Skip to main content
IUCrData logoLink to IUCrData
. 2023 Sep 12;8(Pt 9):x230782. doi: 10.1107/S2414314623007824

(Z)-Benzyl 2-(5-methyl-2-oxoindolin-3-yl­idene)hydrazinecarbodi­thio­ate

Mohd Abdul Fatah Abdul Manan a,*, David B Cordes b, Aidan P McKay b, Mohd Fazli Mohammat c, Mohd Fadhlizil Fasihi Mohd Aluwi d, Nor Saliyana Jumali e
Editor: W T A Harrisonf
PMCID: PMC10561232  PMID: 37818467

The crystal structure of a new di­thio­carbazate imine, obtained from the condensation reaction of S-benzyl­dithio­carbazate and 5-methyl­isatin, is described.

Keywords: crystal structure, di­thio­carbazate, 5-methyl­isatin, Z configuration, hydrogen bonding

Abstract

The title compound, C17H15N3OS2 was obtained from the condensation reaction of S-benzyl­dithio­carbazate and 5-methyl­isatin. In the solid-state, the mol­ecule adopts a Z configuration with the 5-methyl­isatin and di­thio­carbazate groups located on the same side of the C=N bond, involving an intra­molecular N—H⋯O hydrogen bond. graphic file with name x-08-x230782-scheme1-3D1.jpg

Structure description

Di­thio­carbazate-based imines and some of their metal complexes possess diverse biological applications (e.g., Manan & Cordes, 2022). In addition, the applications of these compounds have evolved in research areas such as semiconductor devices (Irfan et al., 2020) and the photocatalytic production of hydrogen (Wise et al., 2015). In a contin­uation of our previous work on isatin-based imines derived from di­thio­carbazate compounds (Manan et al., 2011), the title compound was synthesized and its crystal structure is reported herein.

The title compound, C17H15N3OS2 crystallizes in the triclinic space group P Inline graphic with one mol­ecule in asymmetric unit. The structure is present as the thio­amide tautomer and in the Z isomeric form (Fig. 1) as a consequence of the formation of an intra­molecular N3—H3⋯O1 hydrogen bond (Table 1). The C10=S10 and C10—S11 lengths of 1.6544 (16) and 1.7449 (16) Å, respectively, are comparable to those reported for S-benzyl 3–2(bromo­benzyl­idene)di­thio­carbazate (Qiu & Luo, 2007), benzyl 3-(3,4,5-tri­meth­oxy­benzyl­idene)di­thio­carbazate (Islam et al., 2016) and benzyl 3-(10-oxo-9,10-di­hydro­phenanthren-9-yl­idene)di­thio­carbazate (Liu et al., 2009). The observed C—S bond lengths are both inter­mediate between reference values of 1.82 Å for a C—S single bond and 1.56 Å for a C=S double bond (Tarafder et al., 2002), indicative of conjugation effects through the π-system. As a result of the delocalization of electrons in the 5-methyl­isatin ring, the N2—N3 bond distance of 1.3509 (19) Å is slightly shorter than the corresponding bond in the unsubstituted precursor compound (Shanmuga Sundara Raj et al., 2000).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.91 (2) 2.00 (2) 2.7539 (17) 139 (2)
N9—H9⋯O1i 0.94 (2) 1.91 (2) 2.8341 (18) 166 (2)

Symmetry code: (i) Inline graphic .

The central CN2S2 residue in the title compound is close to planar (r.m.s deviation = 0.052 Å) and forms dihedral angles of 9.34 (3) and 72.80 (5)° with the substituted benzyl and 5-methyl­isatin rings, respectively, indicating a highly twisted mol­ecule; the dihedral angle between the rings is 70.87 (5)°. The N2—N3—C10—S10 fragment adopts an anti conformation with a torsion angle of 174.23 (11)°, while the N2—N3—C10—S11 fragment is syn with a torsion angle of −6.67 (19)°. This conformation is similar to those of three closely related compounds benzyl 2-(5-chloro-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazinecarbodi­thio­ate, benzyl 2-(5-fluoro-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazine­carbodi­thio­ate and benzyl 2-(5-bromo-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazinecarbodi­thio­ate (Manan et al., 2011).

In the crystal, the title compound forms inversion dimers joined by pairs of N9—H9⋯O1 hydrogen bonds (Fig. 2, Table 1) in the common Inline graphic (8) motif (Bernstein et al., 1995). The dimers then pack into sheets propagating in the (001) plane through carbonyl-to-π [O⋯centroid distance = 3.418 (2) Å] and C—H⋯π [H⋯centroid distance = 3.142 (1) Å, C⋯centroid distance = 3.846 (2) Å] inter­actions. Equivalent dimers are observed in the 5-bromo and 5-chloro compounds mentioned above, as well as in 2-(5-nitro-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazinecarbodi­thio­ate (Pereira et al., 2021) and the parent compound 2-(2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazinecarbodi­thio­ate (Ali et al., 2011). The aceto­nitrile solvate of the parent compound (Ali et al., 2011) does not form dimers and instead forms discrete N—H⋯N hydrogen bonds to the solvate. Unlike the majority of related compounds, the 5-fluoro compound (Manan et al., 2011) does not form dimers and instead packs through strong imine to π inter­actions (centroid⋯centroid separation = 3.213 Å), with weaker N—H⋯S=C hydrogen bonds involving the amide site.

Figure 2.

Figure 2

View of a hydrogen-bonded dimer of the title compound showing both intra­molecular and inter­molecular N—H⋯O hydrogen bonds. The right-hand mol­ecule is generated by the symmetry operation 2 − x, −y, 1 − z.

Synthesis and crystallization

The di­thio­carbazate precursor, SBDTC was prepared by a literature method (Ali & Tarafder, 1977). The title compound was prepared by adding 5-methyl­isatin (1.61 g, 10.0 mmol, 1.0 eq) dissolved in hot ethanol (10 ml), to a solution of the precursor, SBDTC (1.98 g, 10.0 mmol, 1.0 e.q) in hot ethanol (35 ml). The mixture was heated (80°C) with continuous stirring for 15 min and later allowed to stand for about 20 min at room temperature until a precipitate was formed, which was then filtered and dried over silica gel, yielding orange crystals on recrystallization from ethanol solution (yield: 2.73 g, 80%). m.p. 216–217°C; 1H (400 MHz, d 6-DMSO) δ: (p.p.m): 2.26 (3H, s), 4.52 (2H, s), 6.82–7.45 (8H, m), 11.26 (1H, s), 13.94 (1H, s); GCMS: [M]+ at m/z 341.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C17H15N3OS2
M r 341.44
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 6.5733 (2), 8.0601 (2), 15.8280 (4)
α, β, γ (°) 95.442 (2), 99.527 (2), 90.360 (2)
V3) 823.09 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.99
Crystal size (mm) 0.12 × 0.09 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB P100K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
T min, T max 0.748, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14207, 2876, 2623
R int 0.034
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.097, 1.07
No. of reflections 2876
No. of parameters 217
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.18

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623007824/hb4449sup1.cif

x-08-x230782-sup1.cif (427.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007824/hb4449Isup2.hkl

x-08-x230782-Isup2.hkl (229.9KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623007824/hb4449Isup3.mol

Supporting information file. DOI: 10.1107/S2414314623007824/hb4449Isup4.cml

CCDC reference: 2293455

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The a uthors acknowledge the Universiti Teknologi MARA for funding under the UMP-IIUM-UiTM Sustainable Research Collaboration Grant [600–RMC/SRC/5/3(043/2020)].

full crystallographic data

Crystal data

C17H15N3OS2 Z = 2
Mr = 341.44 F(000) = 356
Triclinic, P1 Dx = 1.378 Mg m3
a = 6.5733 (2) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.0601 (2) Å Cell parameters from 8603 reflections
c = 15.8280 (4) Å θ = 2.8–66.0°
α = 95.442 (2)° µ = 2.99 mm1
β = 99.527 (2)° T = 173 K
γ = 90.360 (2)° Plate, yellow
V = 823.09 (4) Å3 0.12 × 0.09 × 0.02 mm

Data collection

Rigaku XtaLAB P100K diffractometer 2876 independent reflections
Radiation source: Rotating Anode, Rigaku MM-007HF 2623 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromator Rint = 0.034
Detector resolution: 5.8140 pixels mm-1 θmax = 66.5°, θmin = 2.8°
shutterless scans h = −7→7
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) k = −9→9
Tmin = 0.748, Tmax = 1.000 l = −18→18
14207 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.1676P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2876 reflections Δρmax = 0.38 e Å3
217 parameters Δρmin = −0.17 e Å3
2 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Carbon-bound H atoms were included in calculated positions (C—H distances are 0.98 Å for methyl H atoms, 0.99 Å for methylene H atoms 0.95 Å for phenyl H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom, methylene and phenyl H atoms) or Uiso(H) = 1.5 Ueq(parent atom, methyl H atoms). Nitrogen-bound hydrogen atoms were located from the difference Fourier map and refined isotropically subject to a distance restraint.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S11 0.21331 (6) 0.33788 (5) 0.21855 (2) 0.03493 (14)
S10 0.58661 (6) 0.23720 (6) 0.13457 (3) 0.04020 (15)
O1 0.86838 (18) 0.08666 (16) 0.40267 (8) 0.0398 (3)
N3 0.5546 (2) 0.22521 (17) 0.29604 (9) 0.0341 (3)
N2 0.4614 (2) 0.26067 (17) 0.36534 (9) 0.0326 (3)
N9 0.7901 (2) 0.11126 (18) 0.54096 (9) 0.0358 (3)
C12 0.1188 (3) 0.5709 (2) 0.10260 (10) 0.0337 (3)
C1 0.7576 (2) 0.1314 (2) 0.45642 (11) 0.0335 (3)
C2 0.5567 (2) 0.22039 (19) 0.43850 (10) 0.0325 (3)
C10 0.4621 (2) 0.26451 (19) 0.21733 (10) 0.0319 (3)
C8 0.6299 (2) 0.1807 (2) 0.58149 (11) 0.0340 (3)
C3 0.4846 (2) 0.24993 (19) 0.52025 (10) 0.0324 (3)
C5 0.2894 (3) 0.3413 (2) 0.63055 (11) 0.0378 (4)
C11 0.1296 (3) 0.3858 (2) 0.10785 (10) 0.0359 (4)
H11A 0.227507 0.338283 0.071281 0.043*
H11B −0.007988 0.333708 0.085640 0.043*
C4 0.3146 (3) 0.3301 (2) 0.54485 (11) 0.0365 (4)
H4 0.216108 0.376892 0.503346 0.044*
C7 0.6075 (3) 0.1888 (2) 0.66702 (11) 0.0394 (4)
H7 0.705150 0.140761 0.708391 0.047*
C6 0.4357 (3) 0.2702 (2) 0.69000 (11) 0.0415 (4)
H6 0.417242 0.277589 0.748510 0.050*
C17 −0.0561 (3) 0.6540 (2) 0.11867 (12) 0.0452 (4)
H17 −0.169973 0.593731 0.131545 0.054*
C13 0.2833 (3) 0.6589 (3) 0.08239 (12) 0.0478 (5)
H13 0.403301 0.602050 0.070803 0.057*
C9 0.1083 (3) 0.4309 (3) 0.65976 (12) 0.0474 (4)
H9A 0.023698 0.475703 0.610469 0.071*
H9B 0.158867 0.522536 0.703588 0.071*
H9C 0.024801 0.352666 0.684170 0.071*
C16 −0.0654 (5) 0.8257 (3) 0.11601 (14) 0.0685 (7)
H16 −0.184886 0.883158 0.127739 0.082*
C14 0.2728 (5) 0.8293 (3) 0.07910 (14) 0.0690 (8)
H14 0.385349 0.889230 0.064934 0.083*
C15 0.1000 (6) 0.9125 (3) 0.09623 (15) 0.0803 (10)
H15 0.094106 1.029931 0.094482 0.096*
H3 0.680 (3) 0.177 (3) 0.3057 (14) 0.052 (6)*
H9 0.901 (3) 0.053 (3) 0.5684 (14) 0.057 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S11 0.0346 (2) 0.0399 (2) 0.0312 (2) 0.01365 (17) 0.00499 (16) 0.00834 (16)
S10 0.0370 (2) 0.0487 (3) 0.0375 (2) 0.00624 (18) 0.01188 (17) 0.00715 (18)
O1 0.0344 (6) 0.0487 (7) 0.0373 (6) 0.0126 (5) 0.0052 (5) 0.0097 (5)
N3 0.0297 (7) 0.0389 (7) 0.0345 (7) 0.0087 (6) 0.0044 (6) 0.0085 (6)
N2 0.0320 (7) 0.0332 (7) 0.0325 (7) 0.0056 (5) 0.0030 (5) 0.0060 (5)
N9 0.0306 (7) 0.0424 (8) 0.0334 (7) 0.0086 (6) 0.0001 (5) 0.0081 (6)
C12 0.0413 (9) 0.0329 (8) 0.0249 (7) 0.0039 (7) −0.0017 (6) 0.0050 (6)
C1 0.0294 (8) 0.0337 (8) 0.0365 (8) 0.0042 (6) 0.0015 (6) 0.0063 (6)
C2 0.0300 (8) 0.0310 (8) 0.0360 (8) 0.0046 (6) 0.0021 (6) 0.0067 (6)
C10 0.0320 (8) 0.0278 (7) 0.0353 (8) 0.0019 (6) 0.0031 (6) 0.0046 (6)
C8 0.0306 (8) 0.0349 (8) 0.0351 (8) 0.0018 (6) 0.0005 (6) 0.0054 (6)
C3 0.0313 (8) 0.0317 (8) 0.0332 (8) 0.0019 (6) 0.0010 (6) 0.0055 (6)
C5 0.0335 (8) 0.0406 (9) 0.0386 (9) −0.0002 (7) 0.0056 (7) 0.0010 (7)
C11 0.0403 (9) 0.0351 (8) 0.0303 (8) 0.0067 (7) −0.0016 (6) 0.0055 (6)
C4 0.0338 (8) 0.0364 (9) 0.0383 (9) 0.0051 (7) 0.0021 (7) 0.0054 (7)
C7 0.0355 (9) 0.0483 (10) 0.0332 (8) 0.0024 (7) −0.0010 (7) 0.0089 (7)
C6 0.0396 (9) 0.0511 (10) 0.0333 (9) −0.0013 (8) 0.0056 (7) 0.0019 (7)
C17 0.0529 (11) 0.0452 (10) 0.0376 (9) 0.0157 (8) 0.0049 (8) 0.0083 (7)
C13 0.0509 (10) 0.0534 (11) 0.0367 (9) −0.0098 (9) −0.0009 (8) 0.0076 (8)
C9 0.0419 (10) 0.0576 (11) 0.0428 (10) 0.0067 (8) 0.0102 (8) −0.0013 (8)
C16 0.105 (2) 0.0485 (12) 0.0467 (12) 0.0390 (13) −0.0009 (12) 0.0012 (9)
C14 0.104 (2) 0.0527 (13) 0.0441 (12) −0.0332 (14) −0.0100 (12) 0.0135 (10)
C15 0.155 (3) 0.0294 (10) 0.0451 (12) −0.0012 (15) −0.0179 (15) 0.0056 (9)

Geometric parameters (Å, º)

S11—C10 1.7449 (16) C5—C6 1.396 (3)
S11—C11 1.8260 (16) C5—C9 1.510 (3)
S10—C10 1.6544 (16) C11—H11A 0.9900
O1—C1 1.239 (2) C11—H11B 0.9900
N3—N2 1.3509 (19) C4—H4 0.9500
N3—C10 1.360 (2) C7—H7 0.9500
N3—H3 0.912 (16) C7—C6 1.392 (3)
N2—C2 1.293 (2) C6—H6 0.9500
N9—C1 1.345 (2) C17—H17 0.9500
N9—C8 1.413 (2) C17—C16 1.390 (3)
N9—H9 0.938 (16) C13—H13 0.9500
C12—C11 1.503 (2) C13—C14 1.381 (3)
C12—C17 1.381 (3) C9—H9A 0.9800
C12—C13 1.387 (2) C9—H9B 0.9800
C1—C2 1.505 (2) C9—H9C 0.9800
C2—C3 1.449 (2) C16—H16 0.9500
C8—C3 1.402 (2) C16—C15 1.384 (4)
C8—C7 1.381 (2) C14—H14 0.9500
C3—C4 1.387 (2) C14—C15 1.375 (4)
C5—C4 1.388 (2) C15—H15 0.9500
C10—S11—C11 103.16 (8) C12—C11—H11B 109.4
N2—N3—C10 119.92 (14) H11A—C11—H11B 108.0
N2—N3—H3 116.6 (14) C3—C4—C5 119.52 (16)
C10—N3—H3 123.4 (14) C3—C4—H4 120.2
C2—N2—N3 117.17 (14) C5—C4—H4 120.2
C1—N9—C8 111.27 (14) C8—C7—H7 121.4
C1—N9—H9 123.9 (15) C8—C7—C6 117.16 (16)
C8—N9—H9 124.7 (15) C6—C7—H7 121.4
C17—C12—C11 119.66 (16) C5—C6—H6 118.7
C17—C12—C13 119.77 (17) C7—C6—C5 122.66 (16)
C13—C12—C11 120.57 (16) C7—C6—H6 118.7
O1—C1—N9 127.80 (15) C12—C17—H17 120.0
O1—C1—C2 125.75 (15) C12—C17—C16 120.0 (2)
N9—C1—C2 106.46 (14) C16—C17—H17 120.0
N2—C2—C1 128.01 (15) C12—C13—H13 120.0
N2—C2—C3 125.68 (15) C14—C13—C12 120.0 (2)
C3—C2—C1 106.30 (13) C14—C13—H13 120.0
S10—C10—S11 128.14 (10) C5—C9—H9A 109.5
N3—C10—S11 112.22 (12) C5—C9—H9B 109.5
N3—C10—S10 119.64 (13) C5—C9—H9C 109.5
C3—C8—N9 109.25 (14) H9A—C9—H9B 109.5
C7—C8—N9 129.31 (15) H9A—C9—H9C 109.5
C7—C8—C3 121.43 (16) H9B—C9—H9C 109.5
C8—C3—C2 106.70 (14) C17—C16—H16 120.1
C4—C3—C2 133.05 (15) C15—C16—C17 119.8 (2)
C4—C3—C8 120.24 (16) C15—C16—H16 120.1
C4—C5—C6 118.99 (16) C13—C14—H14 119.9
C4—C5—C9 120.83 (16) C15—C14—C13 120.3 (2)
C6—C5—C9 120.18 (16) C15—C14—H14 119.9
S11—C11—H11A 109.4 C16—C15—H15 119.9
S11—C11—H11B 109.4 C14—C15—C16 120.1 (2)
C12—C11—S11 111.12 (11) C14—C15—H15 119.9
C12—C11—H11A 109.4
O1—C1—C2—N2 2.5 (3) C8—N9—C1—O1 179.33 (16)
O1—C1—C2—C3 −178.95 (16) C8—N9—C1—C2 −0.72 (18)
N3—N2—C2—C1 −2.7 (2) C8—C3—C4—C5 0.0 (2)
N3—N2—C2—C3 178.99 (14) C8—C7—C6—C5 0.2 (3)
N2—N3—C10—S11 −6.67 (19) C3—C8—C7—C6 −0.7 (3)
N2—N3—C10—S10 174.23 (11) C11—S11—C10—S10 −2.51 (13)
N2—C2—C3—C8 177.57 (15) C11—S11—C10—N3 178.48 (11)
N2—C2—C3—C4 −3.7 (3) C11—C12—C17—C16 178.43 (17)
N9—C1—C2—N2 −177.48 (15) C11—C12—C13—C14 −178.98 (16)
N9—C1—C2—C3 1.09 (17) C4—C5—C6—C7 0.4 (3)
N9—C8—C3—C2 0.65 (18) C7—C8—C3—C2 179.54 (15)
N9—C8—C3—C4 −178.28 (14) C7—C8—C3—C4 0.6 (2)
N9—C8—C7—C6 177.93 (16) C6—C5—C4—C3 −0.5 (3)
C12—C17—C16—C15 0.8 (3) C17—C12—C11—S11 −84.17 (17)
C12—C13—C14—C15 0.3 (3) C17—C12—C13—C14 0.5 (3)
C1—N9—C8—C3 0.07 (19) C17—C16—C15—C14 0.1 (3)
C1—N9—C8—C7 −178.72 (17) C13—C12—C11—S11 95.35 (16)
C1—C2—C3—C8 −1.05 (17) C13—C12—C17—C16 −1.1 (3)
C1—C2—C3—C4 177.68 (17) C13—C14—C15—C16 −0.7 (3)
C2—C3—C4—C5 −178.56 (16) C9—C5—C4—C3 178.71 (16)
C10—S11—C11—C12 −109.04 (13) C9—C5—C6—C7 −178.83 (16)
C10—N3—N2—C2 179.99 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1 0.91 (2) 2.00 (2) 2.7539 (17) 139 (2)
N9—H9···O1i 0.94 (2) 1.91 (2) 2.8341 (18) 166 (2)

Symmetry code: (i) −x+2, −y, −z+1.

Funding Statement

Funding for this research was provided by: Universiti Teknologi MARA (grant No. 600–RMC/SRC/5/3(043/2020)).

References

  1. Ali, M. A., Mirza, A. H., Bakar, H. J. H. A. & Bernhardt, P. V. (2011). Polyhedron, 30, 556–564.
  2. Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785–1791.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Irfan, A., Al-Sehemi, A. G., Assiri, M. A. & Ullah, S. (2020). Mater. Sci. Semicond. Process. 107, 104855.
  6. Islam, M. A. A. A., Sheikh, M. C., Mahmud, A. A., Miyatake, R. & Zangrando, E. (2016). IUCrData, 1, x160190.
  7. Liu, Q.-R., Chu, S.-M., Zhao, G.-Q., Chen, L.-H. & Han, Y.-J. (2009). Acta Cryst. E65, o2853. [DOI] [PMC free article] [PubMed]
  8. Manan, M. A. F. A. & Cordes, D. B. (2022). Trends Sci. 19, 5796.
  9. Manan, M. A. F. A., Crouse, K. A., Tahir, M. I. M., Rosli, R., How, F. N. F., Watkin, D. J. & Slawin, A. M. Z. (2011). J. Chem. Crystallogr. 41, 1630–1641.
  10. Pereira, P., Lima, J., Deflon, V., Malpass, G., De Oliveira, R. & Maia, P. (2021). Eur. J. Chem. 12, 235–241.
  11. Qiu, X.-Y. & Luo, Z.-G. (2007). Acta Cryst. E63, o4339.
  12. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  13. Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236–1237. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Tarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2691–2698.
  17. Wise, C. F., Liu, D., Mayer, K. J., Crossland, P. M., Hartley, C. L. & McNamara, W. R. (2015). Dalton Trans. 44, 14265–14271. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623007824/hb4449sup1.cif

x-08-x230782-sup1.cif (427.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007824/hb4449Isup2.hkl

x-08-x230782-Isup2.hkl (229.9KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623007824/hb4449Isup3.mol

Supporting information file. DOI: 10.1107/S2414314623007824/hb4449Isup4.cml

CCDC reference: 2293455

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES