Table 1. Hyperparameter optimization values for determining the best performing knowledge graph embedding model.
Hyperparameter | Values |
---|---|
Batch count | 8, 12, 16 |
Embedding size | 90, 120, 150 |
Number of negatives (eta) per positive triple | 10, 15, 20 |
Loss function | pairwise, multiclass_nll |
Regularization type | L1, L2, nuclear 3-norm |
Learning rate | 0.0001, 0.001 |