Communication

A Calcium-Activated Phytase from Pollen of Lilium longiflorum $¹$ </sup>

Received for publication June 3, 1986

JONATHAN J. SCOTT AND FRANK A. LOEWUS* Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340

ABSTRACT

A phytase was isolated and partially purified from the pollen of Lilium longiflorum Thunb. Optimum activity was at pH 8.0. The phytase was activated by Ca^{2+} and Sr^{2+} but not by the other divalent cations tested. Activity was inhibited by ethylenediaminetetraacetate. The phytase had a temperature optimum of 55 to 60°C and an activation energy of about 12,700 calories/mole. Extraction of L. longiflorum pollen with 0.1% Triton X-100 increased recovery of the phytase by nearly 4-fold. The phytase had a molecular weight of about 88,000 as determined by gel filtration chromatography and a K_m value of 7.2 micromolar for phytic acid in the presence of $Ca²⁺$.

Mature pollen grains from many plants store phytic acid (9), which is degraded during pollen germination by one or more phytases (myo-inositol hexakisphosphate phosphohydrolase) (10, 11). The *myo*-inositol moiety released during phytate degradation is utilized for phosphatidylinositol and pectin biosynthesis, supplying the needs of the elongating pollen tube (8).

Phytases have been found in pollen $(6, 11)$ and phytase activities which appear only after pollen germination have also been reported (10, 11). Previously, two phytases had been discovered in Lilium longiflorum pollen, one, ^a pH ⁵ enzyme, which is constitutive in the mature pollen grain, and the other an induced pH 6.5 form which appears only after germination (1 1). Another constitutive phytase found in $Typha$ *latifolia* pollen, has its pH maximum at 8.0 and is activated by Ca^{2+} (6). This paper deals with the isolation, partial purification and characterization of a similar Ca²⁺-activated phytase from pollen of L . longiflorum.

MATERIALS AND METHODS

Chemicals. Sodium phytate was obtained from Sigma Chemical Co. and purified by recrystallization of the sodium salt from aqueous methanol. β -Glycerophosphate was obtained from Sigma Chemical Co.

Isolation and Purification of Phytase. Freezer-stored mature pollen (10 g) from Lilium longiflorum Thunb. cv. Nellie White was suspended in 10 mm Tris-HCl (100 ml) containing 0.5 mm GSH, 0.1 mm CaCl₂, and 0.1% Triton X-100 (pH 7.6). Pollenkitt was removed by stirring with a glass rod until all pollenkitt

adhered to the rod. The suspension was ground in a Kontes Duall glass-glass homogenizer and then centrifuged at $20,000g$ for 20 min. The supernatant was dialyzed overnight at $4^{\circ}C$ against the Tris buffer (pH 7.6) (without Triton X-100). Solid (NH4)2SO4 was added to the dialysate to 25% saturation. After equilibration for 20 min at 4C, the precipitate was removed centrifugation at 12,000g for 10 min and additional $(NH_4)_2SO_4$ was added to give 55% saturation. After equilibration, the precipitate was collected and dissolved in 10 ml of the above buffer and dialyzed against two changes of the same buffer $(4 h, 4°C)$.

The dialyzed material was applied to a column of Sephadex G-200 (1.2 \times 95 cm) that had been equilibrated in 10 mm Tris-HCl, containing 0.5 mm GSH and 0.1 mm CaCl₂. Protein was eluted with the equilibration buffer. Two-ml fractions were collected and assayed for phytase, β -glycerophosphatase, and protein. Mol wt of the phytase was estimated by comparison of elution volume with protein standards of known mol wt.

Fractions from the G-200 column with phytase activity were pooled and applied to a column of DEAE cellulose (1.0 \times 20 cm) which had been equilibrated in ¹⁰ mM Tris-HCl, containing 0.5 mm GSH and 0.1 mm CaCl₂. After loading, the column was washed with 30 ml of buffer, followed by a linear gradient of 0 to 0.6 M NaCl in the Tris buffer. The phytase, which eluted between 0.17 and 0.26 M NaCl, was concentrated by lyophilization and finally dialyzed overnight at 4°C against the Tris buffer.

Enzyme Assays. The reaction mixture for phytase assay contained 0.1 M Tris-HCl (pH 8.0), 2 mM CaCl₂, 2 mM sodium phytate, and an appropriate dilution of enzyme sample in a total reaction volume of 1.2 ml. Phytase activity at pH 5.0 was determined in 0.1 M sodium acetate buffer. After incubation at 37°C for 30 min, the reaction was stopped by addition of 0.8 ml of 10% TCA, centrifuged to remove precipitate, and analyzed for Pi (1). One unit of phytase was that amount of enzyme which

Table I. Extraction of Pollen Phytase with Triton X-100

One ^g pollen was homogenized in ¹⁰ ml of ¹⁰ mm Tris-HCI, containing 0.5 mm GSH, 0.1 mm CaCl₂, and Triton X-100 at the indicated concentration.

'Activity is relative to that extracted without Triton X-100 and recovered in the crude supernatant. Total recovery from ¹ g pollen in control samples was 10.4×10^{-2} units pH 5 phytase and 5.7×10^{-2} units pH ⁸ phytase.

^{&#}x27;Supported by National Science Foundation grant DMB-8404157. Scientific Paper No. 7460, Project 0266, College of Agriculture and Home Economics Research Center, Washington State University, Pullman, WA 99164.

Table II. Summary of Phytase Purification

Purification Stage	Volume	Protein	Phytase			β -Glycerophosphatase	
			Activity	Specific activity	Yield	Specific activity	Yield
	ml	mg	units	units/mg	%	units/mg	%
Crude supernatant	88	317	2.10	0.007	100.0	0.052	100.0
$(NH4)2 SO4 precription$	22	263	1.82	0.007	86.5	0.039	61.7
Gel filtration	18	25.8	1.42	0.055	67.6	0.060	9.3
DEAE cellulose	24	8.2	0.54	0.066	25.7	0.032	1.6

Table III. Effect of Divalent Cations on Pollen Phytase Activity

^a Mean of two or more determinations (SD \pm 10%).

FIG. 1. pH profile for phytases isolated from pollen of L. longiflorum. Activities were determined in 0.1 M sodium acetate $(•)$, 0.1 M Trismaleate (\blacksquare), and 0.1 M Bicine (\square).

liberated 1 μ mol of Pi from sodium phytate per min under these conditions. The reaction mixture for β -glycerophosphatase assay contained 0.1 M Tris-HCl (pH 8.0), 2 mM $MgCl₂$, 2 mM β glycerophosphate, and enzyme in a total volume of 1.2 ml. The reaction was carried out under the same conditions as for phytase determination. Protein contents were determined by the Coomassie blue method (3).

RESULTS

Extraction and Purification of the Phytase. As shown in Table I, extraction of mature L . longiflorum pollen with 0.1% Triton X-100 increased the recovery of two phytase activities. The effect of Triton X- 100 was most dramatic for the pH ⁸ phytase, resulting in a nearly 4-fold increase in the yield of this enzyme. Increasing the concentration of Triton X-100 did not improve the recovery of either phytase. Table II summarizes the purification of the pH ⁸ phytase. Pollen extracts contained large amounts of β -glycerophosphatase activity in addition to the two phytases. The phytase was purified approximately 10-fold, and was not homogeneous. Even though the β -glycerophosphatase activity was less than 2% of the initial yield, the final phytase preparation still contained considerable β -glycerophosphatase activity. The differences in yields and specific activities at each

purification step, however, suggests that they are separate enzymes. Part of the β -glycerophosphatase activity was likely due to myo-inositol-l-phosphatase which has been isolated from L. longiflorum pollen (12). The DEAE cellulse-purified enzyme had no measureable phytase activity at pH 5. The pH ⁸ phytase had a mol wt of approximately 88,000 based on its elution volume from the Sephadex G-200 column.

Effect of Divalent Cations on Phytase Activities. As shown in Table III, Ca^{2+} at concentrations equimolar to the substrate enhanced phytase activity at pH ⁸ by more than 300%. At higher concentrations, Ca^{2+} became inhibitory (data not shown), possibly due to precipitation of the substrate as calcium phytate. Sr^{2+} could substitute for Ca^{2+} to a great extent, but the other cations that were tested failed to enhance the pH ⁸ phytase activity. Mg^{2+} and Mn^{2+} were somewhat inhibitory. None of the divalent cations tested had much effect on the pH ⁵ phytase activity with the exception of Cu^{2+} , which was inhibitory. EDTA at 0.5 mm inhibited the pH ⁸ phytase by 35% and at ⁵ mm by 94%. Inhibition by 0.5 mm EDTA was overcome by the addition of 2 mm $CaCl₂$ to the reaction mixture. EDTA had no effect on the pH ⁵ phytase.

Properties of the Ca²⁺-Activated Phytase. Figure 1 shows the pH profile for the two constitutive phytases from L. longiflorum pollen. The Ca^{2+} -activated phytase had a pH optimum of about 8.0 and was most active in Tris-maleate, rather than in Bicine buffer.

The optimum temperature for the pH ⁸ phytase activity was between 55 and 60°C and an activation energy of 12,700 calories/ mol was calculated between 30 and 50°C. The pH 5 phytase had a slightly lower temperature optimum $(45-50^{\circ} \text{ C})$ and an activation energy of about 11,500 calories/mol.

Phytase activity at pH ⁸ was determined over a range of concentrations of sodium phytate in the presence of equimolar concentrations of Ca^{2+} . A Lineweaver-Burk plot of the data gave a K_m value of 7.2 μ M.

DISCUSSION

These results demonstrate the presence of an alkaline phytase in L. longiflorum pollen which is activated by Ca^{2+} . Enhanced extraction of the phytase with Triton X-100 suggests that it has significant hydrophobic character and may be associated with a membranous structure in the intact pollen grain. Most plant phytases have pH optima between 4.0 and 5.6, although ^a few are reported to have pH optima of 7.0 and above $(5, 6)$. The L. longiflorum pollen phytase reported here resembles the T . lati*folia* phytase, although the effect of Ca^{2+} was much greater in the former.

The activation of the phytase by Ca^{2+} raises the intriguing possibility that its activity may be regulated by the intracellular $Ca²⁺$ concentration. Since phytic acid degradation occurs as pollen germination begins (10, 11), it is of interest to consider the role of Ca^{2+} in activating the enzymes required for phytic acid hydrolysis. Evidence has recently appeared to suggest that the phosphotidylinositol cycle occurs in plants (2, 4, 14) and may regulate intracellular Ca^{2+} concentrations in a manner similar to that postulated for animal cells (13). The discovery of phosphotidylinositol-hydrolyzing enzyme activities in L. longiflorum pollen (7) suggests that phosphotidylinositol turnover may regulate events during pollen germination, including phytic acid breakdown. Further purification and characterization of the Ca²⁺activated phytase from L . longiflorum pollen and its regulation during pollen development are in progress.

LITERATURE CITED

- 1. AMES BN ¹⁹⁶⁶ Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8: 115-118
- 2. Boss WF, MO MASSEL ¹⁹⁸⁵ Polyphosphoinositides are present in plant tissue culture cells. Biochem Biophys Res Commun 132: 1018-1023
- 3. BRADFORD M ¹⁹⁷⁶ A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
- 4. CONRAD PA. PK HEPLER 1986 The PI cycle and cytokinin-induced bud

- formation in Funaria. Plant Physiol 80: S60 5. COSGROVE DJ 1980 Inositol Phosphates: Their Chemistry, Biochemistry and Physiology. Elsevier, New York
-
- 6. HARA A, S EBINA, A KONDO, T. FUNAGUMA 1985 A new type of phytase from
pollen of Typha latifolia L. Agric Biol Chem 49: 3539–3544
7. HELSPER HP, PF DE GROOT, JF JACKSON, HF LINSKENS 1985 Phosphotidyli-
nositol phosphodie
- Petunia pollen. Phytochemistry 23: 1841-1845
- ACKSON JF, G JONES, HF LINSKENS 1982 Phytic acid in pollen. Phytochemistry 21: 1255-1258
- 10. JACKSON JF, HF LINSKENS ¹⁹⁸² Phytic acid in Petunia hybrida pollen is hydrolyzed during germination by a phytase. Acta Bot Neerl 31: 444-447 ¹ 1. LIN J-J, DB DICKINSON ¹⁹⁸⁵ Studies of phytic acid and phytase in germinating
- lily pollen. Plant Physiol 77: S46
- 12. LOEWUS MW, FA LOEWUS 1982 myo-Inositol-1-phosphatase from the pollen of Lilium longiflorum Thunb. Plant Physiol 70: 765-770
- 13. MARX JL 1985 The polyphosphoinositides revisited. Science 228: 312–313
14. RINCON M, WF Boss 1986 IP₃ stimulates Ca²⁺ efflux from fusogenic carrot protoplasts. Plant Physiol 80: S89
-