Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Sep 14;79(Pt 10):910–915. doi: 10.1107/S2056989023007946

Synthesis, crystal structure and Hirshfeld surface analysis of (2Z,2′E)-2,2′-(3-meth­oxy-3-phenylpropane-1,2-diyl­idene)bis­(hydrazine-1-carbo­thioamide) di­methyl­formamide monosolvate

Firudin I Guseinov a,b, Aleksandr V Knyazev b,c, Elena V Shuvalova b, Konstantin I Kobrakov a, Aida I Samigullina b, Zeliha Atioğlu d, Mehmet Akkurt e,*, Ajaya Bhattarai f,*
Editor: C Schulzkeg
PMCID: PMC10561204  PMID: 37817947

In the crystal of the title compound, mol­ecules are linked to each other and solvent di­methyl­formamide mol­ecules by N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds, forming a three dimensional network.

Keywords: crystal structure, disorder, hydrogen bonds, Hirshfeld surface analysis, α-chloro­ketone, chloro­oxirane, bis­thio­semi­carbazone

Abstract

The overall mol­ecular configuration of the title compound, C12H16N6OS2·C3H7NO, is stabilized in the solid state by intra­molecular C—H⋯N, C—H⋯O, N—H⋯N and N—H⋯O inter­actions, forming S(5) ring motifs. In the crystal, mol­ecules are linked to each other and solvent di­methyl­formamide mol­ecules by N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds, forming a three dimensional network. The phenyl ring of the title compound is disordered over two sites with an occupancy ratio of 0.57 (4):0.43 (4). A Hirshfeld surface analysis was performed to qu­antify the contributions of the different inter­molecular inter­actions, indicating that the most important contributions to the crystal packing are from H⋯H (38.7%), S⋯H / H⋯S (24.0%), C⋯H / H⋯C (18.5%) and N⋯H / H⋯N (9.8%) inter­actions.

1. Chemical context

Hydrazones are very attractive compounds in synthesis, catalysis, crystal engineering and medicinal chemistry due to their reactivity, hydrogen-bonding donor ability and broad spectrum of biological activities (Afkhami et al., 2019; Gurbanov et al., 2020a ,b ; Mahmoudi et al., 2017a ,b ,c ; Khalilov 2021; Martins et al., 2017). The most common synthetic pathway for the synthesis of hydrazones is the reaction of appropriate hydrazines with different aldehydes or ketones in various organic solvents (Khalilov et al., 2021). For example, hydrazinecarbo­thio­amide has been well explored as a substrate in the synthesis of hydrazones (Safarova et al., 2019; Velásquez et al., 2019). The functional properties of hydrazones can be improved by attaching electron-withdrawing or -donating substituents to the hydrazone moiety (Gurbanov et al., 2022b , 2017, 2021; Kopylovich et al., 2011). In fact, due to the participation of the substituents in various sorts of inter­molecular inter­actions (Mahmudov et al., 2010, 2012, 2022; Mahmoudi et al., 2019, 2021) the catalytic activity of metal complexes of hydrazones has been improved in comparison to those with unsubstituted ligands (Gurbanov et al., 2022a ). In order to continue our work in this perspective, we have synthesized a new hydrazone di­methyl­formamide monosolvate, (2Z,2′E)-2,2′-(3-meth­oxy-3-phenyl­propane-1,2-diyl­idene)bis­(hydrazine-1-carbo­thio­amide)·DMF via reaction of hydrazinecarbo­thio­amide with the highly reactive substrate 2-chloro-2-(di­eth­oxy­meth­yl)-3-phenyl­oxirane, which may be also replaced by 1-chloro-3,3-dieth­oxy-1-phenyl­propan-2-one (Guseinov et al., 2006, 2017, 2020). 1.

2. Structural commentary

As shown in Fig. 1, the title compound adopts a Z configuration about the C5=C6 double bond with regard to the 3-meth­oxy-3-phenyl­propane group and E configuration regarding the hydrazine-1-carbo­thio­amide moieties. The bond has a length of 1.452 (3) Å. The mol­ecular conformation of the title compound is stabilized by intra­molecular C11—H11⋯N7, C17—H17⋯O18, N1—H1A⋯N4 and N3—H3⋯O18 classical and non-classical hydrogen-bonding inter­actions, resulting in S(5) ring motifs (Table 1; Bernstein et al., 1995). The C12–C17 phenyl ring is disordered over two sites with occupancy factors in a 0.57 (4) to 0.43 (4) ratio. The major (C12–C17) and minor (C12A–C17A) components of the disordered phenyl ring subtend a dihedral angle of 2.0 (9)° to each other, i.e. they are nearly co-planar. Bond lengths and angles of the title compound are generally in agreement with those reported for related compounds, as discussed in the Database survey section below.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 30% probability level. Intra­molecular C11—H11⋯N7, C17—H17⋯O18, N1—H1A⋯N4 and N3—H3⋯O18 inter­actions are shown as dashed lines. The minor component of the disorder was omitted for clarity reasons.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4 0.92 (3) 2.27 (4) 2.670 (3) 106 (3)
N1—H1B⋯S9i 0.92 (4) 2.54 (4) 3.450 (2) 172 (4)
N3—H3⋯O18 0.90 (2) 2.04 (3) 2.694 (3) 129 (3)
N8—H8⋯O24ii 0.87 (3) 2.07 (4) 2.847 (4) 149 (3)
N10—H10A⋯S9iii 0.91 (3) 2.72 (3) 3.570 (3) 156 (3)
N10—H10B⋯S2iv 0.91 (4) 2.42 (4) 3.322 (3) 175 (4)
C6—H6⋯O24ii 0.95 2.54 3.224 (4) 129
C11—H11⋯N7 1.00 2.42 2.853 (3) 105
C11—H11⋯S9iii 1.00 2.87 3.706 (2) 141
C17—H17⋯O18 0.95 2.45 2.787 (16) 101
C21—H21B⋯S9v 0.98 2.98 3.951 (5) 171

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

3. Supra­molecular features and Hirshfeld surface analysis

Mol­ecules in the crystal of the title compound are linked to each other and to the solvent di­methyl­formamide by classical and non-classical N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds (Table 1; Figs. 2, 3 and 4), resulting in a three-dimensional network. Fig. 5 shows all inter­actions as supplied in Table 1. In addition some offset weak C/N—H⋯π inter­actions are observed.

Figure 2.

Figure 2

View of the mol­ecular packing along the a-axis. Intra­molecular C—H⋯N, C—H⋯O, N—H⋯N and N—H⋯O inter­actions and inter­molecular N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds are shown as dashed lines. The minor part of the disorder and hydrogen atoms not involved in hydrogen bonding were omitted for clarity reasons.

Figure 3.

Figure 3

View of the mol­ecular packing along the b-axis. Intra­molecular C—H⋯N, C—H⋯O, N—H⋯N and N—H⋯O inter­actions and inter­molecular N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds are shown as dashed lines. The minor part of the disorder and hydrogen atoms not involved in hydrogen bonding were omitted for clarity reasons.

Figure 4.

Figure 4

View of the mol­ecular packing along the c-axis. Intra­molecular C—H⋯N, C—H⋯O, N—H⋯N and N—H⋯O inter­actions and inter­molecular N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds are shown as dashed lines. The minor part of the disorder and hydrogen atoms not involved in hydrogen bonding were omitted for clarity reasons.

Figure 5.

Figure 5

A general view of the possible intra- and inter­molecular hydrogen bonds of the mol­ecule. The minor disorder component was omitted for clarity. Symmetry codes: (i) x −  Inline graphic , y +  Inline graphic , z; (ii) x, −y + 1, z +  Inline graphic ; (iii) x, −y + 1, z −  Inline graphic ; (iv) x +  Inline graphic , y −  Inline graphic , z; (v) x − 1, −y + 1, z −  Inline graphic .

Crystal Explorer 17.5 (Spackman et al., 2021) was used to perform a Hirshfeld surface analysis and to generate the corresponding two-dimensional fingerprint plots, with a standard resolution of the three-dimensional d norm surfaces plotted over a fixed color scale of −0.5044 (red) to +1.5170 (blue) a.u. (Fig. 6). The red spots symbolize short contacts and negative d norm values on the surface corresponding to the N—H⋯S, N—H⋯O and C—H⋯O hydrogen bonds mentioned above (Table 1). The N1—H1B⋯S9, N8—H8⋯O24, N10—H10A⋯S9, N10—H10B⋯S2 and C6—H6⋯O24 inter­actions, which play a key role in the mol­ecular packing of the title compound, are responsible for the red spots observed around S2, S9 and O24.

Figure 6.

Figure 6

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm.

The overall two-dimensional fingerprint plot for the title compound is provided in Fig. 7 a, and those delineated into N—H⋯S, N—H⋯O and C—H⋯O contacts are shown in Fig. 7 be, while numerical details of the different contacts are supplied in Table 2. The most important contributions to the Hirshfeld surfaces from the various inter­atomic contacts are H⋯H (38.7%), S⋯H / H⋯S (24.0%), C⋯H/H⋯C (18.5%) and N⋯H/H⋯N ((9.8%). Other, less notable contacts comprise O⋯H/H⋯O (5.0%), S⋯N/N⋯S (1.7%), S⋯C/C⋯S (0.7%), O⋯N/N⋯O (0.5%), N⋯C/C⋯N (0.4%), N⋯N (0.2%), C⋯C (0.2%) and S⋯O/O⋯S (0.1%); they have little, if any, directional influence on the mol­ecular packing.

Figure 7.

Figure 7

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) S⋯H/H⋯S, (d) C⋯H/H⋯C and (e) N⋯H/H⋯N inter­actions. [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
S2⋯H10B 2.42 Inline graphic  + x, Inline graphic  + y, z
H16⋯O24 2.73 Inline graphic  + x, Inline graphic  + y, z
H19A⋯N3 2.71 Inline graphic  + x, Inline graphic  − y, − Inline graphic  + z
S9⋯H10A 2.72 x, 1 − y, Inline graphic  + z
S9⋯H21B 2.98 1 + x, 1 − y, Inline graphic  + z
H6⋯H16A 2.49 Inline graphic  + x, Inline graphic  − y, Inline graphic  + z
N3⋯H15A 2.56 −1 + x, y, z
H8⋯O24 2.07 x, 1 − y, Inline graphic  + z
H19B⋯H22A 2.58 x, y, z
H22C⋯H21A 2.31 x, 1 − y, − Inline graphic  + z

4. Database survey

A database search was carried out using ConQUEST (Bruno et al., 2002), part of the software for version 2023.2.0 of the Cambridge Structural Database (Groom et al., 2016). A search for the keyword ‘hydrazinecarbo­thio­amide’ resulted in nearly 600 hits. A search for the structural bis-hydrazinecarbo­thio­amide motif without considering hydrogen atoms narrowed that down to 45. For a more detailed analysis, four of those compounds were chosen as relatively more closely related to the title compound, yet with a variation of the substituent(s) numbers and position on the bis-hydrazinecarbo­thio­amide backbone. These are: (E,E)-N,N-dimethyl-2-{3-[(methyl­carbamo­thio­yl)hydrazono]butan-2-yl­idene}hydrazinecarbo­thio­amide (CD refcode ERABIJ; Paterson et al., 2010), diacetyl-2-(4-N-ethyl-3-thio­semicarbazone)-3-(4-N-allyl-3-thio­semicarbazone) di­methyl­sulfoxide solvate (JEXXOA; Holland et al., 2007), 2-keto-3-eth­oxy­butyraldehyde­bis­(thio­semicarbazone) (KEBASC10; Gabe et al., 1969) and N,1-dimethyl-2-{3-[2-(methyl­carbamo­thio­yl)hydrazinyl­idene]butan-2-yl­idene}hydrazine-1-carbo­thio­amide (RECKAP; Alonso et al., 2022).

In the crystal of ERABIJ (monoclinic space group: P21/c, Z = 4), the mol­ecule adopts an (E, E)-configuration about the imine double bonds. The arm bearing a dimethyl substituent has a slightly shorter C—S [1.6802 (19) Å] bond length and a longer C—N [1.341 (2) Å] bond length than the arm with a single methyl substituent [1.693 (2) and 1.323 (3) Å, respectively]. These bond lengths indicate that there is some extensive delocalization throughout the mol­ecule while one tautomeric form still dominates.

In the crystal of JEXXOA (monoclinic space group: P21/c, Z = 2), the unsymmetrical bis­(thio­semicarbazone) lies on a crystallographic center of inversion. The carbon–carbon bond length between C5 and C6 is 1.478 (3) Å, which is exactly the same as the average bond length expected for a single bond between two sp 2-hybridized carbon atoms. Other bond lengths are indicative of the presence of a conjugated system here as well.

In the crystal of KEBASC10 (monoclinic space group: P21/c, Z = 8), there are two mol­ecules per asymmetric unit. The bis-hydrazinecarbo­thio­amide motif is outstretched (i.e. not bent) and extends from one sulfur atom to the other as head and tail atoms. The mol­ecule is approximately planar except for the side chain. The bond distances and angles are very similar in the two mol­ecules of the asymmetric unit. There is an intra­molecular N—H⋯O hydrogen bond, which stabilizes the mol­ecular structure, similar to what is observed in the title compound. The packing of the mol­ecule seems dominated by the formation of N—H⋯S hydrogen bonds. There is also one very short C—H⋯S inter­molecular distance between the two mol­ecules in the asymmetric unit, which may be strong enough to cause some distortion, in one mol­ecule more than in the other. The tendency of mol­ecules that are crystallographically independent but have opposite absolute configurations to associate may explain why they have co-crystallized in this case and why there are, hence, two independent mol­ecules in the asymmetric unit.

In the crystal of RECKAP (triclinic space group: P Inline graphic , Z = 2), the compound is in the thione form yet resonant, which is supported by the C—S bond distances, which are inter­mediate between those of single and double bonds (1.82 and 1.56 Å, respectively) and the presence of the hydrazinic hydrogen H2. The azomethine bonds both have a length of 1.29 Å, which is in accordance with double bonds. The N—N bonds are both shorter than 1.44 Å, which agrees well with those of similar thio­semicarbazones. The two arms of the mol­ecule adopt the E configuration with respect to the central C3—C4 single bond and both azomethine nitro­gen atoms N3 and N4 are in an E configuration relative to the thione sulfur atoms. The ligand is not planar and the two arms form an angle of 73.51°. The mol­ecules are held together in the crystal through an extended network of inter­molecular hydrogen bonds involving the amine nitro­gen atoms N1 and N6 and the sulfur atoms.

All the mol­ecules discussed here, including the title compound, adopt an E configuration of the hydrazine moieties attached to the central C—C bond. The differences in substitution do not affect this. However, the latter gives rise to a variation in the inter­molecular inter­actions and can also result in distinct mol­ecular shapes from the more common (almost) planar arrangement of the bis-hydrazinecarbo­thio­amide motif to a substantial twisting to nearly perpendicular.

5. Synthesis and crystallization

Hydrazinecarbo­thio­amide (0.380 g, 6.25 mmol) and 2-chloro-2-(di­eth­oxy­meth­yl)-3-phenyl­oxirane (1.600 g, 6.25 mmol) in 20 mL of methanol was refluxed for 2 h. After complete dissolution of hydrazinecarbo­thio­amide, the mixture was stirred at room temperature for 24 h. The progress of the reaction was monitored by TLC in the system 9:1 chloro­form:methanol R f = 0.53. After completion of the reaction, the solvent was evaporated. The title compound was isolated by column chromatography in a 20:1 chloro­form:methanol R f = 0.17 system. The compound was obtained as a white solid in a yield of 0.689 g (34%); m.p. 421–423 K (with decomposition). Analysis calculated for C12H16N6OS2 (M = 324.42) C 44.43, H 4.97, N 25.91; found: C 44.35, H 4.90, N 25.94. 1H NMR (300 MHz, DMSO-d 6) δ 3.52 (3H, CH3), 6.35 (1H, CH), 7.37–7.45 (5H, Ar), 8,15–8.68 (2H, NH), 10.74 (2H, NH2), 10.80 (s, 2H, NH2). 13C NMR (200 MHz, DMSO-d 6) δ 57.13, 78.52, 126.22, 128.45, 136.79, 138.92, 144.20, 177.67, 178.18. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the DMF:methanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C12(C12A)–C17(C17A) atoms in the C12–C17 phenyl ring are disordered over two sites with occupancies of 0.57 (4) and 0.43 (4), respectively. The N-bound hydrogen atoms were located in difference maps [N1—H1A = 0.92 (2), N1—H1B = 0.92 (2), N3—H3 = 0.90 (2), N8—H8 = 0.88 (2), N10—H10A = 0.91 (2) and N10—H10B = 0.90 (2) Å] and refined by constraining the N—H distances with SADI. All carbon-bound hydrogen atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were included in the refinement in the riding-model approximation with U iso(H) = 1.2 or 1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C12H16N6OS2·C3H7NO
M r 397.52
Crystal system, space group Monoclinic, C c
Temperature (K) 100
a, b, c (Å) 8.4573 (1), 23.5853 (3), 11.0072 (1)
β (°) 111.749 (2)
V3) 2039.29 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.57
Crystal size (mm) 0.32 × 0.12 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023)
T min, T max 0.658, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11141, 2776, 2751
R int 0.030
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.088, 1.07
No. of reflections 2776
No. of parameters 317
No. of restraints 377
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.27
Absolute structure Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter 0.000 (16)

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT2019/1 (Sheldrick, 2015a ), SHELXL2019/1 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023007946/yz2041sup1.cif

e-79-00910-sup1.cif (353.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007946/yz2041Isup2.hkl

e-79-00910-Isup2.hkl (222.1KB, hkl)

CCDC reference: 2294475

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, FIG, MA and AB; synthesis, AVK, EVS and KIK; X-ray analysis, AIS and ZA; writing (review and editing of the manuscript) FIG, MA and AB; supervision, FIG, MA and AB.

supplementary crystallographic information

Crystal data

C12H16N6OS2·C3H7NO F(000) = 840
Mr = 397.52 Dx = 1.295 Mg m3
Monoclinic, Cc Cu Kα radiation, λ = 1.54184 Å
a = 8.4573 (1) Å Cell parameters from 9940 reflections
b = 23.5853 (3) Å θ = 3.7–77.6°
c = 11.0072 (1) Å µ = 2.57 mm1
β = 111.749 (2)° T = 100 K
V = 2039.29 (5) Å3 Plate, colourless
Z = 4 0.32 × 0.12 × 0.02 mm

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 2776 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2751 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.030
ω scans θmax = 77.8°, θmin = 3.8°
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2023) h = −10→10
Tmin = 0.658, Tmax = 1.000 k = −29→29
11141 measured reflections l = −9→13

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.7217P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.30 e Å3
2776 reflections Δρmin = −0.27 e Å3
317 parameters Absolute structure: Classical Flack method preferred over Parsons because s.u. lower
377 restraints Absolute structure parameter: 0.000 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S2 0.28482 (9) 0.88049 (2) 0.35678 (8) 0.02715 (16)
S9 0.62361 (9) 0.43859 (2) 0.67836 (8) 0.02788 (17)
O18 0.3029 (2) 0.69867 (7) 0.22627 (17) 0.0208 (4)
N1 0.3182 (3) 0.82853 (9) 0.5810 (2) 0.0250 (4)
H1A 0.321 (5) 0.7946 (11) 0.623 (4) 0.035 (10)*
H1B 0.277 (5) 0.8600 (14) 0.609 (4) 0.050 (12)*
N3 0.3551 (3) 0.77463 (9) 0.4201 (2) 0.0193 (4)
H3 0.338 (4) 0.7707 (16) 0.335 (2) 0.030 (9)*
N4 0.3832 (3) 0.72789 (9) 0.4985 (2) 0.0194 (4)
N7 0.5105 (3) 0.58678 (9) 0.5112 (2) 0.0206 (4)
N8 0.5322 (3) 0.54302 (9) 0.5966 (2) 0.0237 (4)
H8 0.494 (4) 0.5441 (15) 0.660 (3) 0.025 (8)*
N10 0.6502 (3) 0.49254 (10) 0.4741 (3) 0.0304 (5)
H10A 0.637 (4) 0.5197 (13) 0.412 (3) 0.028 (8)*
H10B 0.689 (5) 0.4610 (13) 0.447 (4) 0.042 (10)*
C2 0.3196 (3) 0.82596 (10) 0.4617 (3) 0.0196 (5)
C5 0.4275 (3) 0.68202 (10) 0.4549 (2) 0.0178 (5)
C6 0.4552 (3) 0.63348 (11) 0.5415 (3) 0.0211 (5)
H6 0.432845 0.636140 0.619743 0.025*
C9 0.6017 (3) 0.49391 (11) 0.5749 (3) 0.0245 (5)
C11 0.4518 (3) 0.67600 (10) 0.3245 (2) 0.0180 (4)
H11 0.462814 0.634948 0.306311 0.022*
C12 0.6115 (14) 0.7087 (7) 0.3235 (18) 0.017 (2) 0.57 (4)
C13 0.7717 (16) 0.6857 (6) 0.3961 (17) 0.019 (2) 0.57 (4)
H13 0.781040 0.650478 0.440053 0.023* 0.57 (4)
C14 0.9181 (14) 0.7156 (8) 0.4026 (14) 0.025 (2) 0.57 (4)
H14 1.027777 0.700727 0.451350 0.030* 0.57 (4)
C15 0.9025 (17) 0.7670 (7) 0.3378 (13) 0.024 (2) 0.57 (4)
H15 1.001690 0.787616 0.343977 0.029* 0.57 (4)
C16 0.7452 (17) 0.7882 (6) 0.2650 (14) 0.0204 (19) 0.57 (4)
H16 0.736384 0.822536 0.217843 0.025* 0.57 (4)
C17 0.5977 (16) 0.7599 (7) 0.2590 (16) 0.0155 (19) 0.57 (4)
H17 0.488928 0.775672 0.211265 0.019* 0.57 (4)
C12A 0.618 (2) 0.7024 (9) 0.339 (2) 0.017 (3) 0.43 (4)
C13A 0.771 (2) 0.6743 (9) 0.411 (2) 0.022 (3) 0.43 (4)
H13A 0.769780 0.639161 0.452901 0.026* 0.43 (4)
C14A 0.9259 (19) 0.6998 (9) 0.4195 (19) 0.023 (2) 0.43 (4)
H14A 1.030313 0.681309 0.467394 0.027* 0.43 (4)
C15A 0.9282 (19) 0.7516 (9) 0.3588 (17) 0.020 (2) 0.43 (4)
H15A 1.033708 0.767984 0.365263 0.025* 0.43 (4)
C16A 0.780 (2) 0.7788 (8) 0.290 (2) 0.023 (3) 0.43 (4)
H16A 0.781356 0.814671 0.251521 0.028* 0.43 (4)
C17A 0.625 (2) 0.7534 (9) 0.277 (2) 0.021 (3) 0.43 (4)
H17A 0.521200 0.771477 0.225499 0.025* 0.43 (4)
C19 0.2808 (3) 0.67848 (12) 0.0984 (3) 0.0257 (5)
H19A 0.191339 0.700524 0.032715 0.039*
H19B 0.248038 0.638391 0.091007 0.039*
H19C 0.387790 0.682681 0.084046 0.039*
O24 0.2984 (3) 0.43619 (10) 0.2226 (3) 0.0449 (6)
N20 0.1627 (4) 0.49731 (13) 0.3120 (3) 0.0405 (6)
C21 0.0784 (5) 0.50587 (19) 0.4044 (5) 0.0551 (10)
H21A 0.075716 0.469985 0.448488 0.083*
H21B −0.038264 0.519122 0.357418 0.083*
H21C 0.140992 0.534251 0.469463 0.083*
C22 0.1605 (5) 0.54375 (17) 0.2284 (4) 0.0503 (9)
H22A 0.259076 0.541176 0.202153 0.075*
H22B 0.165269 0.579467 0.275069 0.075*
H22C 0.055571 0.542499 0.150377 0.075*
C23 0.2273 (5) 0.44708 (17) 0.3000 (4) 0.0456 (8)
H23 0.218115 0.417283 0.355074 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S2 0.0435 (3) 0.0159 (3) 0.0262 (3) 0.0076 (2) 0.0178 (3) 0.0043 (2)
S9 0.0488 (3) 0.0145 (3) 0.0281 (3) 0.0061 (2) 0.0234 (3) 0.0048 (2)
O18 0.0219 (7) 0.0219 (8) 0.0180 (9) 0.0023 (7) 0.0067 (6) 0.0003 (7)
N1 0.0383 (11) 0.0165 (9) 0.0250 (11) 0.0039 (8) 0.0172 (9) 0.0016 (9)
N3 0.0264 (9) 0.0145 (9) 0.0198 (10) 0.0028 (7) 0.0117 (8) 0.0030 (8)
N4 0.0233 (8) 0.0140 (9) 0.0230 (10) 0.0021 (7) 0.0112 (8) 0.0016 (8)
N7 0.0298 (9) 0.0144 (9) 0.0200 (10) 0.0022 (8) 0.0120 (8) 0.0017 (8)
N8 0.0390 (11) 0.0148 (10) 0.0236 (11) 0.0044 (9) 0.0191 (9) 0.0029 (9)
N10 0.0538 (14) 0.0157 (10) 0.0324 (13) 0.0092 (10) 0.0287 (11) 0.0052 (9)
C2 0.0205 (9) 0.0158 (11) 0.0232 (12) 0.0015 (8) 0.0090 (9) −0.0009 (9)
C5 0.0221 (10) 0.0135 (10) 0.0192 (11) 0.0007 (8) 0.0093 (9) 0.0007 (8)
C6 0.0307 (11) 0.0158 (11) 0.0208 (11) 0.0010 (9) 0.0141 (9) 0.0012 (10)
C9 0.0345 (12) 0.0169 (12) 0.0248 (12) 0.0016 (9) 0.0141 (10) 0.0011 (10)
C11 0.0199 (9) 0.0165 (10) 0.0186 (11) 0.0023 (8) 0.0081 (8) 0.0007 (9)
C12 0.014 (3) 0.023 (5) 0.013 (4) −0.002 (3) 0.005 (2) 0.002 (3)
C13 0.028 (3) 0.015 (4) 0.017 (4) 0.001 (2) 0.011 (2) 0.007 (3)
C14 0.020 (2) 0.031 (5) 0.023 (4) 0.004 (3) 0.007 (2) 0.004 (4)
C15 0.025 (4) 0.025 (5) 0.024 (4) 0.000 (3) 0.011 (3) 0.003 (3)
C16 0.025 (4) 0.021 (4) 0.017 (4) −0.002 (3) 0.009 (3) 0.002 (3)
C17 0.019 (3) 0.016 (4) 0.013 (4) 0.000 (3) 0.008 (3) 0.004 (2)
C12A 0.033 (5) 0.013 (4) 0.011 (5) 0.004 (3) 0.014 (3) 0.000 (3)
C13A 0.019 (3) 0.028 (6) 0.020 (5) 0.004 (3) 0.008 (3) 0.005 (4)
C14A 0.023 (3) 0.025 (6) 0.021 (5) 0.003 (4) 0.008 (3) 0.004 (4)
C15A 0.018 (3) 0.022 (6) 0.020 (5) 0.002 (4) 0.006 (3) −0.004 (4)
C16A 0.030 (5) 0.021 (5) 0.018 (5) −0.004 (4) 0.009 (4) 0.003 (4)
C17A 0.022 (4) 0.020 (5) 0.019 (6) 0.008 (4) 0.006 (4) 0.001 (4)
C19 0.0297 (11) 0.0270 (13) 0.0184 (12) 0.0000 (10) 0.0065 (10) −0.0003 (10)
O24 0.0539 (13) 0.0453 (14) 0.0487 (15) 0.0031 (11) 0.0343 (12) 0.0024 (11)
N20 0.0429 (13) 0.0399 (15) 0.0428 (16) −0.0030 (11) 0.0206 (12) −0.0034 (13)
C21 0.056 (2) 0.060 (2) 0.060 (3) −0.0086 (19) 0.0335 (19) −0.013 (2)
C22 0.0547 (19) 0.0407 (18) 0.059 (2) −0.0030 (16) 0.0248 (17) 0.0019 (18)
C23 0.0524 (18) 0.0432 (18) 0.050 (2) −0.0031 (15) 0.0299 (17) −0.0010 (16)

Geometric parameters (Å, º)

S2—C2 1.680 (3) C15—C16 1.368 (9)
S9—C9 1.697 (3) C15—H15 0.9500
O18—C11 1.426 (3) C16—C17 1.394 (9)
O18—C19 1.430 (3) C16—H16 0.9500
N1—C2 1.319 (4) C17—H17 0.9500
N1—H1A 0.92 (2) C12A—C17A 1.390 (14)
N1—H1B 0.92 (2) C12A—C13A 1.407 (13)
N3—N4 1.365 (3) C13A—C14A 1.413 (13)
N3—C2 1.366 (3) C13A—H13A 0.9500
N3—H3 0.90 (2) C14A—C15A 1.398 (12)
N4—C5 1.294 (3) C14A—H14A 0.9500
N7—C6 1.288 (3) C15A—C16A 1.361 (12)
N7—N8 1.362 (3) C15A—H15A 0.9500
N8—C9 1.360 (3) C16A—C17A 1.401 (13)
N8—H8 0.88 (2) C16A—H16A 0.9500
N10—C9 1.318 (4) C17A—H17A 0.9500
N10—H10A 0.91 (2) C19—H19A 0.9800
N10—H10B 0.90 (2) C19—H19B 0.9800
C5—C6 1.452 (3) C19—H19C 0.9800
C5—C11 1.530 (3) O24—C23 1.238 (4)
C6—H6 0.9500 N20—C23 1.332 (5)
C11—C12A 1.492 (19) N20—C22 1.426 (5)
C11—C12 1.558 (13) N20—C21 1.456 (5)
C11—H11 1.0000 C21—H21A 0.9800
C12—C17 1.384 (10) C21—H21B 0.9800
C12—C13 1.402 (10) C21—H21C 0.9800
C13—C14 1.404 (10) C22—H22A 0.9800
C13—H13 0.9500 C22—H22B 0.9800
C14—C15 1.387 (9) C22—H22C 0.9800
C14—H14 0.9500 C23—H23 0.9500
C11—O18—C19 112.21 (18) C15—C16—H16 119.6
C2—N1—H1A 117 (3) C17—C16—H16 119.6
C2—N1—H1B 121 (3) C12—C17—C16 119.3 (8)
H1A—N1—H1B 119 (4) C12—C17—H17 120.3
N4—N3—C2 120.8 (2) C16—C17—H17 120.3
N4—N3—H3 120 (2) C17A—C12A—C13A 119.3 (13)
C2—N3—H3 118 (2) C17A—C12A—C11 121.0 (13)
C5—N4—N3 116.6 (2) C13A—C12A—C11 119.7 (13)
C6—N7—N8 116.0 (2) C12A—C13A—C14A 118.2 (12)
C9—N8—N7 118.7 (2) C12A—C13A—H13A 120.9
C9—N8—H8 119 (2) C14A—C13A—H13A 120.9
N7—N8—H8 123 (2) C15A—C14A—C13A 121.2 (10)
C9—N10—H10A 128 (2) C15A—C14A—H14A 119.4
C9—N10—H10B 124 (3) C13A—C14A—H14A 119.4
H10A—N10—H10B 107 (4) C16A—C15A—C14A 120.2 (10)
N1—C2—N3 117.3 (2) C16A—C15A—H15A 119.9
N1—C2—S2 125.8 (2) C14A—C15A—H15A 119.9
N3—C2—S2 116.9 (2) C15A—C16A—C17A 119.5 (11)
N4—C5—C6 114.5 (2) C15A—C16A—H16A 120.3
N4—C5—C11 125.7 (2) C17A—C16A—H16A 120.3
C6—C5—C11 119.8 (2) C12A—C17A—C16A 121.7 (12)
N7—C6—C5 119.3 (2) C12A—C17A—H17A 119.2
N7—C6—H6 120.3 C16A—C17A—H17A 119.2
C5—C6—H6 120.3 O18—C19—H19A 109.5
N10—C9—N8 117.3 (2) O18—C19—H19B 109.5
N10—C9—S9 123.8 (2) H19A—C19—H19B 109.5
N8—C9—S9 118.9 (2) O18—C19—H19C 109.5
O18—C11—C12A 117.2 (9) H19A—C19—H19C 109.5
O18—C11—C5 106.77 (19) H19B—C19—H19C 109.5
C12A—C11—C5 108.1 (10) C23—N20—C22 121.8 (3)
O18—C11—C12 109.5 (6) C23—N20—C21 121.2 (3)
C5—C11—C12 112.3 (8) C22—N20—C21 116.8 (3)
O18—C11—H11 109.4 N20—C21—H21A 109.5
C5—C11—H11 109.4 N20—C21—H21B 109.5
C12—C11—H11 109.4 H21A—C21—H21B 109.5
C17—C12—C13 120.6 (9) N20—C21—H21C 109.5
C17—C12—C11 121.8 (9) H21A—C21—H21C 109.5
C13—C12—C11 117.5 (9) H21B—C21—H21C 109.5
C12—C13—C14 118.9 (8) N20—C22—H22A 109.5
C12—C13—H13 120.6 N20—C22—H22B 109.5
C14—C13—H13 120.6 H22A—C22—H22B 109.5
C15—C14—C13 119.9 (8) N20—C22—H22C 109.5
C15—C14—H14 120.1 H22A—C22—H22C 109.5
C13—C14—H14 120.1 H22B—C22—H22C 109.5
C16—C15—C14 120.5 (8) O24—C23—N20 125.1 (4)
C16—C15—H15 119.8 O24—C23—H23 117.5
C14—C15—H15 119.8 N20—C23—H23 117.5
C15—C16—C17 120.8 (8)
C2—N3—N4—C5 −175.4 (2) C5—C11—C12—C13 73.3 (16)
C6—N7—N8—C9 −175.4 (2) C17—C12—C13—C14 0 (3)
N4—N3—C2—N1 1.7 (3) C11—C12—C13—C14 −176.8 (14)
N4—N3—C2—S2 −179.27 (16) C12—C13—C14—C15 0 (2)
N3—N4—C5—C6 −179.78 (19) C13—C14—C15—C16 −1.5 (19)
N3—N4—C5—C11 0.4 (3) C14—C15—C16—C17 2.8 (19)
N8—N7—C6—C5 −179.5 (2) C13—C12—C17—C16 1 (3)
N4—C5—C6—N7 −175.5 (2) C11—C12—C17—C16 178.0 (14)
C11—C5—C6—N7 4.3 (3) C15—C16—C17—C12 −3 (2)
N7—N8—C9—N10 2.6 (4) O18—C11—C12A—C17A 12 (2)
N7—N8—C9—S9 −178.22 (17) C5—C11—C12A—C17A −109 (2)
C19—O18—C11—C12A 79.2 (11) O18—C11—C12A—C13A −165.2 (16)
C19—O18—C11—C5 −159.5 (2) C5—C11—C12A—C13A 74 (2)
C19—O18—C11—C12 78.8 (8) C17A—C12A—C13A—C14A 1 (3)
N4—C5—C11—O18 −50.3 (3) C11—C12A—C13A—C14A 178.2 (18)
C6—C5—C11—O18 129.9 (2) C12A—C13A—C14A—C15A 0 (3)
N4—C5—C11—C12A 76.6 (9) C13A—C14A—C15A—C16A 0 (2)
C6—C5—C11—C12A −103.2 (9) C14A—C15A—C16A—C17A −2 (2)
N4—C5—C11—C12 69.6 (6) C13A—C12A—C17A—C16A −3 (4)
C6—C5—C11—C12 −110.1 (6) C11—C12A—C17A—C16A 179.8 (19)
O18—C11—C12—C17 14.8 (19) C15A—C16A—C17A—C12A 4 (3)
C5—C11—C12—C17 −103.6 (16) C22—N20—C23—O24 4.0 (6)
O18—C11—C12—C13 −168.3 (13) C21—N20—C23—O24 178.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N4 0.92 (3) 2.27 (4) 2.670 (3) 106 (3)
N1—H1B···S9i 0.92 (4) 2.54 (4) 3.450 (2) 172 (4)
N3—H3···O18 0.90 (2) 2.04 (3) 2.694 (3) 129 (3)
N8—H8···O24ii 0.87 (3) 2.07 (4) 2.847 (4) 149 (3)
N10—H10A···S9iii 0.91 (3) 2.72 (3) 3.570 (3) 156 (3)
N10—H10B···S2iv 0.91 (4) 2.42 (4) 3.322 (3) 175 (4)
C6—H6···O24ii 0.95 2.54 3.224 (4) 129
C11—H11···N7 1.00 2.42 2.853 (3) 105
C11—H11···S9iii 1.00 2.87 3.706 (2) 141
C17—H17···O18 0.95 2.45 2.787 (16) 101
C21—H21B···S9v 0.98 2.98 3.951 (5) 171

Symmetry codes: (i) x−1/2, y+1/2, z; (ii) x, −y+1, z+1/2; (iii) x, −y+1, z−1/2; (iv) x+1/2, y−1/2, z; (v) x−1, −y+1, z−1/2.

References

  1. Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262–270.
  2. Alonso, L., Burón, R., López-Torres, E. & Mendiola, M. A. (2022). Crystals, 12, 310. https://doi. org/10.3390/cryst12030310
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gabe, E. J., Taylor, M. R., Glusker, J. P., Minkin, J. A. & Patterson, A. L. (1969). Acta Cryst. B25, 1620–1631.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  9. Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031. [DOI] [PubMed]
  10. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. A Eur. J. 26, 14833–14837. [DOI] [PubMed]
  11. Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.
  12. Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.
  13. Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.
  14. Guseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674–675.
  15. Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327.
  16. Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943–947.
  17. Holland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465–485. [DOI] [PubMed]
  18. Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.
  19. Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
  20. Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773.
  21. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
  22. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  23. Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017c). Cryst­EngComm, 19, 3322–3330.
  24. Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.
  25. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.
  26. Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.
  27. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.
  28. Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.
  29. Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.
  30. Paterson, B. M., Karas, J. A., Scanlon, D. B., White, J. M. & Donnelly, P. S. (2010). Inorg. Chem. 49, 1884–1893. [DOI] [PubMed]
  31. Rigaku OD (2023). CrysAlis PRO 1.171.42.91a. Rigaku Oxford Diffraction, Yarnton, England.
  32. Safarova, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist.-New Cryst. Struct. 234, 1183–1185.
  33. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  34. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  35. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  36. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  37. Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023007946/yz2041sup1.cif

e-79-00910-sup1.cif (353.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007946/yz2041Isup2.hkl

e-79-00910-Isup2.hkl (222.1KB, hkl)

CCDC reference: 2294475

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES