA/LFP and shuffled
LFP/NMDA was measured. At the end, we had a sequence of
1,000 MI values. The boxplot was plotted. Results are presented
in Fig. 6(C) and (E). As seen in Fig. 7(C) and (E), the LFP and NMDA
have a high MI (original in Fig), while shuffling reduces their MI
(P-valueP-value < 0.05). This indicates that NMDA current and LFP
are related to each other in a systematic way with respect to
specific levels of noise.

To confirm the MI results, DTW which is a distance-based
measurement of similarity (Tao et al. 2021) was also computed for
this simulation. DTW results are shown in Fig. 6(D) and (F). Lower
values of DTW correspond to higher similarity. DTW results con-
firm the MI; the NMDA current and LFP have high similarity, which
decreases with shuffling. The MI and DTW were also computed
for simulation results with GABA conductance reduction (results
are illustrated in Supplementary Fig. 6). This supports our finding
that shuffling reduces the MI in a significant way (P-value<0.05).

Discussion
SCZ patients show sensory impairments, and previous EEG stud-
ies suggest that these are closely related to lower SNR due to
higher noise in the neural activity of SCZ. In this context, noise is
considered the ongoing spontaneous neural activity unrelated to
the stimulus while signal is considered the neural activity evoked
by the stimulus during the task. Despite the findings in these
EEG studies, the mechanism underlying increased noise in SCZ is
unknown. To connect increased noise with known abnormalities
in EIB in SCZ, we ask if the increased noise in SCZ is related to
increasing degrees of excitation in EIB. To answer this, we here
combined human empirical EEG with computational modeling to
investigate the mechanisms of increased noise in SCZ.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
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Fig. 6. Mediation and cross level analyses. (A) and (B) depict the results of mediation analysis; with coefficients of paths (a: coefficient from x to m;
b: from m to y; c’: direct coefficient from x to y; ab: indirect coefficient from x to y; c: total effect) shown along with standard errors in parentheses.
(A) shows mediation analysis with changing the noise conductance on both populations, where the LFP mediates between excitation and inhibition
ratio and NMDA current. (B) shows the same analysis as in (A), with variable pyramidal noise conductance and constant interneuron noise conductance.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. (C)–(F) display MI and DTW between NMDA current and LFP. (C) and (D) show MI and DTW as a function of both
populations noise conductance. (C) shows MI between NMDA current (original) and their shuffled versions, where the original MI differs significantly
from MI between the shuffled versions of NMDA current or LFP or both (P-value < 0.05). Shuffling reduces MI. (D) shows DTW between NMDA current and
LFP, where shuffling significantly reduces their similarity (P-value < 0.05). The medians are shown, and data points beyond the whiskers are displayed
using +. Shuffling was done by randomly changing the order of the sequence of LFP or NMDA to decorrelate their alignment. (E) and (F) show the same
analysis as in (C) and (D), respectively, but as a function of pyramidal noise conductance and with constant interneuron noise conductance.

We first show significantly reduced SNR and increased noise
in SCZ in our EEG auditory oddball task data, thus confirming
previous findings (Winterer et al. 2000; Wolff et al. 2022). As we
showed significantly lower SNR across both stimuli in the SCZ
participants, we next had to determine if this was due to increased
noise or decreased signal. This second analysis separated the SNR
into its respective components and found no difference between
groups in signal but a significant increase in noise across both
stimuli in the SCZ group. This showed that the decreased SNR was
in fact due to increased noise, and that it was not specific to task-
relevant or -irrelevant stimuli.

Next, we demonstrate, for the first time, abnormal EIB on
the systemic level of EEG by measuring the fE/Ib (Bruining
et al. 2020) in SCZ participants and healthy controls during rest
and two tasks. We found no significant difference in fE/Ib in
the resting state, but a significant difference between groups
in both the auditory oddball and gating tasks was found,
with a higher level of excitation in the fE/Ib in SCZ. These
findings show a rest-task difference between groups which has
been shown previously (Northoff and Gomez-Pilar 2021) and
suggests a relationship of increased noise and abnormal EIB in
SCZ.

But is there a causal relationship between noise and EIB?
Though this cannot be shown in the EEG data, our computational
simulations allowed us to test this. The neural population network
simulation shows that higher strengths of input noise on the
network pyramidal population leads to higher levels of excitation
in the EIB ratio, a stronger LFP, a higher SR, and higher NMDA
current (Fig. 4 and Supplementary Fig. 2). This suggests a causal
relationship between noise and both the EIB and LFP within
the simulation. Importantly, these findings converge with and
extends the observed EIB changes in EEG. Hence, we infer that the
parallel changes in noise and EIB observed in EEG are causally

related, with increasing degrees of noise leading to increasingly
abnormal EIB tilted toward the excitatory pole.

In addition, in its relationship to input noise, the slope of the
increase in the NMDA current is initially high and then become
roughly constant (as NMDA receptors saturate) (Lester and Jahr
1992; Ishikawa et al. 2002; Cummings and Popescu 2015). Given
that NMDA is known to mediate excitation (Furukawa et al. 2005),
we suppose that the increased excitation in the EIB is related
to the increase in the NMDA current. Interestingly, analogous
to the input-NMDA curve, we observed a more or less similar
relationship of the LFP with the input noise; this is even more
sensible given that the LFP are known to be shaped by synaptic
inputs (Sinha and Narayanan 2022) as from NMDA. Together,
these findings suggest cross-level interaction of NMDA and LFP in
the shaping of the excitatory component of the EIB by increasing
degrees of noise (Marsman et al. 2013; Schobel et al. 2013).

In order to further investigate cross-level relationships, we
combined different analyses including correlation, mediation
model, and MI/ DTW. We observed a key role of the LFP on
mediating the impact of noise on the cellular population level of
NMDA. Given that the LFP operate on a cortical level and NMDA
on the cellular population level, one can speak of a cross-level
bottom-up modulation.

This cross-level relationship carries major implications.
Increased noise may be prevalent at the cortical level of the
LFP in SCZ as documented and supported by our EEG findings.
That, in turn, may affect the cellular population level NMDA
activity as seen in increased NMDA current. Future studies
are needed to investigate whether SCZ is characterized by a
primary deficit in NMDA, which, through top-down modulation,
changes the EIB and subsequently the LFP. Or, alternatively, SCZ
may be featured by a primary change in its dynamics as, for
instance, increased temporal imprecision (Adams et al. 2013;

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad297#supplementary-data
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Karanikolaou et al. 2022; Wolff et al. 2022) of the LFP, which,
through bottom-up modulation, changes NMDA.

At the same time, there might be top-down modulation.
Support for such top-down modulation comes from a recent
animal study (Saunders et al. 2012). It found that exposure to
NMDA receptor antagonists’ ketamine and MK-801 lead to a dose-
dependent increase in high (35–80 Hz) frequency baseline power,
but a decrease in high frequency evoked and total power. This
resulted in lower SNR in this frequency range which was due
to higher noise, namely baseline spontaneous activity (i.e. non-
related task activity). The findings of this study are consistent
with our EEG results and previous work (Winterer et al. 2000;
Winterer and Weinberger 2004; Wolff et al. 2022) as they found
higher baseline power (noise) and lower signal (evoked activity)
with increased blocking of NMDA receptors. Along with the known
dopaminergic dysfunction in SCZ (Winterer and Weinberger 2004;
Rolls et al. 2008; Howes et al. 2015; Grace and Gomes 2019), NMDA
relates to dopamine as their projections overlap and converge
in the brain (Wang et al. 2012). Accordingly, our findings lend
further evidence to the glutamate and NMDA hypotheses of SCZ
(Moghaddam and Javitt 2012), as well as, albeit indirectly, to the
dopamine model of psychosis (Tost et al. 2010; Kesby et al. 2018;
Novak and Seeman 2022).

Our study had some limitations. In the EEG data, one limi-
tation was the use of one dataset and task for the SNR analy-
sis, and the relatively modest sample sizes for each group. Fur-
thermore, greater granularity would have been possible in the
fE/Ib topoplots if there had been more than 32 electrodes in
our dataset. This must be explored in future studies. We also
simulated the homogeneous network with no spatial dimension,
and heterogeneity in the network was not considered. Future
studies could include heterogeneity in the network. In addition,
our study probed the cross-level relationship in response to the
noise using modeling approaches and illustrated the key role of
the LFP as the bridge between different levels. However, empirical
data at the cellular level, e.g. NMDA current and the LFP may want
to be included in the future in our computational model.

Conclusion
In conclusion, we demonstrate a close relationship between
increased noise and increasing degrees of excitation in the EIB
of SCZ. Conjoining EEG data and computational modeling allows
us to draw a cross-level relationship from the cellular population
level of NMDA over the EIB to the LFP as measured in EEG.
We show that increased noise in neural activity reverberates
through all levels, with the LFP exerting bottom-up modulation
of the NMDA current. This provides insight into the cross-level
neuronal and computational mechanisms of increased noise
and its modulation of the EIB in SCZ. That aligns well with and
extends current biochemical models of SCZ, of which the NMDA-
hypothesis is the most prominent.
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